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Abstract

We focus on the special case of catchments covered by a single raingauge, and de-
velop a theoretical framework to obtain estimates of spatial rainfall averages conditional
on rainfall measurements from a single location, and the flow conditions at the catch-
ment outlet. In doing so we use: (a) statistical tools to identify and correct inconsisten-5

cies between daily rainfall occurrence and amount and the flow conditions at the outlet
of the basin, (b) concepts from multifractal theory to relate the fraction of wet intervals
in point rainfall measurements and that in spatial rainfall averages, while accounting for
the shape and size of the catchment, the size, lifetime and advection velocity of rainfall
generating features and the location of the raingauge inside the basin, and (c) semi-10

theoretical arguments to assure consistency between rainfall and runoff volumes at an
inter-annual level, implicitly accounting for spatial heterogeneities of rainfall caused by
orographic influences. In an application study, using point rainfall records from Glafkos
river basin in Western Greece, we find the suggested approach to demonstrate signif-
icant skill in resolving rainfall-runoff incompatibilities at a daily level, while reproducing15

the statistics of spatial rainfall averages at both monthly and annual time scales, inde-
pendently of the location of the raingauge and the magnitude of the observed devia-
tions between point rainfall measurements and spatial rainfall averages. The developed
scheme should serve as an important tool for the effective calibration of rainfall-runoff
models in basins covered by a single raingauge and, also, improve hydrologic impact20

assessment at a river basin level under changing climatic conditions.

1 Introduction

For many hydrological applications, such as calibration of rainfall-runoff models, es-
timation of river discharges Q(t) at the outlet of a basin and quantification of runoff
extremes, one needs to calculate spatial averages of daily precipitation. A frequently25

used estimator for the spatially averaged rainfall intensity I(t) over a basin is,
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ˆI(t) =
s∑

j=1

cj Ij (t) (1)

where Ij (t) is the average rainfall intensity on day t at location j =1, ..., s inside the
basin, and cj (j =1, ..., s) are strictly positive weighting coefficients that sum to 1.
One can obtain cj (j =1, ..., s) using a simple method based on Thiessen polygons
(Thiessen, 1911, and more recently, Eagleson, 1970; Shaw, 1983; Chow et al., 1988;5

Singh, 1992) or Kriging (Krige, 1951, and more recently Journel and Huijbregts, 1978;
Isaaks and Srivastava, 1989; Banerjee et al., 2004; Press et al., 2007; Koutsoyiannis
and Langousis, 2011), or alternatively apply equal weights. In the latter case cj =1/s
for any j . The accuracy of the estimator in Eq. (1) increases with increasing number s
of the measuring locations inside the basin.10

In many cases, however, obtaining an accurate estimate of I(t) solely form point
rainfall measurements using Eq. (1) is not possible. This can be caused by mea-
surement errors, incompleteness of the historical records and topographic influences
or, more frequently, by the low density of measuring locations inside the basin; see
e.g. Hutchinson (1970), Willmott et al. (1994), Gebremichael and Krajewski (2004),15

Langousis (2005), Veneziano and Langousis (2005a) and Veneziano et al. (2006). The
latter is an important issue for many catchments in Greece, and other countries in the
Mediterranean region, which causes important problems in the calculation of annual
water budgets and the calibration of hydrological models.

In what follows, we focus on the special case of catchments covered by a single20

raingauge (i.e. j = s=1). In this case
ˆI = I1 = I , and Eq. (1) approximates spatial rainfall

averages over the basin using rainfall measurements at a single location. This approxi-
mation has well known limitations originating from the highly variable and lacunar char-
acter of rainfall fields (see Smith, 1993; Lovejoy and Schertzer, 1995; Veneziano and
Langousis, 2010; Koutsoyiannis and Langousis, 2011 among others), which causes25

the process of spatial rainfall averages to differ significantly from that of point rainfall
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measurements; see e.g. Langousis (2005), Veneziano and Langousis (2005a), and
Veneziano et al. (2006).

To prove this argument theoretically, it suffices to note that for spatially intermittent
rainfall intensity fields and finite sized catchments, P [I(t)>0|I(t)=0]>0 and, therefore,
P [I(t)>0]>P [I(t)>0]. Note that the difference P [I(t)>0]− P [I(t)>0], increases with5

increasing catchment size.
The latter inequality highlights an important issue that emerges when approximating

spatial rainfall averages over a catchment using point-rainfall measurements. This is the
underestimation of the fraction of wet intervals of the spatially averaged rainfall series,
which leads to incompatibilities between rainfall occurrences and observed changes10

of the daily river runoff (see Fig. 1 and discussion below). Another issue concerns the
observed imbalances in annual water budgets (see Table 1 and discussion below),
caused by the underestimation of the fraction of wet intervals, as well as orographic
influences.

To illustrate the first issue, Fig. 1 presents daily river discharges and measured pre-15

cipitation depths at the hydroelectric plant (HP) located at the Glafkos river basin (see
Fig. 1 and Sect. 2), close to the city of Patras (Greece), for the period 1 October 1990–
30 September 1992. Base-flow variations and snowmelt may cause the flow conditions
at the outlet of the catchment to vary somewhat, but abrupt and intense changes of the
river discharge should be associated with rainfall events. The vertical arrows in Fig. 120

indicate such changes in the absence of rain.
Table 1 shows annual precipitation depths and river discharges per unit area of the

basin for the hydrological years (i.e. 1 October–30 September) 1974–1993. Note that
for hydrological years 1975–1976, 1978–1979, 1979–1980, 1971–1982 and 1985–
1986, the annual runoff volume is lower than that of precipitation. In addition, for all25

years in record, the readily available volume of water for evaportranspiration (ET)
(i.e. precipitation− runoff) is significantly lower than the ET-estimates reported in the lit-
erature for the wider region of Glafkos catchment; see Voudouris (1995), Nikas (2004)
and Mandilaras (2005). The latter are on the order of 500 mm per year. In the absence
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of physical indications for groundwater inflow from adjacent catchments (Kaleris and
Ziogas, 2011), the aforementioned water imbalances can be attributed to incompatibil-
ities between the historical point-rainfall and runoff time-series.

A rather straight forward way to correct the available point-rainfall series and ensure
consistency between annual rainfall and river discharge volumes is to (1) calibrate a5

hydrological model using the historical rainfall and river discharge data, (2) calculate
the difference ∆RO between measured and simulated annual runoffs, (3) adjust daily
rainfalls using a multiplicative factor, calculated as the ratio between ∆RO and the mea-
sured annual precipitation depth, and (4) repeat steps 1–3 using the adjusted rainfall
series; see Kaleris and Ziogas (2011). The suggested approach can be seen as an10

extension of the Parsons (or Sacramento) method developed in 1941 at the Corps
of Engineers District Office in Sacramento (see US Army Corps of Engineers, 1941
and more recently Gilman, 1964) to determine mean annual precipitation in orographic
areas. Parsons method uses measurements of precipitation and runoff, as well quali-
tative knowledge on soil and vegetation, to construct mean annual precipitation maps15

that minimize annual water imbalances in hydrological budgets.
While simple, the approach of Kaleris and Ziogas (2011) exhibits several intrinsic

limitations. One is related to the fact that the hydrological model is calibrated using the
original point-rainfall records that are subject to adjustments. Hence, the level of the
imposed correction and the quality and effectiveness of model calibration are strictly20

coupled.
Other, more theoretically oriented limitations, relate to differences between the sta-

tistical characteristics of spatial rainfall averages, which drive river flow and determine
annual discharge volumes, and those of point rainfall measurements. The latter can be
seen as noisy observations of the former. For example, while a constant multiplicative25

correction factor may ensure consistency between annual rainfall and river discharge
volumes, it does not resolve incompatibilities between daily rainfall occurrence and flow
conditions at the outlet of the catchment (see Fig. 1). In addition, such correction alters
the distribution of rainfall intensities inside wet intervals without changing the fraction

12467

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 12463–12522, 2012

Framework to
estimate spatially
averaged rainfalls

A. Langousis and
V. Kaleris

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

of dry intervals. In essence, the resulting time series do not resemble the structure of
spatial rainfall averages. The latter exhibit a lower fraction of dry intervals relative to
rainfall measurements at distinct locations inside the catchment; see above.

