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Abstract

We investigated the contribution of medium range weather forecasts with lead times up
to 14 days to seasonal hydrologic prediction skill over the Conterminous United States
(CONUS). Three different Ensemble Streamflow Prediction (ESP)-based experiments
were performed for the period 1980–2003 using the Variable Infiltration Capacity (VIC)5

hydrology model to generate forecasts of monthly runoff and soil moisture (SM) at
lead-1 (first month of the forecast period) to lead-3. The first experiment (ESP) used
a resampling from the retrospective period 1980–2003 and represented full climato-
logical uncertainty for the entire forecast period. In the second and third experiments,
the first 14 days of each ESP ensemble member were replaced by either observa-10

tions (perfect 14-day forecast) or by a deterministic 14-day weather forecast. We used
Spearman rank correlations of forecasts and observations as the forecast skill score.
We estimated the potential and actual improvement in baseline skill as the difference
between the skill of experiments 2 and 3 relative to ESP, respectively. We found that
useful runoff and SM forecast skill at lead-1 to -3 months can be obtained by exploiting15

medium range weather forecast skill in conjunction with the skill derived by the knowl-
edge of initial hydrologic conditions. Potential improvement in baseline skill by using
medium range weather forecasts, for runoff (SM) forecasts generally varies from 0 to
0.8 (0 to 0.5) as measured by differences in correlations, with actual improvement gen-
erally from 0 to 0.8 of the potential improvement. With some exceptions, most of the20

improvement in runoff is for lead-1 forecasts, although some improvement in SM was
achieved at lead-2.

1 Introduction

Droughts are among the most expensive natural disasters (Ross and Lott,
2003). Proactive risk-based approaches to drought management that include better25
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monitoring, early warning and prediction, are essential for mitigating drought losses
(Schubert et al., 2007). Seasonal hydrologic and drought prediction systems, such as
the NOAA Climate Prediction Center’s seasonal drought outlook, derive their skill from
knowledge of initial hydrologic conditions (IHCs) and weather/climate information dur-
ing the forecast period. The contribution of IHCs and climate forecast skill in seasonal5

hydrologic prediction varies seasonally, spatially and with lead-time. Over the Con-
terminous United States (CONUS), Shukla and Lettenmaier (2011) found that IHCs
generally dominate at short leads (i.e., 1–2 months) while climate forecast skill dom-
inates for longer leads, although IHCs can account for a substantial part of the total
hydrologic forecast skill under some conditions for leads of as long as 6 months.10

Macro-scale land surface models (LSMs) provide a reasonably accurate estimate of
IHCs at the time of forecast initialization for seasonal hydrologic prediction. For exam-
ple, seasonal hydrologic/drought prediction systems, such as The National Centers
for Environmental Prediction’s (NCEP) drought monitor (http://www.emc.ncep.noaa.
gov/mmb/nldas/forecast/TSM/prob/) and the University of Washington’s Surface Water15

Monitor (http://www.hydro.washington.edu/forecast/monitor/outlook/index.shtml), use
IHCs generated by LSMs. Within the multi-institutional North American Land Data As-
similation System project (Mitchell et al., 1999, 2004), a suite of large scale hydrologic
models have been developed and tested over the CONUS for their ability to simulate
various hydrometeorological processes (Cosgrove et al., 2003; Luo et al., 2003; Pan20

et al., 2003; Sheffield et al., 2003; Schaake et al., 2004; Xia et al., 2012a,b).
Simultaneously, major strides have been made toward understanding the sources of

predictability of seasonal precipitation and temperature in the US (Higgins et al., 2000)
and improving climate forecasts (O’Lenic et al., 2008). Statistical and physical model-
ing approaches can exploit predictability in the climate system primarily via the thermal25

