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Abstract

This paper examines the potential of different algorithms, based on the Kalman filtering
approach, for assimilating near-surface observations in a one-dimensional Richards’
equation. Our specific objectives are: (i) to compare the efficiency of different Kalman
filter algorithms, implemented with different numerical schemes of the Richards equa-5

tion, in retrieving soil water potential profiles; (ii) to evaluate the performance of these
algorithms when nonlinearities arise from the nonlinearity of the observation equation,
i.e. when surface soil water content observations are assimilated to retrieve pressure
head values. The study is based on a synthetic simulation of an evaporation process
from a homogeneous soil column. A standard Kalman Filter algorithm is implemented10

with both an explicit finite difference scheme and a Crank-Nicolson finite difference
scheme of the Richards equation. Extended and Unscented Kalman Filters are in-
stead both evaluated to deal with the nonlinearity of a backward Euler finite difference
scheme. While an explicit finite difference scheme is computationally too inefficient to
be implemented in an operational assimilation scheme, the retrieving algorithm imple-15

mented with a Crank-Nicolson scheme is found computationally more feasible and ro-
bust than those implemented with the backward Euler scheme. The Unscented Kalman
Filter reveals as the most practical approach when one has to deal with further nonlin-
earities arising from the observation equation, as result of the nonlinearity of the soil
water retention function.20

1 Introduction

Soil water dynamics in the vadose zone is a critical process that exerts a large con-
trol on the water and energy balance of land-atmosphere systems over a wide range
of space-time scales (e.g. Milly and Dunne, 1994; Entekhabi et al., 1996; Rodŕıguez-
Iturbe and Porporato, 2005). With the increasing availability of near-surface data from25

remote and ground-based sensors, unique opportunities emerge to predict the soil
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water dynamics (Mclaughlin, 2002; Vereecken et al., 2008). A key challenge is to iden-
tify the best approaches for efficiently integrating these data with the soil water dynamic
models, in order to achieve more reliable and purposeful predictions. Hence, data as-
similation has become a relatively important area of investigation aiming at an efficient
integration of remote sensing techniques, ground-based sensors and soil water dy-5

namic models (Heathman et al., 2003; de Lannoy et al., 2007; Matgen et al., 2010).
The physics of isothermal flow in unsaturated soils is commonly modelled with the

Richards equation (Jury et al., 1991). Three standard forms of the unsaturated flow
equation can be identified: (i) the “h-based form” and (ii) the “θ-based form”, whether
the dependent variable is matric pressure head, h [L], or soil water content θ [L3 L−3],10

respectively; (iii) the “mixed form” when both the dependent variables are employed.
The water retention θ(h) and the hydraulic conductivity K (θ) functions provide con-
stitutive relationships between those two variables and the hydraulic conductivity K ,
allowing for conversion of one form of the equation to the other.

A primary source of numerical difficulty when dealing with the Richards equation is15

its strongly nonlinear nature. The standard numerical approximations that are applied
to the spatial domain are the finite difference method and the finite element method. For
any Euler method other than the fully explicit forward method, nonlinear algebraic equa-
tions result and some linearization and/or iteration procedure must be implemented to
solve the discrete equations (Celia et al., 1990).20

The Kalman Filter (Kalman, 1960) is a sequential data assimilation technique, largely
employed in hydrological applications to describe dynamic systems discretised in the
time domain. In order to provide a prediction of the state system evolution, the Kalman
Filter (KF) optimally weights the model state predictions at a given time with the avail-
able measurements at the same time with a least squares approach. KF can be consid-25

ered as the most general estimator for linear dynamic systems (Vereecken et al., 2008).
Although the standard Kalman Filter (SKF) was originally formulated for an optimal es-
timation of linear state space models with Gaussian uncertainties, more recent KF
algorithms have been developed to deal with nonlinear models. The Extended Kalman
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filter (EKF), which relies on the linearization of model using first order approximation
of Taylor series, was one of the first, but still widely used, approaches to deal with
nonlinear models. Reported drawbacks of the EKF in presence of marked nonlinear-
ities have enhanced further developments as the Ensemble Kalman Filter (Evensen,
2003), based on a statistical replication of the mean state variable using a Monte Carlo5

technique. Another recent method is the Unscented Kalman Filter (UKF) developed
by Julier et al. (1995) and Julier and Uhlmann (1997, 2004), also based on a repli-
cation of the mean state variable, but in a deterministic way. Despite the advances
in the development of KF, their implementation at large scales is still limited by the
high dimensionality of the dynamic systems in the common hydrological applications10

(Mclaughlin, 2002).
The nonlinearity of the Richards equation during the assimilation of near-surface in-

formation can be treated by two alternative approaches: (i) using a Standard Kalman
Filter (SKF), thus providing an exact solution of the mean and variance of the state vari-
able, with a linear numerical scheme or (ii) using a non-standard KF, such as EKF or15

UKF, which supplies an approximate solution of the first two moments of the state vari-
able, but with a nonlinear dynamic state space model. Pondering the advantages and
limitations of these two alternative approaches is essential to identify the best strategy
for implementing assimilation algorithms in operational soil hydrological studies.

The general aim of this paper is to examine the feasibility of implementing Kalman20

Filter algorithms to deal with the inherent nonlinearity of the Richards equation. Our first
specific objective is to compare the efficiency of soil moisture profile retrieval algorithms
involving standard and non-standard Kalman Filter methods as related to different nu-
merical schemes of the h-based form of the Richards equation. A second objective is
to evaluate the performance of these retrieval approaches when the further nonlineari-25

ties arise from the observation model in the state space dynamic system, as it occurs
when surface soil water content values are assimilated to retrieve pressure head pro-
files with an h-based form of the Richards equation. These analyses are conducted by
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repeating the same numerical experiment conducted by Walker et al. (2001), simulating
an evaporation process from a homogeneous soil column.

The paper is structured as follows: Sect. 2 illustrates the Kalman Filter algorithms
employed in this study; Sect. 3 presents the different numerical schemes of the
Richards equation; Sect. 4 describes the results of the numerical experiments; Sect. 55

is devoted to the conclusions.