A theoretically more appealing approach to ensure consistency between recorded
rainfall and river discharges, is to adjust point rainfall measurements to better resemble5

the statistical structure of spatial rainfall averages at a daily level and, also, be consis-
tent with the measured discharges at both daily and inter-annual levels.

In the next sections we propose a theoretical framework that uses rainfall data from a
single raingauge to obtain estimates of spatial rainfall averages over a catchment con-
ditional on the same- and previous-day discharges at the outlet. Consistency between10

the obtained estimates and observed runoffs is sought at both daily and inter-annual
time scales.

The developed scheme should serve as an important tool for the effective calibra-
tion of rainfall-runoff models in basins covered by a single raingauge (a frequent case
for many catchments in Greece and other countries in the Mediterranean region),15

which is of particular importance when studying the impacts of climate change on
river basin hydrology, the quality and availability of water resources in space and time,
and the sustainability of the natural environment; see e.g. Kaleris et al. (2001) and
Wilby et al. (2006). In Europe, the issues of water resources quality, availability and
management have officially been stressed by the Water Framework Directive (WFD)20

2000/60/EC of the European Parliament and of the Council on 23 October 2000.
The analysis is conducted using daily rainfalls and river discharges from Glafkos river

basin in Western Greece. Temperature measurements do not enter the analysis, but
are used in Sect. 5 to obtain estimates of the actual evaportranspiration height in the
basin. More details on the available data are given in Sect. 2.25

Sections 3 and 4 present the theoretical framework of the suggested methodology.
In Sect. 3 we develop a statistical approach to identify and correct inconsistencies
between daily rainfall occurrence and amount at the location of the raingauge and
the observed flow conditions at the outlet of the basin. Rainfall occurrence is checked
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using a statistical test based on the concept of linear reservoirs for river discharges
(see Sect. 3.1), whereas daily rainfalls are modeled using a log-normal distribution
with parameters that depend on the same- and previous-day discharge conditions at
the outlet of the catchment (see Sect. 3.2).

As noted above, the fraction of wet intervals in spatial rainfall averages differs from5

that observed in point rainfall measurements. In Sect. 4 we use concepts from multi-
fractal theory to relate the fraction of wet intervals in point rainfall, P1, to that observed
in spatial rainfall averages, P 1, while accounting for the shape and size of the basin,
the characteristics of rainfall generating features (size, lifetime and advection veloc-
ity vector), and the location of the raingauge relative to the centroid of the basin (see10

Sect. 4.2). Since P 1 >P1 (see above), several “dry” days in the record of point rain-
fall measurements should be transformed to “wet”. Selection of those days is done
conditional on the daily changes of the river discharge.

Section 5 focuses on the inter-annual consistency between rainfall measurements at
a point and river discharges at the outlet of the basin, and suggests a semi-theoretical15

approach to resolve water budget imbalances at an inter-annual level; implicitly ac-
counting for spatial heterogeneities of rainfall (see Gilman, 1964; Smith, 1979, 1993;
Koutsoyiannis and Langousis, 2011 among others).

In Sect. 6 we apply and validate the efficiency of the method in resolving rainfall-
runoff incompatibilities at both daily and annual time scales. Discussion, comments20

and future developments are presented in Sect. 7.

2 Available data

The watershed of Glafkos river is shown in Fig. 2. It extends from the coast of the Gulf of
Patras to the slope of the Panachaikon Mountain. The highest altitude of the catchment
is about 1800 m (a.m.s.l.). In what follows, we focus on the upper mountainous part of25

the catchment, with outlet at the dam of Glafkos (point B in Fig. 2). The area of this
part of the catchment is 65.62 km2 and its water is used for energy production, the
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water supply of the city of Patras and irrigation. The hydroelectric plant (HP) is located
downstream from the dam at a distance of about 2 km (point A in Fig. 2).

2.1 Precipitation time-series

Daily precipitation measurements are available by the Public Power Corporation (PPC)
at three locations: (1) the dam (point B in Fig. 2), (2) the hydroelectric plant (HP)5

(point A in Fig. 2), and (3) the station of PPC at Moira (point C in Fig. 2). Station B
is located at the outlet of the catchment at an altitude of 340 m (a.m.s.l.), station A is
located about 2 km downstream from station B at an altitude of 181 m, and station C
is located close to the centroid of the basin at an altitude of 840 m (a.m.s.l.). For sta-
tions A and B, daily rainfall measurements are available for the period 1 October 197410

to 30 September 1993 (19 yr), whereas for station C for the period 1 October 1975 to
30 September 1994 (19 yr).

The available records at stations A (Hydroelectric Plant, HP) and B (Dam) are com-
plete, whereas the rainfall record at station C exhibits some missing values as shown in
Table 2. For the period 1 October 1976 to 30 September 1984, the missing values have15

been completed by simple averaging of the corresponding daily rainfall measurements
at stations A and B, whereas the period 1 October 1993 to 30 September 1994, where
no measurements are reported at stations A and B, was not included in the analysis.

During the wet period of the year (from November to April) the rainfall measurements
at the Moira station were found to exhibit numerous small values in the range from20

0.01–1 mm day−1. Since the accuracy of the raingauge at the Moira station is on the
order of 1 mm day−1 (PPC, personal communication, 2012) and the Moira station is
located in a forested area with significant vegetation, those values should be associated
with dew and fog drip (occult precipitation) and were set to zero.

Tables 3 and 4 show annual rainfall depths and the fraction of wet days for the avail-25

able historical rainfall records. One sees that: (1) contrary to the original precipitation
series at Moira, the corrected ones exhibit lower wet-day fractions that are closer to
those observed at different locations inside and outside the catchment (see Table 4),
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and (2) the corresponding correction affects minimally the annual rainfall totals (see
Table 3).

For the period common to all stations (i.e. 1 October 1975 to 30 September 1993),
we used the original precipitation data at station B (Dam) and the corrected ones at
station C (Moira) to calculate spatial rainfall averages using the method of Thiessen5

polygons; see Tables 3 and 4. The weighting coefficients were found to be 0.2 for
station B and 0.8 for station C.

2.2 River discharge time-series

Daily discharge measurements at the outlet of the hydroelectric plant (point A in Fig. 2)
are available since 1 October 1974. These measurements correspond to the mean10

daily river flow at the outlet of the catchment (Dam), as the river water from the reser-
voir is led to the hydroelectric plant through a pipe line. In the case of very high river
discharges, a portion of the river water entering the reservoir is not used for energy
production and flows downstream through the spillway of the dam. This portion of the
river discharge is measured at the spillway. The mean daily discharge is obtained as15

the sum of the daily water volume supplied to the hydroelectric plant and the daily water
volume flowing out of the reservoir through the spillway of the dam.

The historical discharge series have been corrected to eliminate sudden and intense
drops of the measured runoff, caused by abrupt operations on the energy produc-
tion unit. In addition, daily discharge measurements below 0.25 m3 s−1 were found to20

exhibit irregular fluctuations during summer months, in the absence of rain. Those fluc-
tuations relate to the observation accuracy of the water level in the discharge channel
of the hydroelectric plant (PPC, personal communication, 2012), and were smoothed
out by assigning a minimum discharge value=0.25 m3 s−1. (Note that Glafkos river is a
perennial stream with non-zero base-flow during all years in record.) Table 5 shows an-25

nual discharges, per unit area of the basin, for the historical years in record, using the
original and corrected discharge series. One sees that the applied corrections affect
minimally the annual water volumes.
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2.3 Temperature time-series

Daily mean temperatures are available from the stations of the Hellenic National Meteo-
rological Service (HNMS) in Patras (point T in Fig. 2) and Araxos (approximately 30 km
West of the city of Patras; not included in the map). Patras station is located at an
altitude of 1 m (a.m.s.l.) with available data for the period 1 October 1982–30 Septem-5

ber 2000, whereas Araxos station is located at an altitude of 15 m (a.m.s.l.) and it
has been operating since 1 October 1974. When calculating the actual evaportran-
spiration in the basin (Sect. 5), for the period 1 October 1974–30 September 1982
(where no measurements are available at Patras station) we use mean annual tem-
peratures from Araxos, corrected to account for the difference between the mean el-10

evation of the catchment – 1060 m (a.m.s.l.) – and the altitude of the station, using a
pseudo-adiabatic lapse rate equal to 0.65 ◦C/100 m; see Table 6. For the period 1 Octo-
ber 1982–30 September 1993 we use the daily mean temperatures recorded at Patras
station (the closest station to the basin), also corrected to account for the difference
between the mean elevation of the catchment and the altitude of the station. As shown15

by Ziogas (2006), the daily mean temperatures measured at Patras and Araxos are
highly correlated (correlation coefficient R =0.96) and one can combine those records
to cover the whole period of the analysis.