inertia present in sea-surface temperatures (Barnston et al., 1999), especially during
strong El Niño/La Niña-Southern Oscillation years. Otherwise, precipitation forecast
skill beyond a month or so is quite limited (Wilks, 2000; Quan et al., 2006; Lavers
et al., 2009). Precipitation forecast skill is generally lower than the skill of forecasts for
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temperature or atmospheric circulation patterns for the same location and time (Wilks
and Godfrey, 2002; Gong et al., 2003; Lavers et al., 2009; Barnston et al., 2010). Since
precipitation is the major driver of drought conditions, seasonal drought prediction skill
is severely limited by the lack of precipitation forecast skill under most conditions. The
difficulty of forecasting rainfall, mainly during summer, has been a major stumbling5

block for the CPC’s seasonal drought outlook as well (Hayes et al., 2005).
Due to limited seasonal climate forecast skill, seasonal hydrologic prediction skill

comes in substantial part from IHCs (Lettenmaier and Wood, 2009). One potential
means for improving seasonal hydrologic prediction is to better exploit medium range
weather forecasts (MRWFs) for the first 14 days of a seasonal forecast period. MRWFs10

have greatly improved in the last two decades as increased computer power and more
integrated observation systems have allowed general circulation models to run at finer
resolutions with improved initializations (Pappenberger et al., 2005; Hamill et al., 2006).
MRWFs have been coupled with LSMs to provide flood and streamflow forecasts for
lead times of up to 2 weeks, using both deterministic and probabilistic approaches15

(Clark and Hay, 2004; Werner et al., 2005; Hou et al., 2009; Thielen et al., 2009; Voisin
et al., 2011). Werner et al. (2005) found that incorporating 14-day precipitation and
temperature forecasts from a MRWF model into the National Weather River Forecast
System’s traditional ESP forecast system generally improved the streamflow forecast
skill for up to 18 days. Hou et al. (2009) evaluated the Global Ensemble Forecast20

System of NCEP coupled with the Noah LSM for its ability to provide useful streamflow
forecast skill. They concluded that the coupled system has some positive streamflow
forecast skill at lead times varying from 1–3 days for smaller basins and more than
7–10 days for large river basins.

The use of MRWFs has been mostly limited to up to two weeks in lead-time and their25

value in improving hydrologic prediction at seasonal scale is largely unexplored so far.
By merging MRWFs (∼14 day lead) with seasonal climate forecasts, seasonal hydro-
logic prediction skill could potentially be (i) improved at short lead times (∼1–2 months)
and (ii) extended in time beyond what is derived solely from the IHCs; particularly in
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those cases when climate forecasts at even short lead times have skill that is no better
than climatological.

The goal of this study is to assess the contribution of MRWFs in seasonal hydro-
logic prediction. Specifically, we evaluate the potential of MRWFs to improve seasonal
hydrologic forecast skill relative to that achievable by the Ensemble Streamflow Predic-5

tion (ESP) approach. ESP (Day, 1985; Franz et al., 2003) is a method that involves
running an LSM up to the forecast initialization date using observed forcings, and then
producing ensembles by resampling time sequences of forcings from years in the his-
toric record. Hence, its skill is derived solely from knowledge of IHCs. We evaluate the
additional forecast skill derivable from MRWFs in the context of hydrologic ensembles10

of monthly runoff and mean monthly soil moisture (SM) at leads from one to several
months.

2 Approach

Three ESP-based experiments were conducted. The basic framework for each exper-
iment was the same: IHCs were derived by running an LSM using observed meteo-15

rological forcings until the date of forecast initialization, i.e., on the first of each month
in the 1980–2003 period. In forecast mode, the LSM was forced with 6-month long
observed meteorological forcings resampled from the historical period (23 ensemble
members in the 1980–2003 period when the year of the forecast was excluded) and
starting on the day of the forecast, i.e., on the first of each month. The experiments20

differed in the forcings for the first 14 days of the forecasts period as follows:

– The first experiment (hereafter referred to as ESP) used the conventional ESP
framework (Fig. 1a) as in Wood and Lettenmaier (2006, 2008), Wood et al. (2002),
Li et al. (2009), and Shukla and Lettenmaier (2011). It defines the baseline sea-
sonal hydrologic prediction skill.25
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– In the second experiment (hereafter referred to as OBS Merged ESP), the first
14 days of each ESP ensemble member were replaced with observations (i.e.,
perfect MRWF). For example, as shown in Fig. 1b, the forcings used for days
1 to 14 were the observations during that period (deterministic perfect fore-
cast), beyond which the forecast ensemble members were the same as in ESP.5

OBS Merged ESP defines the maximum improvement in seasonal hydrologic
prediction skill that can be obtained if perfect knowledge of the LSM forcings could
be extended to 14 days in the future.

– The third experiment (hereafter referred to as MRF Merged ESP) is similar to
the second experiment, but observations for the first 14 days in each ensemble10

member were replaced with a deterministic MRWF (Fig. 1c). This experiment
defines the actual improvement in seasonal hydrologic prediction skill that can
be derived from use of realistic weather forecasts over those 14 days. The skill
contributed by these forecasts may also be limited by the need to downscale the
MRWF to the spatial resolution of the hydrologic model (one-half degree in the15

case of our experiments).

The skill of each experiment was estimated with respect to the “simulated observed”
values (hereafter referred to as reference values) of runoff and SM, which were treated
as surrogates for observations. The reference runoff and SM were obtained from a con-
sistent long-term (1980–2003) simulation of the Variable Infiltration Capacity (VIC) LSM20

(Sect. 2.1.1) forced with observed gridded station data (see Sect. 2.1.2).

2.1 LSM and forcing data

2.1.1 The variable infiltration capacity (VIC) model

The VIC macro-scale hydrology model (Liang et al., 1994, 1996; Cherkauer et al.,
2003) was run at a daily time step and 1/2 degree latitude-longitude spatial resolu-25

tion. The VIC model includes a parameterization for spatial variability of the infiltration
1832
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capacity (and hence variability of runoff) and evaporation from different vegetation
types, as well as bare soil evaporation. It provides for non-linear dependence of the par-
titioning of precipitation into infiltration and direct runoff as determined by soil-moisture
in the upper layer and its spatial heterogeneity. The subsurface is partitioned into three
layers. The first layer has a fixed depth of ∼10 cm and responds quickly to changes in5

surface conditions and precipitation. Moisture transfers between the first and second,
and second and third soil layers are governed by gravity drainage, with diffusion from
the second to the upper layer allowed in unsaturated conditions. Base flow is a non-
linear function of the moisture content of the third soil-layer (Liang et al., 1994; Todini,
1996). The model was run in water balance mode; which means that the surface tem-10

perature is assumed equal to the surface air temperature, and is not iterated for energy
balance closure (this also implies zero ground heat flux). The VIC model represents the
snowpack as a two-layer medium (a thin surface, and a thick deeper layer), and solves
an energy and mass balance as part of its computation of pack ablation (Andreadis
et al., 2009).15

2.1.2 Retrospective simulation (control run)

Arguably observed discharge could be used as reference in order to evaluate fore-
casted monthly runoff. However, there is no such proxy available for evaluation of
forecasted monthly mean soil moisture, and we therefore chose to use an historic ref-
erence simulation as the basis for evaluation of both runoff and soil moisture. A con-20

sistent data set of runoff and mean monthly SM over the analysis period (1980–2003)
to be used as the reference was generated by forcing the VIC model with observed
gridded meteorological forcings over the analysis period. This simulation also included
a >50 yr model spinup. The model forcings (daily precipitation, and maximum (Tmax)
and minimum (Tmin) temperature) were taken from Cooperative Observer Program sta-25

tions, and gridded using methods outlined in Maurer et al. (2002). Additional model
forcings (downward solar and longwave radiation, and humidity) were estimated from
the daily air temperature and temperature range following methods outlined in Maurer

1833
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et al. (2002). Surface wind was taken from the lowest level of the NCEP/NCAR re-
analysis (Kalnay et al., 1996). The IHCs for each forecast initialization day used in the
experiments were provided by this control run.