2 Kalman filtering

The Kalman Filter is a recursive filter that estimates the state of a dynamic system
from a series of noise corrupted measurements. Its basic theory, although originally
proposed for linear systems (Kalman, 1960), has been implemented into several ad-10

vanced methods for studying the dynamics of nonlinear systems.
In the most general case, the dynamic system and the measurements are described

by two sets of equations, discretised in the time domain (e.g. van der Merwe; 2004):

xk = F
(
xk−1, uk−1, v k−1; w

)
(1)

yk = H (xk , nk ; w ) . (2)15

F is the dynamic system model which predicts the current hidden system state vec-
tor xk from the previous state vector xk−1 in response to the current exogenous input
vector uk , which is assumed known. F is characterized by a vector of time-invariant
parameters w . H is the measurement model, which describes how the current mea-
surements vector yk is related to the model parameters w and the current state xk .20

The dynamic system model is assumed corrupted by a process noise vector v k−1.
Similarly, the measurement model is assumed corrupted by a measurement noise vec-
tor nk . Both noise vectors are drawn from zero mean multivariate normal distributions,
with covariance matrices Qk and Rk , reflecting respectively the uncertainty in the model
predictions and measurements.25
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With respect to the more general Bayesian theory, the system state xk evolves
over time tk according to a hidden Markov process, with a conditional probabil-
ity density p(xk |xk−1) fully specified by F and by the process noise distribution
p(v k−1)∈N(0, Qk−1). The observations yk are independent from all other states prior
the current state and are generated according to the conditional probability den-5

sity p(yk |xk), which is fully specified by H and the observation noise distribution
p(uk)∈N(0, Rk).

The Kalman Filter describes the dynamic evolution of the system by providing the
first two moments of the state distribution:

– the mean state x̂k = E [xk ], corresponding to the estimated state;10

– the covariance of the state distribution Pxk = E
[(
xk − x̂k

) (
xk − x̂

T
k

)]
, which is

equivalent to the error covariance matrix, i.e. a measure of the accuracy of the
estimated state.

The two moments are computed according to two different phases: a prediction phase
and an update phase. During the prediction phase, an a priori estimate of the state15

x̂
−
k = E

[
F
(
xk−1, uk−1; w

)]
and its covariance matrix P−

xk
are provided based on the

information available at time step tk−1.
The update phase is activated as the measurements yk become available. In this

phase, an a posteriori state estimate x̂k is provided by a linear combination of the a
priori estimate x̂

−
k and the measurement innovation, equal to the difference between20

the actual measurements yk and the a priori prediction of the measurements ŷ
−
k =

E
[
H

(
x̂
−
k ; w

)]
:

x̂k = x̂
−
k + Kk

(
yk − ŷ

−
k

)
. (3)

In Eq. (3), the innovation is weighted through the matrix Kk , which is chosen as the
gain minimizing the a posteriori error covariance Pxk :25

Kk = E
[(
xk − x̂

−
k

) (
yk − ŷ

−
k

)T ] E [(
yk − ŷ

−
k

) (
yk − ŷ

−
k

)T ]−1
= Pxk y

−
k

[
P−
yk

]−1
. (4)
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The a posteriori error covariance Px,k is estimated as follows:

Pxk = P −
xk

− Kk P
−
yk

KT
k . (5)

In case the dynamic system model and the measurement model are both linear, the
covariance matrices P−

xk in the prediction phase, and the Kalman gain Kk in the update
phase, can be computed by closed linear relations. Moreover, the a posteriori state x̂k5

is the optimal estimate, with the minimum mean square error.
Methods have been designed for applying the Kalman Filter general theory to non-

linear systems. These methods can be grouped in two classes. Methods, such as the
Extended Kalman Filter (Gelb, 1974), attempt to propagating the first two moments
of the state distribution, through the explicit linearization of the underlying nonlinear10

model. Other methods, such as the Ensemble (Evensen, 2003) and the Unscented
Kalman Filters (Julier et al., 1995; Julier and Uhlmann, 1997, 2004; van der Merwe,
2004), sample the state distribution and propagate it, trying to preserve its first two
moments.

2.1 Extended Kalman Filter15

Within the general framework of the Kalman Filter, the Extended Kalman Filter (EKF) is
undoubtedly the most widely used approach for dealing with nonlinearity. EKF is based
on a first order linearization in the Taylor series of the nonlinear operators F and H
around the current state.

The a priori estimate of the covariance matrix is calculated as follows:20

P̂−
xk

= Gk−1 Pxk−1
GT

k−1 + Lk−1 Qk−1 LT
k−1 (6)

where G and L are respectively the Jacobians matrices of F with respect to the state
vector x (computed at x̂k−1) and the process noise vector v (computed at the mean
value v =0):
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Gk−1 =
∂F

(
x, uk−1, 0

)
∂x

∣∣∣∣∣
x̂k−1

(7)

Lk−1 =
∂F

(
x̂k−1, uk−1, v

)
∂v

∣∣∣∣∣
v=0

. (8)

The Kalman gain and the a posteriori estimate of the covariance matrix are computed
as follows:

Kk = P−
xk

CT
k

(
Ck P−

xk
CT
k + Dk Rk DT

k

)−1
(9)5

Pxk = (I − Kk Ck) P−
xk

(10)

where C and D are respectively the Jacobians matrices of H with respect to the state
vector x (computed at the a priori estimate x̂

−
k−1) and the observation noise vector n

(at the mean value n=0):

Ck =
∂H (x,nk)

∂x

∣∣∣∣
x̂
−
k

(11)10

Dk =
∂H

(
x̂
−
k , n

)
∂n

∣∣∣∣∣
n=0

. (12)

First order continuity of the operator F and H around the current state is required for
computing the derivatives presented above. In case the operator F or H are charac-
terized by complex mathematical structures, the derivation of closed expressions for
Jacobian matrices may be difficult to obtain in a closed analytical form, thus requiring15

the implementation of numerical solutions for the derivatives at each update step.
The EKF is subjected to instabilities and even divergence when the approximation to

the zero and first order derivatives are not able to capture the correct dynamics of the
underlying systems, due to its high nonlinearity.
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Some KF applications (e.g. Walker et al., 2001) assume that the process noise v

does not propagate through the system model rather it adds directly to the system
state:

xk = F
(
xk−1, uk−1; w

)
+ v k−1. (13)