3 A statistical approach to identify and resolve incompatibilities between daily
rainfall measurements and river discharges20

3.1 Checking rainfall occurrence using a theoretically based statistical model

Define Q(t) to be the river discharge at the outlet of a basin on day t and denote by S(t)
the subsurface storage on the same day. A simple theoretical model to approximate
river discharges on dry days, is that of a linear reservoir with zero inflow (see e.g. Chow,
1964 and Lettenmaier and Wood, 1993):25
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Q(t) = αS(t)
dS(t) = −Q(t)dt

}
⇒ Q(t) = Q(t − dt)e−adt (2)

where a≥0 is a time constant. For dt=1 day, it follows from Eq. (2) that the ratio

ω(t) =
Q(t) − Q(t − 1)

Q(t − 1)
= e−α − 1 = const. < 0. (3)

Deviations from the model in Eq. (2) may cause the time constant α and consequently
the ratio ω to vary slowly with the previous-day discharge Q(t−1).5

Strictly speaking, in the absence of rain, positive values of ω are not feasible. Hence,
while small positive values (say on the order of 0.2–0.5) may be justified by snowmelt,
variations of base flow and light rainfall occurrence at some ungauged part of the catch-
ment, larger values of ω should be associated with measurement errors, or heavy rain-
fall at some ungauged part of the catchment.10

Figures 3–5 show scatter-plots and empirical histograms of [ω(t)>0|I(t)=0] using
daily river discharges and rainfall depths measured at points A (HP) and B (Dam)
for the period 1 October 1974–30 September 1993 (19 yr), and C (Moira) for the pe-
riod 1 October 1975–30 September 1993 (18 yr). The analysis has been conducted by
(1) calculating the ratio ω(t) on days that appear as dry in the historical record of point15

rainfall measurements, and (2) classifying the positive values of ω into n=2 equally
populated categories with respect to the previous-day river discharge Q(t−1). Classi-
fication is done in order to study how the statistics of ω depend on Q(t−1); see below.
The solid and dashed lines on the right panels of Figs. 3–5, correspond to a Gamma
and lognormal distribution models, respectively, fitted directly to the empirical ratios20

using the method of moments. The fitting procedure is suited to account and remove
irregularly high values of ω, as follows.

1. For each category of previous-day river discharges, Q(t−1), one removes a sin-
gle value of ω and fits the corresponding theoretical distribution model to the
remainder values.25

12473

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 12463–12522, 2012

Framework to
estimate spatially
averaged rainfalls

A. Langousis and
V. Kaleris

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2. One checks whether the removed value can be classified as an outlier at a certain
level of significance β (e.g. β=5 %).

3. One repeats steps 1 and 2 for all values of ω in the category.

4. One fits the corresponding theoretical distribution model to those values of ω
identified as non-outliers.5

One sees that, independently of the category of the previous-day discharge Q(t−1),
both Gamma and lognormal distribution models fit equally well the data. In what follows,
we select to model ω using a lognormal distribution with parameters that depend on
Q(t−1).

As noted above, irregularly large values of ω should be associated with measure-10

ment errors, or heavy rainfall at some ungauged part of the catchment. That said,
one can formulate a simple statistical test using the lognormal (or Gamma) distribution
models in Figs. 3–5, to identify incompatibilities between days indicated as dry in the
historical record of point rainfall measurements and changes of the river discharge at
the outlet of the basin. The left panels of Figs. 3–5, show scatter-plots of ω for different15

categories of river discharges and rainfall datasets. The empty circles indicate (outlier)
values of ω for which the null hypothesis of no-rain over the catchment is rejected at
the 5 % significance level.

An interesting observation is that, independently of the dataset used, the values of ω
(dots) satisfying the null hypothesis of no rain over the catchment have constant mean20

(≈0.05; see Figs. 3–5) and variance that increases with increasing Q(t−1). The latter
increase is physically justified since larger values of Q(t−1) indicate intense discharge
conditions that can more easily produce extreme runoffs. An additional observation is
that, independently of the category of previous days discharge Q(t−1), the statistics
of the values of ω that satisfy the null hypothesis do not depend on the rainfall dataset.25

This highlights the robustness of the statistical method in identifying and eliminating
incompatibilities between daily rainfall occurrences and changes in the river runoff,
while maintaining those values of ω that share similar statistics. In the next section
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we focus on wet days and model daily rainfalls using a lognormal distribution with
parameters that depend on the same- and previous-day discharge conditions at the
outlet of the catchment.

3.2 Statistical model for daily rainfall intensities conditioned on river
discharges5

Interest is in developing a statistical tool to: (a) assign synthetic rainfall intensity values
to days that appear as dry in the historical record of point rainfall measurements, but
the flow conditions at the outlet of the catchment classify them as wet at a certain confi-
dence level γ (e.g. γ =95 %); see empty circles in Figs. 3–5, and (b) check and correct
inconsistencies in rainfall amounts on wet days conditioned on the flow conditions at10

the outlet of the catchment.
A way to proceed towards this direction is to develop relationships that describe how

the statistics of daily rainfall intensities vary with indicator variables representative of
the flow conditions at the outlet of the basin. For the same datasets used in Figs. 3–
5, Figs. 6–8 show plots of the logarithmically transformed daily rainfall intensities,15

ln [I(t)>0], on wet days t, as a function of the observed change of the river discharge
[Q(t) -Q(t−1)>0], for different categories of the previous-day discharge Q(t−1). De-
pendence of the statistics of [I(t)>0] on Q(t−1) and [Q(t)−Q(t−1)>0] is physically
justified, since (a) larger values of Q(t−1) indicate intense discharge conditions that
more easily produce extreme runoffs and, consequently, larger values of the difference20

Q(t) -Q(t−1), and (b) larger values of the difference Q(t)−Q(t−1) are associated with
more intense rainfall events.

The solid lines on the left panels of Figs. 6–8 are best fits of Eq. (4) (see below) to
the empirical data using the method of least squares,

ln [I(t) > 0|Q(t) − Q(t − 1) > 0] = aj ln [Q(t) − Q(t − 1) > 0] + bj + Vj , j = 1, 2, ..., m. (4)25

aj and bj in Eq. (4) are parameters that depend on the category j of the previous-
day discharge Q(t−1), and Vj is a zero-mean random error term that is stochastically
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independent from the variable [Q(t)−Q(t−1)]. Calculation of the parameters aj and
bj , proceeds as follows.

1. One identifies the wet days (i.e. I(t)>0) in the historical record, for which
Q(t)−Q(t−1)>0. For those days, the measured rainfall intensities I(t) and the
observed changes of the river runoff Q(t)−Q(t−1) are ranked based on the5

previous-day river flow Q(t−1) and split into m=4 equally populated categories.

2. The coefficients aj and bj , as well as the residuals of the regression vj ,k ,
k =1, 2, ... are calculated separately for each category j using the method of
least-squares.