2.1.3 Weather forecasts

We used the 1979–2005 15-day 12-hourly 2.5-degree NCEP/Climate Diagnostics Cen-5

ter (CDC) Medium Range Forecast (MRF) reforecast dataset of Hamill et al. (2006).
The Hamill et al. (2006) data set uses a fixed version (1998) of the NCEP global fore-
cast model and hence should have nearly consistent (aside from some differences in
the data that were available for assimilation) forecast skill over the period of analy-
sis. The reforecasts were downscaled from their native resolution (2.5 degree) to the10

0.5-degree scale of the hydrology model and bias corrected to be consistent with the
meteorological forcings used in the LSM spinup and reference simulation. The down-
scaling was performed by first aggregating the 12-hourly ensemble mean forecasts to
14 days, then interpolating the ensemble averages using an inverse squared distance
interpolation scheme (Shepard, 1984; Voisin et al., 2010). Figures 2 and 3 show the15

Spearman rank correlation between the observed and downscaled forecasts (at 1/2
degree resolution) of 14-day accumulated precipitation and 14-day mean average daily
temperature. The downscaled and accumulated 14-day weather forecasts were sub-
sequently bias corrected by rescaling so that the long term 14-day accumulated mean
precipitation and average Tmax and Tmin matched the corresponding values from the20

observed gridded forcings over the 1980–2003 period. The 14-day downscaled and
bias corrected forecasts were then temporally disaggregated to a daily time scale by
multiplying (adding) the non-bias corrected 14 days daily forecasts with the ratio (shift)
of 14-day bias corrected and non bias corrected total precipitation (average temper-
ature) values. More elaborate “weather pre-processors” could have been used (e.g.,25

Schaake et al., 2007; Voisin et al., 2010); however, we focus here on the implications
of weather forecasts of the first 14 days on seasonal hydrological forecasts. For this
purpose the daily sequencing of events is less important than the aggregate quantities.
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Merging the 14-day ensemble mean forecasts, rather than each ensemble member,
into the ESP forecasts avoids complications in merging the ensemble members (Clark
et al., 2004) and limits the impact of the calibration and downscaling approaches on
the ensemble forecast skill. The bias correction and spatial disaggregation approach
in general reduces or eliminates biases, but does not preserve probabilistic information5

inherent in the forecasts (Voisin et al., 2010). Here we evaluate the potential improve-
ment in seasonal hydrologic prediction from merging MRF with ESP, assuming that
the information in the MRF ensemble is not calibrated and only the ensemble mean
forecast is useful for our application.

2.2 Forecast skill score10

For simplicity, daily spatially distributed runoff and SM forecasts and reference values
(obtained from the control run) were aggregated in time to monthly accumulations or
averages, and to the spatial scale of 48 hydrologic sub-regions across the CONUS
domain (Table 1). These sub-regions are the same as the sub-regions used in Shukla
and Lettenmaier (2011) and were created by merging the 221 USGS hydrologic sub-15

regions. Each of the sub-regions is named after the water resources region in which it
is located (Table 1).

To evaluate the forecast skill of each experiment we estimated Spearman rank cor-
relation coefficients (Wilks, 2006) between the ensemble mean forecasts (over years)
and the reference simulations. Spearman rank correlation is a measure of mono-20

tonic associations between forecasts and observations (Jolliffe and Stephenson, 2003).
The skill (rank correlation) of the ESP experiment is considered to be the “Baseline
skill”. We considered the difference between the skill of OBS Merged ESP and the
ESP experiment as the potential improvement and the difference between the skill of
MRF Merged ESP and the ESP experiment as the actual improvement in baseline25

skill.
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3 Results

We present the results for a forecast period of 2 months only (Figs. 4–9). Although in
a few cases we observed improvements in seasonal hydrologic prediction skill due to
use of MRWFs for three-month lead, generally the improvement in skill was limited to
lead-1 and lead-2.5