In this case, the process noise covariance Q contributes to the a priori prediction,5

without being transformed by the Jacobian matrix L:

P̂−
xk

= Gk−1 Pxk−1
GT

k−1 + Qk−1. (14)

This approach can provide satisfactory results in case the process noise covariance is
assumed constant or small as compared with the state covariance; divergence prob-
lems may arise otherwise.10

2.2 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) belongs to a wider group of approaches known
as Sigma Point Kalman Filters (van der Merwe, 2004). The UKF is based on the Un-
scented Transformation (UT) introduced by Julier and Uhlman (1997, 2004) as an ef-
fective method for capturing the nonlinear propagation of the first two moments of the15

state distribution through a minimal set of deterministically chosen sample points.
The UKF, in its most general structure, is applied to an augmented state vector xa

k ,
defined by system state, the process and observation noise vectors:

xa
k =

x
x
k

x
v
k

x
n
k

 =

xk
v k
nk

 . (15)

The corresponding covariance matrix Pa
k is built from the individual covariances of x, v20

and n:
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Pa
x,k =

Pxk 0 0
0 Rv 0
0 0 Rn

 . (16)

Being L the dimension of the augmented vector, a sigma point set S ={
X i ,µ

(j )
i ; i = 0...2L; j ∈ (m,c)

}
is defined by 2L+1 sigma points X i , including the mean

x, plus the respective mean (m) and covariance (c) weights µ(j )
i :

X
a
0 = x

a
5

X
a
i = x

a
+
(√

γPa
x

)
i

i = 1, ..., L

X
a
i = x

a −
(√

γPa
x

)
i

i = L + 1, ..., 2L

µ(m)
0 =

γ − L
γ

µ(c)
0 =

γ − L
γ

+
(

1 − ρ2 + β
)

µ(m)
i = µ(c)

i =
1

2γ
i = 1, ..., 2L. (17)10

The parameter γ controls the spread of the sigma points around the mean, and is
calculated as γ =ρ2 (L + κ), with κ ≥0 to ensure semi-positive definiteness of the co-
variance matrix and 0≤ρ≤1. A good default choice is κ =0 and ρ small enough to
limit the spread of the sigma points. The parameter β is introduced as a second control
on the magnitude of the covariance weights. Details about the proper choice of κ, ρ15

and β can be found in van der Merwe (2004). The symbol
(√

γPa
x

)
i
is the i -th column

(or row) of the root square matrix γPa
x, which can be regularly computed by Cholesky

decomposition (e.g. Press et al., 1992).
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At each time step, the 2L+1σ points are calculated based on the current estimates
of the expected state and covariance:

X
a
k−1 =

[
x̂a
k−1 x̂a

k−1 +
√
γPa

x,k−1 x̂a
k−1 −

√
γPa

x,k−1

]
. (18)

The sigma points are transformed through the dynamic system model:

X
x
k |k−1 = F

(
X

x
k−1, Xv

k−1, uk−1
)

. (19)5

The transformed sigma points are weighted to gain an a priori estimate of the state
mean and covariance as follows:

x̂
−
k =

2L∑
i=0

µ(m)
i X

x
i ,k |k−1 (20)

P−
xk

=
2L∑
i=0

µ(c)
i

(
X

x
i ,k |k−1 − x̂

−
k

) (
X

x
i ,k |k−1 − x̂

−
k

)T
. (21)

The sigma points are also transformed through the measurement model:10

Y k |k−1 = H
(
X

x
k−1, Xn

k−1

)
(22)

which are then weighted to gain the a priori estimate of the measurement mean and
covariance, as well as of the cross covariance between states and measurements:

ŷ
−
k =

2L∑
i=0

µ(m)
i Y i ,k |k−1 (23)

P−
yk

=
2L∑
i=0

µ(c)
i

(
Y i ,k |k−1 − ŷ

−
k

) (
Y i ,k |k−1 − ŷ

−
k

)T
(24)15

P−
xkyk

=
2L∑
i=0

µ(c)
i

(
X

x
i ,k |k−1 − x̂

−
k

) (
Y i ,k |k−1 − ŷ

−
k

)T
. (25)
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The Kalman gain can be then computed with Eq. (4), while the a posteriori estimate
of the state mean x̂

a
k−1 and covariance matrix Pxk can be computed respectively from

Eqs. (3) and (5).

3 Soil water transport model

The soil water dynamics along the vertical direction is modelled using the Richards’5

equation (Jury et al., 1991) in the h-based form:

C(h)
∂h
∂t

=
∂
[
K (h)

(∂h
∂z + 1

)]
∂z

(26)

where t is the time, z denotes the position along vertical axis (with upward orientation
and zero reference value at the surface), h [L] is the matric pressure head [L], K (h)
[L T−1] is the hydraulic conductivity function, and C(h) [L−1] is the differential water10

capacity function, obtained from the derivative C(h)=dθ(h)/dh of the water retention
function θ(h) [L3 L−3].

The water retention and hydraulic conductivity functions are modelled according to
the van Genuchten-Mualem model (van Genuchten, 1980):

θ(h) = θr + θs − θr
[
1 + |αh|n

]−m
(27)15

K (θ) = Ks

(
θ − θr

θs − θr

)λ
{

1 −
[

1 −
(
θ − θr

θs − θr

)1/m
]m}2

(28)

where θs is the saturated soil water content, θr is the residual soil water content, Ks

is the saturated hydraulic conductivity, while α >0 [L−1], n>1 [−], m [−] and λ [−] are
empirical parameters. Following a common assumption, parameter m [−] is defined by
the relation m=1−1/n and λ [−] is fixed equal to 0.5.20

A numerical scheme, integrating Eq. (26) and corresponding boundary conditions,
is equivalent to a state-space description of the system model discretised in the time
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domain, as in Eq. (1). Depending on the type of numerical scheme employed, the
system model can be linear or nonlinear.