3. To put residuals on a comparable scale, one divides them by an estimate of their10

standard deviation (see Chatterjee and Hadi, 1986, Eq. 13) that is independent of
their value. As shown on the right panels of Figs. 6–8, independently of the cat-
egory j of the previous-day river discharge Q(t−1), the residuals of the log-log
linear regression are well approximated by a normal distribution with zero mean
and variance σ2

j that depends on the category j . Hence, the resulting samples of15

the standardized residuals should be well approximated by a student-t distribution
with Nj −p−1 degrees of freedom (df), where Nj is the sample size of category
j and p=2 is the number of parameters of the log-linear regression; see e.g. Bel-
sley et al. (1980), Velleman and Welsch (1981), Atkinson (1981) and Chatterjee
and Hadi (1986).20

4. For a certain level of significance β (e.g. 5 %), one uses the standardized residuals
from step 3, and the student-t theoretical distribution model, to identify outliers of
the initial regression (see empty circles on the left panels of Figs. 6–8), remove
them, and then obtain a new set of coefficients aj and bj .

Figure 9 shows how the empirical estimates of the parameters aj andbj in Eq. (4) and25

the error standard deviation σj , vary with the previous-day discharge Q(t−1). The solid
lines are least squares fits to the empirical values. One sees that both a and b decrease
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log-log linearly with increasing Q(t−1). This is physically expected since larger values
of Q(t−1) correspond to more intense discharge conditions, where large changes of
the river discharge between two sequential days Q(t)−Q(t−1) can also be caused by
less intense rainfall events.

Two additional observations one makes are that, independently of the rainfall dataset,5

the empirical distribution of the residuals of the regression in Eq. (4) is close to normal
with variance that does not depend on the previous day discharge Q(t−1). The first
observation is in accordance with the findings of many studies suggesting the use of
a lognormal distribution model for rainfall intensities; see e.g. Kedem et al. (1990a,b,
1997), Shimizu (1993), Cheng and Qi (2001), Cho et al. (2004), Veneziano and Lan-10

gousis (2005a,b), Shoji and Kitaura (2006), Veneziano et al. (2006, 2007), Suhaila and
Jemain (2007), Langousis and Veneziano (2007) and Langousis et al. (2009). The sec-
ond observation is physically justified since the variability of rainfall should not depend
on the previous-day flow conditions.

Based on the above findings, in what follows we model daily rainfall intensities, con-15

ditional on river discharge conditions, using a lognormal distribution model with param-
eters:

µln I = E [ln {I(t) > 0|Q(t) − Q(t − 1) > 0, Q(t − 1)}] = aQ(t−1) ln [Q(t) − Q(t − 1) > 0] + bQ(t−1)

(σln I )
2 = Var[ln {I(t) > 0|Q(t) − Q(t − 1) > 0, Q(t − 1)}] = c2 = const. (5)

where µln I and (σln I )
2 are the mean and variance of the associated normal distribu-20

tion, aQ(t−1) and bQ(t−1) can be calculated from the equations in Fig. 9 based on the
previous day-discharge Q(t−1), and c is a constant independent of Q(t−1). Equa-
tion (5) is used to assign synthetic rainfall intensity values to days: (1) identified with
inconsistencies between point rainfall measurements and flow conditions at the outlet
of the catchment (see empty circles in Figs. 3–8), and (2) to additional wet days when25

adjusting point rainfall measurements to better resemble the fraction of wet intervals in
spatial rainfall averages; see next section.
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4 Using concepts from multifractal theory to relate the fraction of wet intervals
in point rainfall to that in spatial rainfall averages

Define I(t) to be the spatially averaged daily rainfall depth over a catchment on day t,
and denote by I(t) the daily rainfall depth at a certain location j inside the basin on the
same day. From total probability theorem one has5

P [I(t) > 0] = 1 − P 0 = P [I(t) > 0|I(t) > 0] (1 − P0) + P [I(t) > 0|I(t) = 0]P0 (6)

where P 0 = P [I(t)=0] and P0 = P [I(t)=0], and from conditional probability theorem one
has

P [I(t) > 0|I(t) = 0] =

(
1 − P 0

)
P [I(t) = 0|I(t) > 0]

P0
. (7)

By combining Eqs. (6) and (7) one obtains10

P 0 = 1 −
δ (1 − P0)

1 − P [I(t) = 0|I(t) > 0]
(8)

where δ = P [I(t)>0|I(t)>0].
It follows from the definition of spatial rainfall averages that when j is located inside

the catchment or at the basin divide, δ =1. Thus,

P 0 = 1 −
(1 − P0)

1 − P [I(t) = 0|I(t) > 0]
. (9)15

In the next two sub-sections we use scaling arguments from multifractal theory and a
simple theoretical model to relate the probability P [I(t)=0|I(t)>0] in Eq. (9) (i.e. the
probability that it does not rain at location j given that it rains inside the basin) to the
shape and size of the catchment and the characteristics of storms.

12478

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 12463–12522, 2012

Framework to
estimate spatially
averaged rainfalls

A. Langousis and
V. Kaleris

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.1 Borrowing concepts from multifractal theory to approximate Eq. (9)

Rainfall generating features evolve in time and advect in space. Hence, raingauge rain-
fall measurements are representative estimates of spatial rainfall averages over an
indicative area A0, which depends on the characteristics (size, lifetime, advection ve-
locity vector etc.) of rainfall generating features. Suppose now that spatial rainfall is5

homogeneous multifractal below some maximum area Amax ∝ (Lmax)2, where Lmax is
the linear spatial dimension of the rainfall generating features; see below. In this case
(see e.g. Schertzer and Lovejoy, 1987; Gupta and Waymire, 1993; Veneziano, 1999;
Veneziano and Langousis, 2010),

I(t) d
= Yr I(t) (10)10

where
d
= denotes equality in all finite dimensional distributions, Yr is a unit mean

random variable independent of I(t) with parameters that depend on the resolution
r =A/A0 <Amax/A0, and A is the area of the catchment. Estimates of Amax and Lmax are
summarized in Table 7; see e.g. Austin and Houze (1972), Orlanski (1975), Veneziano
and Langousis (2005a), and the review in Langousis (2005). For subtropical regions15

where rainfall is mainly dominated by stratiform formations, an average value of Lmax
is on the order of 50–100 km or more.

For spatial rainfall fields, a commonly used assumption to model the alternation of
wet and dry regions is the use a beta-lognormal distribution model for Yr (Schertzer and
Lovejoy, 1987; Over and Gupta, 1996; Schmitt et al., 1998; Langousis and Veneziano,20

2007; Langousis et al., 2009). In this case, Yr has a concentrated mass at zero
P [Yr =0]=1− r−Cβ and ln [Yr|Yr >0] follows a normal distribution with mean µ= -Cln ln r
and variance σ2 =2Cln ln r . The parameter Cβ controls the alternation of wet and dry
intervals inside Amax, whereas Cln is responsible for the intensity fluctuations inside
rainy regions; see e.g. Langousis et al. (2009).25

Several empirical studies (Over and Gupta, 1996; Kundu and Bell, 2003; Deidda
et al., 2004, 2006; Gebremichael et al., 2006) have shown that spatial rainfall scales
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in an approximately multifractal way for areas A from 4–4000 km2, with values of Cβ

that vary from 0.2–0.3 for areas 4 km2 ≤A≤256 km2 (Kundu and Bell, 2003), and from
0.3–0.6 for 256 km2 ≤A≤4096 km2 (Over and Gupta, 1996; Deidda et al., 2004, 2006;
Gebremichael et al., 2006); see also the review in Veneziano and Langousis (2010).
Based on the multifractal model in Eq. (10), one obtains5

P [I(t) = 0|I(t) > 0] = P [Yr = 0] = 1 − r−Cβ (11)

and Eq. (9) simplifies to

P 0 = 1 −
1 − P0

r−Cβ
. (12)

Given the aforementioned Cβ ranges, for small catchments (i.e. 4 km2 ≤A≤256 km2;
as is the case for Glafkos basin) the value of Cβ can be set to a constant ≈0.25. For10

medium and large-sized catchments (i.e. 256 km2 ≤A≤4096 km2) the value of Cβ can
be taken to increase log-log linearly with A from 0.3–0.6. In what follows, we propose
a theoretical approach to obtain estimates of the resolution r in Eq. (12).