First we show the baseline skill (skill of the ESP experiment). The sub-regions where
the baseline skill is not significant at 95 % significance level have been masked and
are shown in dark grey (the critical value of the Spearman rank correlation was esti-
mated using the table given in Zar, 1972). We then show the potential improvement
in the baseline skill (difference between the skill of OBS Merged ESP and ESP ex-10

periments). Again the improvement is shown over those sub-regions where the skill
of OBS Merged ESP is significant at the 95 % level. Finally, we show the ratio of the
actual improvement in skill (difference between the skill of MRF Merged ESP and ESP
experiment) and the potential improvement in skill, to highlight the level of the im-
provement in skill actually recovered by using realistic MRWFs. We show the actual15

improvement in skill over those sub-regions only where the potential improvement in
skill is >0.1 and the skill of OBS Merged ESP is significant at the 95 % level.

3.1 Monthly runoff forecasts

The correlations of ensemble mean monthly runoff forecasts from ESP initialized (base-
line skill) on day 1 of each month with the reference runoff at leads 1 to 2 months are20

shown in Fig. 4. In general the baseline skill is highest at lead-1. Overall, across
the CONUS, the baseline skill for runoff forecasts is highest during forecast periods
starting in winter months (e.g., December-January-February, DJF) and lowest during
forecast periods starting in fall months (mainly September and October). During fore-
cast periods starting in spring (March-April-May) and early summer months (June and25

July), the Western US stands out with relatively high runoff forecast skill up to lead-2
(and beyond, not shown here). This is mostly attributable to the effects of snow, which
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provides substantial IHC-related forecast skill for forecast periods starting in late winter
to early summer.

Figure 5 shows the potential improvement in baseline skill of monthly runoff forecasts
(i.e., difference between the skill score of runoff forecasts from OBS Merged ESP and
ESP). Not surprisingly the greatest improvement in runoff forecast skill is at lead-1,5

and the effect decreases with lead-time. The largest improvement in skill for any given
sub-region at lead-1 is generally in those cases where the first month of the forecast
period is climatologically wet. This is the case, for example, for sub-regions in the Great
Plains, Midwest and LM sub-regions for forecasts starting in April through October, and
for the Pacific coastal sub-regions for forecast periods starting in November through the10

winter months (e.g., DJF). On the other hand, the improvement in skill at lead-1 is small
for sub-regions for which the first month of the forecast period is climatologically dry or
the initial moisture variability is much higher than the precipitation variability during the
forecast period (small κ values according to the convention of Mahanama et al., 2011);
such conditions lead to high baseline skill. This is the case for instance in the interior15

of the Western US during spring and summer months.
In some cases, the improvements in skill due to use of perfect MRWFs persists into

leads-2 and -3 (not shown). These cases likely correspond to better knowledge of IHCs
at the end of the 14 days in OBS Merged ESP experiment than in the ESP experiment.

The potential improvement in skill shown in Fig. 5 clearly is optimistic relative to20

what is achievable in practice because weather forecast skill is imperfect even for the
smallest (e.g., one day) leads, and declines thereafter throughout the 14-day MRWF
period.

Figure 6 shows the ratio of actual improvement in skill (differences in correlations
for runoff forecasts derived by MRF Merged ESP and ESP) to potential improvement25

in skill (as discussed above) and indicates the improvement in runoff forecast skill that
can be achieved realistically by using MRF medium range weather forecasts for the first
14 days of the forecast period. (It should be noted that these results may be slightly
pessimistic as the MRF model has been retired, and MRWF skill for current generation
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weather forecast models may be slightly higher. However, the MRF reforecast data
set is unique in providing a consistent set of reforecasts appropriate for the type of
analysis we have performed; a newer version of this data set is planned but has not
yet been released). Two main factors control the actual improvement in runoff forecast
skill: (i) the potential improvement in skill (as shown in Fig. 5, derived from the use of5