The measurement model could be reduced to a simple linear relation if matric pres-
sure head is directly measured at given soil depths. If soil water content is measured,
the observation equation is described by a nonlinear model corresponding to the soil5

water retention function, as Eq. (31). Other observation equations are required to as-
similate other sources of measurements, such as those originated by near-surface
remote sensing observations.

Below we illustrate three numerical schemes largely employed for integrating the
Richards equation.10

3.1 Explicit finite difference scheme (EX)

This is the numerical scheme employed by Walker et al. (2001), which is an explicit
finite difference scheme, according to a forward Euler finite difference scheme. Writing
Eq. (26) for node i at time-step j +1 and vectorising, this numerical scheme provides
an estimate of the matric potential hj+1

i as function of all other quantities at the preced-15

ing time-step:

(
hj+1
i

)
=

∆tj

Cj
i

K j
i−1/2

∆zi ∆zu
; 1 − ∆tj

Cj
i

K j
i−1/2

∆zu
+

K j
i+1/2

∆zl

∆zi
;
∆tj

Cj
i

K j
i+1/2

∆zi ∆zl


hj

i−1

hj
i

hj
i+1

 +
∆tj

Cj
i

K j
i−1 − K j

i+1

2∆zi
. (29)

The subscript i for the node number is increasing downward. The soil column is divided
in compartments of finite thickness ∆zi . All nodes, including the top and bottom nodes,
are in the centre of the soil compartments, with ∆zu = zi−1 − zi and ∆zl = zi − zi+1.20

This represents a small difference with respect to the work of Walker et al. (2001),
who assumed nodes at the compartment extremes, positive upwards. K j

i−1/2
and

K j
i+1/2

denotes respectively the upward and the downward spatial averages of the
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hydraulic conductivity computed as arithmetic means. ∆tj indicates the time interval
∆tj = tj+1 − tj .

The set of Eq. (29) written for each node, coupled with the boundary conditions, can
be easily structured in matrix form to gather a state-space representation of the dy-
namic system as Eq. (1), with a linear model operator F described by a tri-diagonal5

matrix. The prediction step of the Kalman Filter can be implemented without any lin-
earization, being the Jacobian matrices G (Eq. 7) and L (Eq. 8) coincident with F .

3.2 Crank-Nicolson finite difference scheme (CN)

The Crank-Nicolson implicit finite difference scheme (CN) has been widely imple-
mented for solving the Richards equation (e.g. Haverkamp et al., 1977; Santini, 1980;10

Romano et al., 1998). Writing Eq. (26) for node i at time-step j +1 and vectorising,
yields:−

K j
i−1/2

2∆zi ∆zu
;
Cj
i

∆tj
+

K j
i−1/2

∆zu
+

K j
i+1/2

∆zl

2∆zi
; −

K j
i+1/2

2∆zi ∆zl


hj+1

i−1

hj+1
i

hj+1
i+1



=

 K j
i−1/2

2∆zi ∆zu
;
Cj
i

∆tj
−

K j
i−1/2

∆zu
+

K j
i+1/2

∆zl

2∆zi
;

K j
i+1/2

2∆zi ∆zl


hj

i−1

hj
i

hj
i+1

 +
K j
i−1 − K j

i+1

2∆zi
. (30)

As in the previous algorithm, an explicit linearization of K and C is implemented, by15

taking their values at the previous time-step j . A linear state-space representation of
the dynamic system can be easily derived by combining the set of Eq. (30) written for
each node and accounting for the boundary conditions:

A(Kk ,Ck ,z,t)xk+1 = B(Kk ,Ck ,z,t)xk + g(Kk ,βtopk ,βbotk ,z,t). (31)
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A and B are tri-diagonal matrices and g is a vector. The symbols in parenthesis remind
the variables occurring in the elements of A, B and g. The symbols βtop and βbot in-
dicate the top and bottom boundary conditions. The state variable x is the matric pres-
sure head. As with the forward Euler scheme, the prediction phase of the Kalman Filter
can be implemented without any linearization. An a priori estimate x̂

−
k can be obtained5

by solving Eq. (31), which does not require any iteration, but it involves the inversion of
matrix A. The model operator F is linear, fully defined by the matrix F=A−1 B.

3.3 Nonlinear implicit finite difference scheme (NL)

A nonlinear implicit finite difference (NL) scheme, according to a backward Euler
scheme, has been introduced by Celia et al. (1990) and further implemented by the10

SWAP model (van Dam, 2001), to account for the high nonlinearity of the differential
water capacity C. The numerical scheme includes the C values at the current time-step
j +1:−

K j
i−1/2

∆zi ∆zu
;
Cj+1,p−1
i

∆tj
+

K j
i−1/2

∆zu
+

K j
i+1/2

∆zl

∆zi
; −

K j
i+1/2

∆zi ∆zl


hj+1,p

i−1

hj+1,p
i

hj+1,p
i+1


=

Cj+1,p−1
i

∆tj
hj+1,p−1
i +

K j
i−1 − K j

i+1

2∆zi
+ θj

i − θj+1,p−1
i−1 . (32)15

This type of numerical scheme requires an iterative solution. The index p denotes the
iteration level. In this case, the system of Eq. (32), written for each node and com-
bined with the boundary conditions, corresponds to a state-space representation of
the dynamic system with a nonlinear operator F , which implies the implementation of
non-standard Kalman Filters, such as the EKF and the UKF, for the a priori x̂−

k and P−
xk20

predictions.
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4 Synthetic study

A synthetic study is performed to evaluate the relative merits of different Kalman Filters
assimilation algorithms for retrieving pressure head profiles from near surface pressure
head or water content measurements.

As pointed out above, the type of Kalman Filters applicable is limited by the numerical5

scheme employed. The Standard Kalman Filter (SKF) can be implemented with explicit
(EX) and Crank-Nicolson (CN) finite difference schemes, as far as the measurement
model is linear. In the study case, a linear measurement model occurs if the measured
variable is the matric pressure head h. If soil water content is the measured variable, a
non-standard Kalman Filter is required to overcome the nonlinearity the measurement10

model H defined by the soil water retention function. Non-standard Kalman Filters are
also required if a nonlinear implicit finite difference scheme (NL) is employed.