4.2 Linking the resolution r in Eq. (12) to the shape and size of the catchment
and the characteristics of storms15

Define θ to be the direction of motion of rainfall generating features (see Fig. 10),
and denote by Lc the characteristic linear dimension of the catchment. For regularly
shaped catchments Lc ∝

√
A, whereas for highly elongated catchments Lc can be taken

proportional to their largest linear dimension (Veneziano and Langousis, 2005a). As
rainfall features propagate in space and evolve in time, a raingauge located at point20

Φ samples rainfall along line ε; see Fig. 10. Note, however, that only line segment
BΓ=x(θ) falls inside the basin. Consequently, for a storm moving along line ε, the
characteristic linear sampling dimension of the raingauge is:

L(z) = min
[
x(θ), vaddL

]
(13)
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where z= [θ, vad, dL]T is the vector of meteorological variables that characterize the
storm, and vad and dL are the advection velocity and lifetime of rainfall generating fea-
tures. Indicative ranges of values for vad and dL for different types on rainfall generating
features are given in Table 7; see Austin and Houze (1972), Orlanski (1975), Martin
and Schreiner (1981), Kawamura et al. (1996), Deidda (2000), Veneziano and Lan-5

gousis (2005a), and the review in Langousis (2005).
Equation (13) directly accounts for the effects of: (a) the location of the raingauge Φ

inside the basin, and (b) the lifetime dL and advection velocity vad of rainfall generating
features on the characteristic sampling length L. In the case when the joint distribution
fz(z) of the vector z= [θ, vad, dL]T of meteorological variables is known or can be cal-10

culated from data, the expected linear sampling dimension of raingauge Φ is obtained
as

L =
∫

allz

fz(z)L(z)dz. (14)

Examples on the calculation of similar expectations can be found in Langousis and
Veneziano (2009), for the special case of tropical cyclones.15

In the case when no meteorological data are available, one can assume a uniform
distribution for θ in the interval [0, 2π], estimate dL from rainfall data as the average
duration of wet periods, and use dL to obtain a value for vad from Table 7. Under these
assumptions, Eq. (14) reduces to

L =
1

2π

2π∫
0

L (θ, vad, dL) dθ (15)20

where L(θ, vad, dL) is given by Eq. (13). The resolution r in Eq. (12) is calculated as
r = (A/A0)= (Lc/L)2, where L can be obtained from Eqs. (14) or (15).

In Appendix A, we derive an analytical expression for Eq. (15) for regularly shaped
catchments approximated as discs with diameter equal to their characteristic linear
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dimension Lc. Table 8 shows estimates of dL, L and r , for locations A, B and C (see
Fig. 2), using the suggested approximation. In our calculations Glafkos catchment has

linear dimension Lc =2
√
A/π=9.14 km, points A (HP) and B (Dam) are taken to be

located approximately at the basin divide (i.e. the circumference of the disc; see Eq. A.3
in Appendix A), and point C (Moira) at the centroid of the basin (i.e. the center of the5

disc). The resolution r in Table 8 is used in Eq. (12) with Cβ =0.25 (see discussion
under Eq. 12) to calculate the number of additional wet days, needed in each month of
the corrected time series (obtained in Sect. 3), to match the expected fraction of wet
intervals in spatial rainfall averages. Additional wet days are prescribed starting from
the largest value of the ratio ω in each month of the record, and moving to smaller10

values, till either the number of additional wet days is reached, or ω≤1.

5 Multiplicative correction for the annual rainfall depth

In Sect. 3 we developed a methodology to identify and resolve incompatibilities be-
tween daily rainfall measurements I(t) at a point and river discharges Q(t) at the outlet
of the catchment, and in Sect. 4 we used concepts from multifractal theory to relate15

the fraction of wet intervals in point rainfall to that in spatial rainfall averages. In this
way we corrected the record of point rainfall measurements I(t) for incompatibilities
with river discharges at the outlet of the basin and, also, adjusted the resulting rainfall
time-series to exhibit the fraction of dry days outlined by multifractal theory for spatial
rainfall averages, I(t), over the catchment. This was done without altering the distribu-20

tion of daily rainfall intensities on wet days – i.e. [Iadj(t)|Iadj(t)>0]
md
= [I(t)|I(t)>0], where

Iadj(t) denotes the adjusted rainfall timeseries and
md
= denotes equality of the marginal

distributions.
Maintaining the same marginal distribution for point rainfall measurements and spa-

tial rainfall averages on wet days would correspond to a spatially homogeneous rainfall25
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intensity field. However, orographic effects might cause the distribution of spatial rain-
fall averages to deviate somewhat from that of point rainfall measurements. Several
studies (see Pathinara and Herath, 2002; Badas et al., 2005; Deidda et al., 2006) have
shown that orography does not alter the structure of rainfall time-series (i.e. alternation
of wet and dry intervals, fraction of dry days etc.) and, hence, rainfall at different eleva-5

tions can be modeled by multiplying a spatially homogeneous rainfall intensity field by
a smooth increasing function of the elevation; see Badas et al. (2005) and the review in
Veneziano and Langousis (2010). This is equivalent to multiplying the adjusted rainfall
intensity series, Iadj(t), by a constant multiplicative correction factor h. In this case,

I(t)
d≈ ˆI(t) := hIadj(t) (16)10

where
ˆI is the suggested estimate for spatial rainfall, and

d≈ denotes approximate equal-
ity in distributions. In what follows, we propose a semi-theoretical approach to estimate
h in the absence of rainfall measurements at multiple locations inside the catchment.

Define Vl to be the annual rainfall volume reaching the catchment in year l =1, 2, ...,
and denote by ROl the annual river discharge volume at the outlet of the basin in15

the same year. In the absence of groundwater inflows from adjacent catchments (see
Sect. 1), the water budget equation is written, at an annual time scale, as

Vl = ROl + wETact,l A + ∆Sl , l = 1, 2, ... (17)

where A is the area of the basin, ETact,l is the actual annual evaportranspiration height
in year l for a flat catchment (see Eq. 18 below), w is a correction factor that accounts20

for the effects of the mean slope J of the catchment and its orientation φ on ETact (see
below), and ∆Sl is the change in the subsurface storage in year l .

Figure 11 shows how the correction factor w varies with φ and J . For the catchment
of Glafkos river, which exhibits a significant mean slope of about 30 % facing Northwest,
w ≈0.8.25
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Estimates of ETact can be obtained using semi-empirical relationships, as functions
of the annual precipitation depth P and the mean annual temperature T , or the poten-
tial evaportranspiration ETpot; see e.g. Shaw (1983). The latter is a function of T . To
check consistency of different actual evaportranspiration models (e.g. Pike and Turc),
we calculated ETact using precipitation measurements from stations A, B and C and the5

temperature time-series available for the catchment (see Sect. 2.3 and Table 6). We
found that, for all years in record, the relative differences between different evaportran-
spiration models are below 5 % and, hence, selection of a specific evaportranspiration
model does not affect results. In what follows, we use Turc model to estimate ETact

ETact = P

0.9 +

(
P

300 + 25T + 0.05T
3

)2
−1/2

(18)10

since it does not require separate calculation of the potential evaportranspiration.
Summing Eq. (17) over the recorded years l =1, 2, ..., n, one obtains

n∑
l=1

Vl =
n∑

l=1

ROl + wA
n∑

l=1

ETact,l +
n∑

l=1

∆Sl . (19)

Assuming that the catchment does not exhibit overyear depletion of the available water
resources, the annual changes in the subsurface storage should balance out over the15

years. In this case,
n∑

l=1
∆Sl =0, and Eq. (19) reduces to

n∑
l=1

Vl =
n∑

l=1

ROl + wA
n∑

l=1

ETact,l . (20)