perfect MRWFs) and (ii) the forecast skill of the MRWFs themselves. In other words,
the improvement in skill due to use of MRWFs will be highest when both the potential
improvement in hydrologic forecast skill and the MRWF skill (primarily for precipitation)
are high. Therefore in Fig. 6, we show the actual improvement over those sub-regions
only where the skill of OBS Merged ESP is significant at 95 % level and the potential10

improvement in baseline skill is greater than 0.1.
In general, Fig. 6 shows that the actual improvement in skill due to use of the MRF

forecasts is highest for those sub-regions and times of the year where the first month
is climatologically wet. Overall the actual improvement in skill is extensive over the
Great Plains, Midwest, Texas-Gulf and parts of the Northern and Southeastern US at15

lead-1 during the forecast periods starting in spring (mainly April and May), summer
(mainly June and July) and fall (SON, September-October-November) months. Over
the mountainous West sub-regions the actual improvement in skill is highest during
the forecast period initialized on 01 November, December and January. Again those
are also the forecast periods when the baseline skill is low over those regions (Fig. 4),20

whereas during the forecast periods starting in spring and summer months (when the
baseline skill is high) both the potential and actual improvement in skill is generally
negligible (Figs. 5 and 6). The sub-regions shown in pink color during each forecast
period show potential improvement but little or no actual improvement; likely due to
limited MRF precipitation forecast skill.25

3.2 Soil moisture (SM) forecasts

Figure 7 shows the baseline skill for SM forecasts for lead-1 and lead-2. In general,
the baseline skill for SM is much higher than for runoff (Figs. 5 and 7). Shukla and
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Lettenmaier (2011) also showed that at lead-1 IHCs generally dominate SM forecast
skill.

Similar to the case of runoff forecasts across the CONUS, baseline skill for SM is
generally highest during forecast periods starting in the winter, with higher skill over the
western as compared with the Eastern US. The baseline skill at leads-2 (and -3, not5

shown here) is high over the interior of the Western US for forecast periods starting on
day 1 of spring (March-April-May, MAM) and summer (June-July-August, JJA) months.

The potential improvement in the baseline skill of SM forecasts for each forecast
period is shown in Fig. 8. Overall, the potential improvement in SM forecast skill at
lead-1 is lower than the corresponding values for monthly runoff forecast skill (Figs. 510

and 8). This appears to be a result of the high baseline skill for SM at lead-1 (i.e., high
contribution of IHCs in SM forecast skill), hence leaving less room for improvement
than for the case of runoff (since the maximum correlation value or the value of skill
is 1). As for runoff, the greatest potential improvement in skill is for sub-regions and
forecast periods where the lead-1 month is climatologically wet. Improvements at lead-15

1 are mostly limited to the Southwestern and Eastern US (and Great Plains in a few
cases) where the contribution of IHCs to SM forecast skill is lower than for the Western
US. Mainly in the forecast periods starting in April, May and June and fall months
(September and October) relatively large potential improvements can be seen over
those regions. The potential improvement in skill at lead-2, however, seems more20

extensive in the case of SM forecasts than runoff. There could be a few explanations
for this pattern. First, more sub-regions show significant levels of OBS Merged ESP
skill at lead-2 in the case of SM forecasts skill than in that of runoff skill (therefore fewer
regions are shown in dark grey at lead-2 in Fig. 8 than Fig. 5). Second, the baseline
skill for SM forecasts (i.e., skill of ESP experiments) at lead-2 is smaller than at lead-125