Walker et al. (2001) showed the efficiency of a standard Kalman Filter (SKF) in as-
similating near surface pressure head measurements with an explicit finite difference
scheme (EX) as compared with direct insertion of the observation values. The Authors15

implemented a specific SKF algorithm (hereafter SKFv ), without transforming the pro-
cess noise v through the dynamic system model F , as illustrated in Eqs. (13) and (14).

Following Walker et al. (2001), we first compare the efficiency of SKFv implemented
with a Crank-Nicolson finite difference scheme (SKFv -CN), to the SKFv implemented
with an explicit finite difference scheme (SKFv -EX). Then we compare the Unscented20

Kalman Filter (UKF) with an implicit nonlinear finite difference scheme (UKF-NL), to a
SKF-CN assimilation algorithm.

Finally, we examine the case when soil water content is the measured variable, by
comparing the UKF-NL assimilation scheme with the EKF-CN assimilation scheme.
Table 1 summarizes the assimilation schemes adopted.25
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4.1 Numerical experiment

The soil water transfer model illustrated above (Eqs. 26–28) has been used to gen-
erate a set of soil water content and matric head profiles, representative of the true
dynamic process to be retrieved. The numerical experiment is arranged equally to that
implemented by Walker et al. (2001), to facilitate the comparison with this previous5

study.
The essential information of the implemented numerical experiment is summarized

in Table 2. Soil column depth is 100 cm, discretised in 27 nodes and the true initial
matric pressure head profile is uniform and equal to −50 cm. The boundary conditions
are: constant evaporative flux of 5.78×10−6 cm s−1 at the top surface and no flux at10

the bottom. Matric pressure head h profiles are then retrieved by assimilating hourly
h data generated within the first 0.5, 1.5, 4.5 and 10 cm. These depths are slightly
different from those adopted by Walker et al. (2001), because of the small differences
in the soil column discretisation, as illustrated in Sect. 3.1. All assimilation schemes are
initialized with the same poor guess of the initial matric pressure head profile, assumed15

uniformly equal to −300 cm, thus 250 cm less than the true initial uniform profile.
Two main differences occur in the implemented assimilation schemes, with respect

to previous work by Walker et al. (2001).
First, the default initial state variance is fixed to 103 cm2, rather than 106 used by

Walker at al. (2001), since using an extremely high initial state variance causes practi-20

cal difficulties in the implementation of the UKF, as discussed later.
Second, the amount of system noise variance is implemented in a different way.

Walker et al. (2001) assumed a five percent of the change of the state for the diagonal
elements matrix, and zero for those off-diagonal. Enthekabi et al. (1994), considered
an “initially diagonal” matrix accounting for the five percent of the precedent state.25

We employed the second approach, as it is more realistic and it also ensures that
noise variances are not affected by the number of time steps between observations
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Thus, also for comparison purposes, we adopted a diagonal system noise variance,
accounting for the five percent of the previous hourly a posteriori state.

4.2 Comparison of SKFv -EX and SKFv -CN assimilation algorithms

In Fig. 1, the true profiles are compared with the profiles retrieved with the SKFv -
EX and SKFv -CN assimilation algorithms, respectively, as well as with the “guess”5

profile. The “guess” profile is the one obtained without assimilating any near-surface
observations, i.e. the system is simply propagated from the initial conditions using the
known boundary conditions.

The two sets of profiles retrieved by using the SKFv algorithm respectively cou-
pled with the explicit and the Crank-Nicolson numerical schemes, are almost identical.10

However, the explicit scheme, in order to guarantee numerical accuracy and stability,
requires time steps of the order of few seconds, turning unreliable in operational ap-
plications. The CN scheme, instead, allows for time steps of the order of hundreds of
seconds, saving considerable amount of computational time. Another favourable as-
pect with the CN scheme is that, being particularly stable, it is able to retrieve the true15

profile, even for a decreased precision of the model equation.
In Walker et al. (2001), the retrieved profiles coincided with the true ones within 12 h

after the beginning of the assimilation process, thus in a time interval smaller than in
the present numerical experiment. This difference is basically due to the fact that the
initial state covariance matrix herein employed is by two orders smaller than the one in20

Walker et al. (2001). As shown by Walker (1999) in a sensitivity analysis for the same
experimental setup, the convergence time tends to increase as one takes higher initial
state covariance values.

Walker (1999) also found that the performance of the retrieved algorithm is not partic-
ularly sensible to the system noise variance. However, this result should be interpreted25

keeping in mind that Walker (1999) assumed the system noise variance equal to five
percent of the state change. Instead, in the present study, the system noise variance
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has a more important role, as it is assumed equal to five percent of the previous state,
accordingly with Enthekabi (1994).

4.3 Comparison of SKF-CN and UKF-NL assimilation algorithms

Provided that the SKFv -CN assimilation algorithm is much more efficient than the
SKFv−EX algorithm from a computational perspective, the SKF-CN assimilation algo-5

rithm has been then compared with the UKF applied to the implicit nonlinear numerical
scheme of the Richards equation (UKF-NL).

Alternatively to the UKF, the EKF could be also employed in conjunction with a non-
linear numerical scheme of the Richards equation. However, the EKF, based on an
explicit linearization of nonlinear equations, is less efficient in state retrieving as com-10

pared with UKF. The work of Entekhabi et al. (1994), who implemented the EKF with
a finite elements algorithm, testifies that the EKF demands more time in retrieving the
true profiles than ordinarily observed in the present work with different KF algorithms
for analogous case studies. Further discussions about the limitations and the flaws of
the EKF can be found in other studies (e.g. Julier et al., 1995; van der Merwe, 2004).15

In the UKF-NL algorithm, the nonlinear implicit differential scheme of the Richards
equation is solved for each sigma point to predict its state evolution, while the over-
all state mean and covariance are calculated just before the observation is available.
Given the hourly periodicity of the observations in this synthetic experiment, the non-
linear implicit differential scheme is resolved with an hourly time-step, thanks to its high20

numerical stability and accuracy. The LKF-CN algorithm is instead implemented with a
time step of 200 s.