Using Eq. (20), an estimate of the multiplicative correction factor h can be obtained as

h =
n∑

l=1

Vl

/
n∑

l=1

(
APadj,l

)
=

n∑
l=1

ROl

/
n∑

l=1

(
APadj,l

)
+ w

n∑
l=1

ETact,l

/
n∑

l=1

Padj,l (21)

12484

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 12463–12522, 2012

Framework to
estimate spatially
averaged rainfalls

A. Langousis and
V. Kaleris

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where Padj,l is the annual rainfall depth in year l =1, ..., n calculated using the adjusted
point rainfall series Iadj, and ETact,l is calculated from Eq. (18) using Padj,l . Table 8
shows estimates of the multiplicative correction factor h using rainfall data from sta-
tions A, B and C. One sees that the correction factors for locations A (h=1.16) and B
(h=1.08) are larger than 1, whereas for location C (h=0.86) is below 1. This means5

that stations A and B underestimate annual rainfall volumes (as noted in the Intro-
duction and shown in Table 1), whereas station C overestimates them. The observed
differences between the annual rainfall volumes measured at locations A, B and C
are highly associated with the intense topography of the catchment, with more than
1500 m altitude change in less than 10 km. This is further justified by the fact that the10

inter-annual multiplicative correction factor h decreases with increasing elevation (see
Table 8), as larger altitudes are associated with higher annual precipitation volumes;
see e.g. Gilman (1964), Smith (1993) and Badas et al. (2005).

6 Model application and validation

To illustrate the use of the statistical framework presented in Sects. 3–5, Fig. 12 shows15

a realization of the estimated spatial rainfall series,
ˆI (see Eq. 16), obtained using point

rainfall measurements from station A (hydroelectric plant, HP) for the period 1 Octo-
ber 1990–30 September 1992 (same period as in Fig. 1), as well as daily discharges
per unit area of the basin (solid lines) at the catchment outlet (point A in Fig. 2). Dots
correspond to measured rainfall depths, empty circles to synthetic rainfall intensities20

assigned to dry days incompatible to observed discharges at the 95 % confidence level
(see Sect. 3.1 and empty circles in Fig. 3), triangles to synthetic rainfall intensities that
substitute the outlier values (empty circles) in Fig. 6 (see Sect. 3.2), and diamonds to
synthetic rainfall intensities assigned to additional wet days so that the resulting series
match the fraction of wet intervals in spatial rainfall averages predicted by multifrac-25

tal theory (see Sect. 4). Synthetic rainfall intensities are simulated randomly using a
lognormal distribution model with parameters obtained from Eq. (5) and Fig. 9a. In
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addition, all rainfall values have been multiplied by a correction factor h=1.16 (see
Sect. 5 and Table 8) to account for the effects of spatial heterogeneity of rainfall on the
annual water budgets.

Direct comparison of Figs. 1 and 12 shows good correspondence between observed
changes of the river discharge and synthetic rainfall occurrence, with synthetic rainfall5

events being located inside wet periods of the year. Hence, artificial interruptions of
prolonged dry periods are avoided. This is an important attribute of the suggested
approach, since it respects the seasonal character (see e.g. Langousis and Kout-
soyiannis, 2006) and the clustered nature of rainfall; see LeCam (1961), Waymire and
Gupta (1981a,b,c) and the review in Koutsoyannis and Langousis (2011).10

To be suitable for calibration of hydrological models and engineering applications,
the proposed framework for spatial rainfall estimation should reproduce the statistics of
spatial rainfall averages independently of the location of the raingauge. Figures 13–15
show the monthly means, standard deviations, and fraction of dry days, of the mea-

sured (I(t), dotted lines) and estimated (
ˆI(t), dashed-dotted lines) rainfall time-series,15

for daily rainfalls measured at points A (HP), B (Dam) and C (Moira), and compares
them to those of spatial rainfall averages (I(t), solid lines; see Sect. 2.1). The statistics
of spatial rainfall estimates have been calculated by ensemble averaging the results

from 100 realizations of
ˆI , obtained by applying the procedure described in Sects. 3–

5 to point rainfall measurements from each location. Spatial rainfall averages (see20

Sect. 2.1) are used for validation purposes only, and do not enter the analysis at any
step.

One sees that point rainfall measurements (dotted lines) from locations A (HP) and B
(Dam) exhibit lower monthly means and standard deviations relative to those of spatial
rainfall averages (solid lines) (see Figs. 13 and 14), whereas point rainfall measure-25

ments from location C (Moira) slightly overestimate them (see Fig. 15). In addition, the
fraction of dry intervals in point rainfall measurements is, in all cases, higher than that
observed in spatial rainfall averages (for a justification, see Sect. 1).
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Contrary to point rainfall measurements, the estimated rainfalls (dashed-dotted lines)
reproduce well the statistics of spatial rainfall averages at a monthly time scale, inde-
pendently of the location of the raingauge, and the magnitude of the observed devia-
tions between point rainfall measurements and spatial rainfall averages; see Figs. 13–
15. The same is true, also, at an annual level.5

To illustrate this, Fig. 16 shows annual rainfall totals, yearly standard deviations, and
the fraction of dry days in different years, for the same rainfall series used in Fig. 13.
One sees that, contrary to point rainfall measurements where the annual rainfall totals
and yearly standard deviations are significantly underestimated (note that for some
years in the record the observed annual runoff – gray line – is higher than the corre-10

sponding rainfall volume – dotted-line; see also Introduction and Table 1), the estimated
rainfalls match the statistics of spatial rainfall averages for all years in record. Similarly
good results have been obtained, also, when using point rainfall measurements from
locations B (Dam) and C (Moira) (not shown here).

As noted above, the statistical framework alters the fraction of dry days in the15

historical record. To check whether the cross-statistics between rainfall and runoff
are affected significantly by this operation, we calculated for each month the cross-
correlation between daily rainfall and runoff values conditional on wet conditions
(i.e. corr [Q(t), I(t)|I(t)>0]), and the lag-1 autocorrelation of river discharges conditional
on either wet (i.e. corr [Q(t), Q(t−1)|I(t)>0]) or dry (i.e. corr [Q(t), Q(t−1)|I(t)=0])20

conditions. The dotted lines in Fig. 17 correspond to the historical rainfall and runoff
time series from the location of the hydroelectric plant (HP, point A in Fig. 2), the solid
lines to spatial rainfall averages, whereas the dashed lines have been obtained by

ensemble averaging the results from 100 realizations of
ˆI , obtained by applying the

procedure described in Sects. 3-5 to point rainfall measurements. One sees that for25

all months, the corresponding change imposed by the statistical correction is relatively
small and within the range of statistical variability. Similarly good results have been ob-
tained when using point rainfall measurements from locations B (Dam) and C (Moira)
(not shown here).
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7 Discussion, comments and future developments

For many hydrological applications, one needs accurate estimates of spatially averaged
rainfall intensities. In the case of catchments covered by a single raingauge (a frequent
case for many catchments in Greece and other countries in the Mediterranean region),
one approximates spatial rainfall averages using point rainfall measurements. Since the5

marginal and joint statistics of the two processes are different (see Sect. 1), one faces
important problems when calibrating hydrological models, calculating annual water-
budgets and, more importantly, when studying the impacts of climate change on river
basin hydrology, the quality and availability of water resources in space and time, and
the sustainability of the natural environment.10

In this work, we developed a theoretical framework to obtain estimates of spatial rain-
fall averages over a catchment conditional on river discharges at the outlet of the basin
and point rainfall measurements at a single location. This was done by developing a
statistical tool that: (a) identifies and corrects inconsistencies between daily rainfall oc-
currence and amount at the location of the raingauge and the observed flow conditions15

at the outlet of the basin (Sect. 3), (b) uses concepts from multifractal theory to relate
the fraction of wet intervals in point rainfall to that observed in spatial rainfall averages
and, also, account for the shape and size of the basin, the characteristics of rainfall
generating features (i.e. size, lifetime and advection velocity vector), and the location
of the raingauge relative to the centroid of the basin (Sect. 4), and (c) adjusts daily20

rainfall intensities to resolve water budget imbalances at an inter-annual level, caused
by spatial heterogeneities of rainfall due to orographic influences.