leaving more room for improvement in skill. Finally, the improvement in SM forecast
skill at lead-2 could be a result of persistence of the contribution of MRWF skill at lead-
1. Once again the potential improvement in SM forecasts skill at lead-2 is generally
prominent over the eastern half of the country.
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The ratio of actual to potential improvement in SM forecast skill is shown in Fig. 9.
The actual improvement in skill is shown only over the regions where potential im-
provement in SM forecasts skill is greater than 0.1 and the skill of OBS Merged ESP
is significant at the 95 % level. Since the baseline skill of ESP (and hence skill of
OBS Merged ESP) is generally significant across the CONUS at lead-1, the sub-5

regions shown in grey in Fig. 9 are mostly those regions where the potential improve-
ment in skill is lower than 0.1. Overall for the most part the actual improvement in skill
is limited to the sub-regions in the eastern half of the US, mostly during the forecast
periods starting in April, May, June, September and October. Actual improvement in
skill, however, can be seen over Pacific coastal regions at lead-1 for forecast periods10

starting in November and December. Again following the pattern of potential improve-
ment, actual improvement at lead-2 in SM forecast skill also seems more extensive
than in runoff forecast skill. This could be due to the persistence of the contributions of
MRWFs at lead-1.

4 Discussion15

Not surprisingly, perfect MRWFs show the greatest improvement in skill while MRF
forecasts show smaller or no improvement. However, further improvement in MRWF
skill will presumably lead to improvement in seasonal hydrologic prediction skill in those
sub-regions and forecast periods where the use of perfect medium range weather fore-
casts yields most improvement in seasonal hydrologic prediction skill. For example20

during summer months (JJA), when the potential improvement for interior Western US
regions and much of the Eastern US is greater than 0.2, the actual improvement is
limited due to the limited MRWF skill (Figs. 2 and 3).

We used a simple bias correction and disaggregation approach in the
MRF Merged ESP experiment. Our focus was on the removal of bias in the 14-day25

accumulated forecast. Our analyses were performed at the monthly time scale for
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each grid cell (not routed) and as such the daily sequencing should not change the
monthly results significantly.

5 Conclusions

Our analysis indicates the following:

1. There is potential to improve monthly runoff and SM forecast skill beyond the5

IHC effect at lead-1 (and up to 3 months in a few cases) by exploiting MRWF
skill. In general the Great Plain regions, Midwest, parts of the Southwestern
US (sub-regions in Texas) and Eastern US would benefit most during forecast
periods starting in April through November. On the other hand, sub-regions in the
mountainous Western US would benefit most during forecast periods starting in10

November and the winter months (DJF).

2. The potential (and actual) improvement in runoff forecasts skill as contrasted with
SM skill is larger at lead-1, mostly due to high baseline skill for SM (i.e., stronger
IHC effect in SM), whereas the improvement at lead-2 is more extensive for SM
forecasts than for runoff.15

3. Potential improvement in baseline skill for runoff forecasts generally varies from 0
to 0.8, whereas for SM it varies from 0 to 0.5. However, the space-time patterns
of improvements are similar for runoff and SM.

4. The actual improvement in skill due to use of MRF forecasts is limited by modest
forecast skill for precipitation. The ratio of actual skill to potential skill improvement20

generally varies from 0 to 0.8. Sub-regions in the Great Plains, Midwest, Texas,
and Northeastern and Southeastern US could potentially benefit most from im-
provement in MRF skill during forecast periods starting in the summer months
(JJA, June-July-August).
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Our findings could have significant implications for the improvement of seasonal hy-
drologic predictions at short lead-time (i.e., lead-1 to -3 months). Present protocols for
generation of ensemble hydrologic forecasts from seasonal climate forecasts (e.g., Luo
et al., 2007) make use of climate forecast ensembles that are generated through use
of temporal offsets. The temporal offsets are mainly used to exploit predictability from5

different initial SST conditions. For example real-time operational seasonal climate
forecasts such as the International Research Institute (IRI) seasonal climate forecasts
are generated using seven atmospheric global circulation models (forced by the pre-
dicted global tropical SSTs). However, the forecast integration occurs 3–4 weeks in
advance of the seasonal forecast period, hence the models do not exploit the skill from10