The UKF strategy of augmenting the state random variable with the noise random
variables entails that the uncertainty of the noise covariance is taken into account sim-
ilarly to that of state vector during the sigma-point propagation. In other words, the25

dynamic operator acts simultaneously on both the system state covariance and the
noise covariance. The same effect is achieved with the SKF-CN algorithm, where the
dynamic equation assumes the following equation:
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A(K k ,Ck ,z,t)x
k+1 = B(K k ,Ck ,z,t)

(
xk + v k

)
+ f (K k ,K k ,Qtop,Qbot,z,t). (33)

The a priori estimate of the covariance matrix is thus calculated as follows:

P̂−
xk+1

=
(

A−1
k Bk

)
Pxk

(
A−1
k Bk

)T
+
(

A−1
k Bk

)
Qk

(
A−1
k Bk

)T
(34)

where Qk is set as the five percent of the previous posterior mean state.
As anticipated above, this approach differs from the one implemented by Walker et5

al. (2001), corresponding to the SKFv -CN algorithm, which can be formally described
as:

A(K k ,Ck ,z,t)x
k+1 = B(K k ,Ck ,z,t)

(
xk

)
+ f (K k ,K k ,Qtop,Qbot,z,t) + v k (35)

giving place to:

P̂−
xk+1

=
(

A−1
k Bk

)
Pxk

(
A−1
k Bk

)T
+ Qk . (36)10

These differences in the way of assuming the error are scarcely transcendent in the
domain of a few hours of simulation, but become important when the frequency of the
observations significantly decreases to one every several days, as could be in practical
circumstances.

Figure 2 shows the retrieved profiles by assimilating near surface hourly observa-15

tions using the SKF-CN and UKF-NL algorithms, assuming an evolving structure of
the system noise covariance as in Eq. (34), with two alternative initial system state
variances, 103 and 104 cm2.

With SKF-CN, complete retrieving of the true profile took around 20 h in the case
of pressure head assimilation. The differences between retrieved profiles, using either20

103 or 104 cm2 as diagonal elements of the initial state variance, are small.
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Contrary to the SKF-CN, the UKF-NL algorithm exhibits a marked sensitivity to the
initial state variance. Complete retrieval of the true profiles is achieved in a shorter time
interval with larger initial state variance: 12 h with 104 cm2 as initial state variance, while
18 h with 103 cm2 as initial state variance.

This ostensibly better behaviour of the UKF when using higher initial state variance is5

mainly favoured by the bias in the estimation of the prior mean state, which can actually
determine some difficulties in the implementation of the UKF algorithm. Indeed, this
approach lies on a deterministic sampling of sigma points around the mean, whose
distribution logically depends on the magnitude of the variance. Taking a very high
initial variance, without any correlation structure, could lead to sample profiles which10

are physically improbable, and consequently the stability of the assimilation process
could degenerate.

This issue can be overcome by shrinking the sigma point distribution around the
mean state with the scaling parameter ρ, which controls the weights attributed to the
sigma point distribution (Eq. 20). Values of ρ close to zero translate into a considerably15

increase (in absolute terms) of the sigma points weights, which favours the cited bias.
Figure 3 shows a comparison between the UKF prior mean state estimated using

ρ=0.05, ρ=0.3 and ρ=0.8 in Eq. (20), and the evolution of the central state after the
first hour update, assuming both initial state variances equal to 103 and 104 cm2 on
the diagonal elements. The prior mean state estimation using the smaller initial state20

variance value is practically insensitive to the value of ρ, while this prior mean is highly
affected by ρ when using the higher initial state variance. Taking ρ=0.8, with a uniform
initial profile −300 cm and state variance of 104 cm2, leads to a set of sampled profiles
(sigma points) exhibiting positive pressure heads for perturbed nodes. Instead, using
0.05 magnifies the weights and thus enhances the asymmetry in the sigma points25

distribution.
In practical applications, particularly those where the frequency of the observations

is small, the evolution of the magnitudes of the state variance is unpredictable. Thus,
the coefficients selected for designing the sigma point sampling strategy could turn out
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inadequate during the assimilation process. To overcome this issue, some other UKF
applications adapt the value of the coefficients to guaranty the physical coherence of
the sample states.

These types of issues are not encountered with the SKF-CN algorithm, as mean and
variance run independently.5

Another limitation of the UKF with respect to the SKF is the computational effort.
Being L the dimension of the augmented state vector (in this case equal two times the
number N of nodes in which the soil column is discretised, plus the number of observa-
tion nodes), the differential equations of the dynamic model need to be executed 2L+1
times during each time step for obtaining a priori estimates of the mean and variance.10

For long time applications this can mean a relevant computational effort. An option for
minimizing this problem is to optimize the discretisation of the soil column.

On the other hand, one aspect favouring the application of the UKF is the possibility
to implement straightforwardly nonlinear state variable transformations. When states
are very far from observations, the filtering process imposes severe gradients in the15

profiles, propitiating the estimation of temporary meaningless profiles. This could be
partially avoided by making a transformation of the state (e.g. logarithmic), which im-
plies at the same time a nonlinear transformation of the dynamic equation. This trans-
formation, scarcely affecting the UKF results (not shown), should be treated by lin-
earization of an already linearized equation in the case of an Extended Kalman Filter,20

therefore with a drastic reduction of the efficiency of the assimilation algorithm.
Figure 4 shows the retrieved profiles by assimilating soil water potential observations

once every two days. In both cases the initial state covariance employed has been set
to 103 cm2. To guarantee a performance of the UKF comparable with that of SKF, the
parameter ρ has been specifically tuned. Results show that the SKF is able to retrieve25

the true profile already at the fourth day, i.e. at the second assimilation, practically for
any observation depths. Satisfactory results with the SKF have been also obtained (not
shown here) by assimilating observations once every tree days and four days, except
the case when the observations are limited to the top node. SKF failed only for larger
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observation time-intervals, as the extremely negative pressured heads of the predicted
states at the top nodes altered the singularity of matrix operators. To achieve results
analogue to those obtained with SKF, specific tunings of the assimilation scheme are
required with the UKF.