In an application study, we used point rainfall records from different locations in
Glafkos river basin and found that the suggested statistical approach efficiently iden-
tifies and resolves rainfall-runoff incompatibilities at a daily level, while respecting the25

seasonal character and clustered nature of rainfall. Although the statistical correction
applies at a daily time scale, the method demonstrates significant skill in reproduc-
ing the statistics of spatial rainfall averages at both monthly and annual time scales,
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independently of the location of the raingauge inside the basin and the magnitude of
the observed deviations between point rainfall measurements and spatial rainfall aver-
ages.

The developed scheme should serve as an important tool for the effective calibration
of rainfall-runoff models in basins covered by a single raingauge and, also, improve5

hydrologic impact assessment at a river basin level and under changing climatic condi-
tions. That said, several important modifications/extensions of the suggested approach
should be implemented and checked.

One concerns ephemeral streams. Glafkos river is a perennial stream with significant
(non-zero) base-flow in all years in record and, hence, the case of zero runoff did10

not explicitly enter the analysis. In the case of ephemeral streams, a way to account
for intermittent discharges is to include an additional category for zero previous-day
runoff (i.e. Q(t−1)=0) in the statistical analysis presented in Sects. 3.1 (see Figs. 3–
5) and 3.2 (see Figs. 6–8).

Another extension concerns large basins with concentrations times tc on the order15

of a day or higher. In our analysis, we conditioned rainfall occurrence and amount
on changes of the river discharge between two sequential days. While this is valid
for small- and medium-sized catchments with concentration times of less than a day
(i.e. the concentration time of Glafkos catchment is on the order of a couple of hours),
when dealing with catchments with concentrations times on the order of a day or higher,20

one should extend the methodology to account for the flow conditions in several previ-
ous days. Alternatively, one can apply the same methodology to the rainfall and runoff
time-series aggregated over a time-window that exceeds the concentration time of the
basin.

Finally, an extension of the suggested approach should be possible for rainfall and25

runoff records with temporal resolution higher than daily. The aforementioned issues
will form the subjects of future communications.
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Appendix A

Simple analytical approximation to Eq. (15) for regularly shaped catchments

To simplify the analysis, one can approximate a regularly shaped catchment by a disc

with diameter Lc =2
√
A/π, where A is the area of the catchment. In the case when

the average lifetime dL of rainfall generating features exceeds their travel-time over the5

basin (i.e. dL >Lc/vad, where vad is the advection velocity; see Sect. 4.1), Eq. (13)
reduces to

L(z) = L(θ) = BΓ = 2
√(

Lc
/

2
)2 − (x sin θ)2, 0 ≤ θ ≤ 2π (A1)

where θ is the direction of storm motion and x=ΦO≤Lc/2 is the distance of the rain-
gauge from the centroid of the basin (i.e. the center of the disk); see Fig. A1.10

Using an indicative advection velocity on the order of 20–30 km h−1 (see Table 7),
Eq. (A1) is valid for small and medium sized catchments in subtropical regions, where
rainfall is dominated by formations with lifetimes, dL, on the order of several hours or
more.

Assuming a uniform distribution for θ and combining Eqs. (A1) and (15) one obtains15

L =
1
π

2π∫
0

√(
Lc
/

2
)2 − (x sin θ)2dθ. (A2)

Based on symmetry arguments for the integrated function, Eq. (A2) can be written as

L =
2Lc

π
Kc

(
4x2
/
L2

c

)
(A3)

where Kc(y)=
π/2∫

0

√
1 − y sin2 θdθ is the complete elliptic integral of the second kind.

For a raingauge located at the circumference of the disc (i.e. the basin divide; x=Lc/2),20
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Eq. (A3) gives L=2Lc/π, whereas for a raingauge located at the centroid of the basin
(i.e. the center of the disk; x=0), L=Lc.
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Table 1. Annual precipitation depths and river discharges per unit area of the basin at the loca-
tion of the hydroelectric plant (HP, point A in Fig. 2) for the period 1 October 1974–30 Septem-
ber 1993.

Hydrological Measured Measured (2)–(3)
year annual annual
(1) precipitation runoff

(mm) (mm)
(2) (3)

74–75 595.0 536.3 58.7
75–76 609.9 686.0 −76.1
76–77 710.7 678.2 32.5
77–78 1097.9 1093.5 4.4
78–79 969.2 1086.9 −117.7
79–80 1096.0 1346.5 −250.5
80–81 1029.7 892.9 136.8
81–82 976.8 1191.0 −214.2
82–83 892.1 691.2 200.9
83–84 874.1 786.2 87.8
84–85 598.1 519.3 78.8
85–86 865.2 916.9 −51.7
86–87 755.6 692.5 63.2
87–88 671.1 571.1 99.9
88–89 572.3 296.7 275.6
89–90 496.3 220.6 275.8
90–91 901.2 630.1 271.1
91–92 409.1 188.7 220.4
92–93 532.5 251.1 281.3
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Table 2. Number of missing values of daily rainfall measurements at station C (Moira).

Period No. of values

start end missing

1 Oct 1976 30 Sep 1977 5
1 Oct 1983 30 Sep 1984 2
1 Oct 1986 30 Sep 1987 152
1 Oct 1987 30 Sep 1988 154
1 Oct 1988 30 Sep 1989 157
1 Oct 1992 30 Sep 1993 25
1 Oct 1993 30 Sep 1994 30

12498

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 12463–12522, 2012

Framework to
estimate spatially
averaged rainfalls

A. Langousis and
V. Kaleris

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. Annual rainfall totals for the observed, corrected and calculated rainfall series.

Annual rainfall totals (mm yr−1)

hydrological Dam HP Moira Moira Spatial
year original (corrected) rainfall

74–75 771.7 595.0 – – –
75–76 762.5 609.9 1184.8 1174.6 1092.2
76–77 646.4 710.7 1071.7 1062.1 979.0
77–78 1163.5 1097.9 1667.5 1656.2 1557.7
78–79 1036.7 969.2 1328.1 1314.4 1258.9
79–80 1221.6 1096.0 1762.8 1746.5 1641.5
80–81 1178.3 1029.7 1709.9 1691.2 1588.6
81–82 1122.6 976.8 1579.0 1572.6 1482.6
82–83 974.2 892.1 1237.4 1229.7 1178.6
83–84 892.5 874.1 1307.7 1295.2 1214.7
84–85 667.3 598.1 917.6 906.9 859.0
85–86 937.9 865.2 1374.6 1361.0 1276.4
86–87 830.5 755.6 1068.9 1060.5 1014.5
87–88 764.3 671.1 987.2 969.8 928.7
88–89 632.0 572.3 670.3 662.9 656.7
89–90 504.7 496.3 718.3 704.2 664.3
90–91 941.0 901.2 1105.5 1086.0 1057.0
91–92 517.0 409.1 618.0 602.7 585.6
92–93 547.7 532.5 919.6 911.3 838.6
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Table 4. Fraction of wet days for the observed, corrected and calculated rainfall series.

Fraction of wet days

hydrological HP Dam Moira Moira Spatial
year original (corrected) rainfall

74–75 0.118 0.148 – – –
75–76 0.200 0.205 0.342 0.258 0.288
76–77 0.184 0.159 0.263 0.208 0.222
77–78 0.260 0.230 0.395 0.301 0.312
78–79 0.233 0.211 0.419 0.268 0.290
79–80 0.263 0.255 0.468 0.299 0.326
80–81 0.230 0.222 0.425 0.268 0.285
81–82 0.225 0.219 0.381 0.279 0.290
82–83 0.197 0.192 0.282 0.205 0.236
83–84 0.230 0.222 0.405 0.266 0.285
84–85 0.170 0.167 0.304 0.216 0.255
85–86 0.214 0.214 0.340 0.266 0.290
86–87 0.148 0.153 0.247 0.203 0.216
87–88 0.173 0.173 0.255 0.184 0.236
88–89 0.129 0.121 0.189 0.151 0.170
89–90 0.090 0.079 0.203 0.137 0.167
90–91 0.197 0.195 0.334 0.222 0.260
91–92 0.063 0.058 0.255 0.162 0.189
92–93 0.126 0.126 0.208 0.153 0.192
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Table 5. Annual discharges, per unit area of the basin, for the original and corrected runoff
series for the period 1 October 1974 to 30 September 2010.