the observed atmospheric initial conditions (as well as the land surface conditions) at
the beginning of the forecast period (Barnston et al., 2010). Likewise the Climate Fore-
cast System (CFS) (Saha et al., 2006) real-time seasonal forecasts make use of initial
conditions of the last 30 days. As a result, the effects of MRWFs at the beginning of
forecast period are not reflected in the seasonal climate forecasts. This could be re-15

solved either by (a) use of shorter temporal offsets or (b) merging deterministic weather
forecasts for the first 14 days (or perhaps shorter, given that most forecast skill comes
from the first 5 days or so) with seasonal climate model forecasts thereafter.

Finally, improvement in drought prediction skill at short lead-times could potentially
help with decisions that involve identification of regions with the potential for drought20

recovery. This often occurs over much shorter lead times than drought onset, hence
better use of weather forecasts could provide practical benefits in this arena as well.
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Table 1. List of USGS water-resources regions.

Region 01 New England (NE)
Region 02 Mid-Atlantic (MA)
Region 03 South Atlantic-Gulf (SAG)
Region 04 Great Lakes (GL)
Region 05 Ohio (OH)
Region 06 Tennessee (TN)
Region 07 Upper Mississippi (UM)
Region 08 Lower Mississippi (LM)
Region 09 Souris-Red-Rainy (SRR)
Region 10 Missouri (MO)
Region 11 Arkansas-White-Red (AR)
Region 12 Texas-Gulf (TX)
Region 13 Rio Grande (RG)
Region 14 Upper Colorado (UC)
Region 15 Lower Colorado (LC)
Region 16 Great Basin (GB)
Region 17 Pacific Northwest (PNW)
Region 18 California (CA)
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Fig. 1. Schematic showing the climate forecast framework for (a) Experiment-1 (ESP) (b)
Experiment-2 (OBS Merged ESP) and (c) Experiment-3 (MRF Merged ESP).
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Fig. 2. Correlation between observed and forecasted (MRF) 14-day accumulated precipitation
during each month.
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Fig. 3. Correlation between observed and forecasted (MRF) 14 days mean average daily
temperature during each month.
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Fig. 4. Baseline skill (i.e., skill of ESP experiment) for runoff forecasts at leads 1–2 months.
(Dark grey color shows the sub-regions where the baseline skill is not significant at 95 % sig-
nificance level.)
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Fig. 5. Potential improvement in runoff forecast skills at leads 1–2 months. (Dark grey color
shows the sub-regions where the skill of OBS Merged ESP is not significant at 95 % signifi-
cance level.)

1853

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/1827/2012/hessd-9-1827-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/1827/2012/hessd-9-1827-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 1827–1857, 2012

Value of medium
range weather

forecasts

S. Shukla et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 6. The ratio of actual improvement and potential improvement in baseline runoff forecast
skill at leads 1–2 months. (Dark grey color shows the sub-regions where either the potential im-
provement in skill is <0.1 or the skill of OBS Merged ESP is not significant at 95 % significance
level.)

1854

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/1827/2012/hessd-9-1827-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/1827/2012/hessd-9-1827-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 1827–1857, 2012

Value of medium
range weather

forecasts

S. Shukla et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. Baseline skill (i.e., skill of ESP experiment) for SM forecasts at leads 1–2 months. (Dark
grey color shows the sub-regions where the baseline skill is not significant at 95 % significance
level.)
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Fig. 8. Potential improvement in SM forecast skills at leads 1–2 months. (Dark grey color shows
the skill of OBS Merged ESP is not significant at 95 % significance level.)
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Fig. 9. The ratio of actual improvement and potential improvement in baseline SM forecast skill
at leads 1–2 months. (Dark grey color shows the sub-regions where either the potential im-
provement in skill is <0.1 or the skill of OBS Merged ESP is not significant at 95 % significance
level.)
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