4.4 Assimilation of soil water content observations5

The analysis has been also extended to examine the case of assimilating soil water
content observations, instead of matric pressure heads. In this case the CN numerical
scheme has been coupled with an EKF, entailing the computation of the Jacobians ma-
trices of the observation equation, in order to deal with the nonlinearity of the soil water
retention function. Figure 5 represents the analogue comparison with those shown in10

Fig. 2, but assimilating soil water content observations instead of soil water potential
values.

With EKF-CN, complete retrieving of the true profile occurs only around the fourth
day, thus after a time much longer than that required by assimilating pressure head
observations with SKF-CN.15

The effect of different observation depths is much more evident when taking soil wa-
ter content instead of soil water potential values as observations. Moreover, with the
UKF-NL algorithm, the effect of the initial state variance on the retrieving performance
is even more accentuated when assimilating soil water content values than matric pres-
sure heads. In this case, complete retrieving required 4 days taking 104 cm2 as initial20

state variance, while 8 days assuming 103 cm2 as initial state variance.
It is important to point out that the results obtained by assimilating soil water content

values, are subjected to the assumption that the parameters defining the soil water
retention at the observation points coincide with those employed for simulating the soil
water dynamics along the entire soil column considered as homogeneous. However,25

in practical circumstances, the retrieving process should account for the system het-
erogeneity and model simplifications of the real-world soil hydrological processes. The
“optimal” parameters defining the soil water retention at the observation points are in
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principle different from the “optimal” parameters defining the soil water dynamics along
the soil column. These “optimal” soil hydraulic parameters are to be considered as ef-
fective values at the scales of the observation or of the modelled system, respectively
(Vereecken et al., 2007).

4.5 Dynamic evolution of the state covariance5

Figure 6 shows how the variances explained by the first two principal components (PC)
of the state covariance evolve, considering the simulations during the first 24 hours for
pressure head assimilations, and 72 hours for soil water content assimilations, with two
different initial state covariance matrices, 103 and 104 cm2.

Figure a and b shows the evolution of the explained covariance with the application10

of SKFv -EX and SKFv -CN schemes, respectively. Both PCs initially increase up to
around the tenth observation. At this stage a low cross-covariance establishes between
top nodes, already retrieved to the true small (in terms of absolute value) pressure
heads, while a high cross-covariance occurs between the deepest nodes, still far from
the true profile. Thus, the explained variance of the first PC (PC 1) tends to rapidly15

increase while that of the second PC (PC 2) decreases. This trend is also favoured
by a system noise covariance punishing the higher state values. Once the retrieved
profiles reach the true values for the entire depths, the explained variance of PC 1
reaches the maximum value. After this point, additional contributions from the system
noise error, according to the SKFv scheme, entails a reduction of the total variance20

explained by the first two components to values less than 50 %. With smaller initial
state covariance, the maximum explained variance of PC 1 tends to markedly reduce
and the effect of observation depth also starts to be clearer.

As shown by Fig. 6c and d, the influence of the observation depths practically disap-
pears when employing the UKF-NL and the SKF-CN schemes. The different patterns25

observed for UKF-NL and LKF-CN are not only due to the anomalous behaviour ob-
served for the updated UKF prior mean profiles with the higher initial state variance,
but also to the difference between the corresponding computational time-steps, which
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determines a different interaction of the system noise covariance with the state covari-
ance. Figure 6c shows that, using the SKF-CN scheme for assimilating pressure head,
the percent of explained variance is highly influenced by the initial state variance, al-
though the response of the mean state is poorly sensible, as shown in Fig. 2.

This analysis also demonstrates the implications of assuming a structure of the sys-5

tem noise covariance according to the SKF-CN scheme, as presented in Eq. (33), and
not to the SKFv -CN scheme, as presented in Eq. (33). During pressure head assim-
ilations, once a total predominance of the first PC is reached, the additional supply
from the system noise error makes the path described by the first two PCs to turn back
along a similar trajectory, which provides a more “natural” updating, differently from the10

SKFv -CN case, which instead leads to a reduction of the explained variance, following
a different trajectory. This way of assuming the noise variance allowed for a very good
behaviour of the SKF-CN algorithm even with much less frequent observations, without
recurring to alternative strategies as those evaluated by Walker at al. (2001).

In case of soil water content observations, introducing a nonlinear observation equa-15

tion propitiates a larger influence of the observation depth on the state covariance, for
both the EKF-CN and the UKF-NL algorithms. The influence assimilated variable of
the initial state variance on the evolution of the PC variances becomes less noticeable,
particularly for the EKF-CN algorithm.

5 Conclusions20

The analyses carried out in this study demonstrate that when designing a Kalman Filter
algorithm for assimilating near surface data in the Richards equation, the Kalman Filter
itself should be chosen considering the numerical scheme employed for solving the
Richards equation, the form (“h-based” or “θ-based”) of this equation, and the type of
assimilated variable.25

A general guideline is to choose the form of the Richards equation according to the
assimilated variable, so that the type of variable describing the observations is equal to
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that describing the states or it is at least a linear transformation of it, and then differen-
tiate the Richards equation according to a linear numerical scheme, to be coupled with
a standard Kalman Filter algorithm. In fact, in the examined case, a standard Kalman
Filter with a linear numerical scheme and a linear observation equation is more effi-
cient than a non-standard Kalman Filter (e.g. Extended or Unscented Kalman Filter)5

required for dealing with nonlinear numerical schemes and/or nonlinear observation
equations. However, this strategy is not always possible, as for instance when the as-
similation algorithm has to be implemented with closed on-hand model software, such
as HYDRUS (Vogel et al., 1996), with a predefined numerical scheme.

The combination of the Crank-Nicolson (CN) finite difference scheme with the stan-10

dard KF has been proved, at least for the examined numerical experiments, as the
most efficient strategy for a successful retrieval of the state profiles. It takes advan-
tage of both the stability of CN numerical scheme and the linearity of the operators in
the dynamic system model. An explicit numerical scheme, although being also linear,
is unfeasible for practical applications, as it demands computational time-steps of the15

order of a few seconds.
The capability of the standard Kalman Filter in solving the a posteriori distribution

of the first and second moments of the state variables with a completely analytical
procedure becomes an important advantage over a non standard Kalman Filter such
as the UKF.20

With the UKF, a deterministic sampling of the states around the mean values is
required. This undertakes the risk of sampling meaningless values, considering the
physical constraints of the unsaturated flow described by the Richards equation. An-
other limitation of the UKF with respect to the linearized approach, concerns with the
computational effort. The UKF entails a considerably larger number of solutions of the25

Richards equation at each time step, which is generally not compensated by the fact
that UKF is implemented with a nonlinear implicit numerical scheme, which allows for
time-steps larger than those required for a CN scheme.

13316

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/13291/2012/hessd-9-13291-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/13291/2012/hessd-9-13291-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 13291–13327, 2012

Part 1: Retrieving
state profiles with

linear and nonlinear
numerical schemes

G. B. Chirico et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

A favourable aspect of the UKF approach is the possibility to implement straightfor-
wardly nonlinear state variable transformations, which can be required in some occa-
sions for a stable updating of the filter. Moreover, the UKF is a valuable option when
the nonlinearity of the observation equation is unavoidable, as for instance when sur-
face soil water content observations are assimilated to retrieve state profiles, while the5

Richards equation has to be expressed in the h-form in order to deal with temporary
saturated flow along the soil column.

This study focussed on retrieving state profiles, while assuming that parameters are
known. However, in most practical circumstances, significant uncertainties arise from
the identification of the soil hydraulic parameters. The following two companion papers10

(Medina et al., 2012a,b) explore the capability of a dual Kalman Filter approach for
simultaneous retrieval of states and parameters in the Richards equation, by examining
synthetic and experimental data, respectively.
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Table 1. Summary of assimilation algorithms adopted in combination with different numerical
schemes and different types of observed variables.

Finite difference scheme

Observed variable EX CN NL

h SKFb
v SKFa UKFd

θ – EKFc UKFd

a SKF, standard Kalman Filter; b SKFv , SKF without
transforming the process noise v through the dynamic
system Eqs. (13) and (14); c EKF, Extended Kalman Filter;
d UKF unscented Kalman Filter.
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Table 2. Parameters and conditions employed in the synthetic generation of pressure head
profiles and for the initialization of the assimilation algorithms.

Soil depth 100 cm

Number of nodes 27

Soil hydraulic parameters θs =0.54 cm3 cm−3

θr =0.2 cm3 cm−3

α=0.008 cm−1

n=1.8 (−)
Ks =2.9×10−4 cm−1

Top flux 5.79×10−6 cm s−1

Bottom flux 0 cm s−1

Initial uniform h profile −50 cm

Poor guess of initial uniform h profile −300 cm

Initial state covariance matrix Px,i ,j =
{

103 cm2 if i = j ; i , j = 1 ... n nodes
0cm2 if i 6= j

Measurement noise variance matrix Ri ,j =
{

0.02y i cm2 if i = j ; i , j = 1 ... n obs
0cm2 if i 6= j
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Fig. 1. Retrieved profiles by assimilating hourly observations of pressure heads involving nodes
within the top 0.5 cm (open circle), 1.5 cm (square), 4.5 cm (triangle) and 10.5 cm (diamond)
compared with the “true” profile (closed circle) and “guess” profile (dashed line). The top panels
show the results obtained with the SKFv -EX, while the bottom panels show those obtained with
SKFv -CN after (a)–(d) 4 h, (b)–(e) 8 h and (c)–(f) 12 h, respectively.
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Fig. 2. Retrieved profiles by assimilating hourly observations of pressure heads involving nodes
within the top 0.5 cm (open circle), 1.5 cm (square), 4.5 cm (triangle) and 10.5 cm (diamond)
compared with the “true” profile (closed circle) and “guess” profile (dashed line) using (a)–(f) the
SKF-CN algorithm and (g)–(l) using UKF-NL algorithm, with initial state covariance matrices
P0 =103 cm2 and 104 cm2.
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Fig. 3. Comparison between the UKF-NL prior mean state estimated using ρ=0.05 (open
circle), ρ=0.3 (open square) and ρ=0.8 (triangle) in Eq. (20), and the evolution of the central
state (closed circle) after the first hourly update, considering initial state covariance values
(a) P0 =103 cm2 and (b) P0 =104 cm2.
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Fig. 4. Retrieved profiles after (a)–(d) 2 days; (b)–(e) 4 days, and (c)–(f) 6 days using SKF-CN
and UKF-NL, respectively, by assimilating pressure head observations every two days involving
the nodes within the top 0.5 cm (open circle), 1.5 cm (square), 4.5 cm (triangle) and 10.5 cm
(diamond), as compared with the “true” profile (closed circle) and “guess” profile (dashed line).
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Fig. 5. Retrieved profiles from hourly assimilated observations of soil water content involving
nodes within the top 0.5 cm (open circle), 1.5 cm (square), 4.5 cm (triangle) and 10.5 cm (dia-
mond) compared with the “true” profile (closed circle) and “guess” profile (dashed line) using
(a)–(f) the EKF-CN algorithm and (g)–(l) UKF-NL algorithm, with initial state covariance matri-
ces P0 =103 cm2 and 104 cm2.
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Fig. 6. Explained variance by the first (PC 1) and second (PC 2) principal components of
the state covariance by assimilating hourly pressure heads with (a) SKFv -EX, (b) SKFv -CN,
(c) SKF-CN, d) UKF-NL within the first 24 h; and also by assimilating hourly soil water content
with (c) EKF-CN, (d) UKF-NL within the first 72 h. Observation depths of 0.5 cm (open circle),
1.5 cm (square), 4.5 cm (triangle) and 10.5 cm (diamond) and initial state covariance matrices
P0 =103 cm2 and 104 cm2. Time evolves according to the direction indicated by the curved
arrow.
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