Annual discharge (mm yr−1)

hydrological measured corrected hydrological measured corrected
year year

74–75 533.5 536.3 92–93 250.6 251.1
75–76 685.6 686.0 93–94 438.5 439.8
76–77 674.5 678.2 94–95 486.9 491.4
77–78 1072.9 1093.5 95–96 797.8 798.3
78–79 1084.9 1086.9 96–97 785.8 788.8
79–80 1346.1 1346.5 97–98 579.1 582.4
80–81 881.1 892.9 98–99 801.7 804.5
81–82 1185.6 1191.0 99–00 622.2 625.2
82–83 691.1 691.2 00–01 516.2 517.0
83–84 786.0 786.2 01–02 581.4 582.0
84–85 518.1 519.3 02–03 799.8 870.1
85–86 909.4 916.9 03–04 495.7 496.2
86–87 691.7 692.5 04–05 527.7 529.9
87–88 570.8 571.1 05–06 722.1 722.2
88–89 282.8 296.7 06–07 285.8 293.8
89–90 216.9 220.6 07–08 313.5 324.4
90–91 628.4 630.1 08–09 652.7 659.5
91–92 183.6 188.7 09–10 674.3 675.8
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Table 6. Mean annual temperatures at Glafkos catchment (mean elevation: 1060 m a.m.s.l.),
for the period 1 October 1974 to 30 September 1993.

hydrological Mean annual
year temperature

(◦C)

74–75 9.83
75–76 9.73
76–77 10.60
77–78 9.95
78–79 10.43
79–80 9.53
80–81 9.98
81–82 9.86
82–83 10.33
83–84 10.10
84–85 10.93
85–86 11.04
86–87 10.51
87–88 11.37
88–89 10.63
89–90 11.01
90–91 9.83
91–92 9.35
92–93 10.69
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Table 7. Categories of precipitation areas and their characteristics; adapted from Lan-
gousis (2005).

Type Area, Amax linear Lifetime, dl Advection
dimension, Lmax velocity, vad

small areas ∼10 km2 3 km <30 min

30–50 km h−1
small 100–400 km2 10–20 km ∼1 h
mesoscale
areas

large 103–104 km2 30–100 km several hours

20–40 km h−1

mesoscale
areas

synoptic >104 km2 >100 km ≥1 day
scale areas
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Table 8. Estimates of the average lifetime of rainfall features, dl, the average sampling length,
L (see Eqs. 15 and A3), and the resolution r (see Eq. 12), for locations A (HP), B (Dam) and C
(Moira); see Fig. 2. The last row of the table shows estimates of the inter-annual multiplicative
correction factor obtained from Eq. (21).

Variable HP Dam Moira
(181 m a.m.s.l.) (340 m a.m.s.l.) (840 m a.m.s.l.)

dl 1.96 days 1.97 days 2.06 days
Lc 9.14 km 9.14 km 9.14 km

L 5.82 km 5.82 km 9.14 km
r 2.47 2.47 1
h 1.16 1.08 0.86
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Figure 1: Measured precipitation depths and daily river discharges per unit area of the basin at 1056 
the location of the hydroelectric plant (HP, point A in Figure 2) for the period 1st Oct. 1990 – 1057 
30th Sep. 1992. Vertical arrows indicate abrupt changes of the river discharge in the absence 1058 
of rain. 1059 
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Fig. 1. Measured precipitation depths and daily river discharges per unit area of the basin at
the location of the hydroelectric plant (HP, point A in Fig. 2) for the period 1 October 1990–
30 September 1992. Vertical arrows indicate abrupt changes of the river discharge in the ab-
sence of rain.
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Figure 2: The mountainous and coastal-aquifer parts of the Glafkos catchment; see Section 2 1083 
for details. 1084 
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Graphical scale

Fig. 2. The mountainous and coastal-aquifer parts of the Glafkos catchment; see Sect. 2 for
details.

12506

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 12463–12522, 2012

Framework to
estimate spatially
averaged rainfalls

A. Langousis and
V. Kaleris

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 43

 1085 
 1086 
 1087 
 1088 
 1089 
 1090 
 1091 
 1092 
 1093 
 1094 
 1095 
 1096 
 1097 
 1098 
 1099 
 1100 
 1101 
 1102 
 1103 
 1104 
 1105 
 1106 
 1107 
 1108 
 1109 
Figure 3: (a, b) Scatter plots of the empirical ratios [ω(t) > 0| I(t) = 0], calculated using daily 1110 
discharges and rainfall data from the hydroelectric plant (HP; point A in Figure 2) for the 1111 
period 1st Oct. 1974 – 30th Sep. 1993 (i.e. 19 years, 1001 points), and split into 2 equally 1112 
populated categories with respect to the previous-day river discharge Q(t-1). Empty circles 1113 
indicate values of ω that the null hypothesis of no-rain over the catchment is rejected at the 1114 
5% significance level; see main text. (c, d) Empirical histograms of the ratios (dots) in (a) and 1115 
(b) fitted by a gamma (solid lines) and lognormal (dashed lines) distribution models. 1116 
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Fig. 3. (a, b) Scatter plots of the empirical ratios [ω(t)>0|I(t)=0], calculated using daily dis-
charges and rainfall data from the hydroelectric plant (HP; point A in Fig. 2) for the period
1 October 1974–30 September 1993 (i.e. 19 yr, 1001 points), and split into 2 equally populated
categories with respect to the previous-day river discharge Q(t−1). Empty circles indicate
values of ω that the null hypothesis of no-rain over the catchment is rejected at the 5 % signif-
icance level; see main text. (c, d) Empirical histograms of the ratios (dots) in (a) and (b) fitted
by a gamma (solid lines) and lognormal (dashed lines) distribution models.
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Figure 4: Same as Figure 3 using daily rainfalls from the location of the dam (point B in 1142 
Figure 2) for the period 1st Oct. 1974 – 30th Sep. 1993 (i.e. 19 years, 1016 points).  1143 
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Fig. 4. Same as Fig. 3 using daily rainfalls from the location of the dam (point B in Fig. 2) for
the period 1 October 1974–30 September 1993 (i.e. 19 yr, 1016 points).

12508

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/12463/2012/hessd-9-12463-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 12463–12522, 2012

Framework to
estimate spatially
averaged rainfalls

A. Langousis and
V. Kaleris

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 45

 1144 
 1145 
 1146 
 1147 
 1148 
 1149 
 1150 
 1151 
 1152 
 1153 
 1154 
 1155 
 1156 
 1157 
 1158 
 1159 
 1160 
 1161 
 1162 
 1163 
 1164 
 1165 
 1166 
 1167 
 1168 
Figure 5: Same as Figure 4 using daily rainfalls from the location of Moira (point C in Figure 1169 
2) for the period 1st Oct. 1975 – 30th Sep. 1993 (i.e. 18 years, 880 points).  1170 
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Fig. 5. Same as Fig. 4 using daily rainfalls from the location of Moira (point C in Fig. 2) for the
period 1 October 1975–30 September 1993 (i.e. 18 yr, 880 points).
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Figure 6: (a-d) Plots of logarithmically transformed daily rainfall intensities on wet days, 1197 
ln[I(t) > 0], as a function of the observed change of the river discharge ln[Q(t)-Q(t-1) > 0], for 1198 
4 (four) equally populated categories of the previous-day river discharge Q(t-1). The analysis 1199 
has been conducted using daily discharges and rainfall data from the location of the 1200 
hydroelectric plant (HP; point A in Figure 2) for the period 1st Oct. 1974 – 30th Sep. 1993 (i.e. 1201 
19 years, 656 points). Estimates of the parameters aj and bj (j = 1, …,4) in equation (4) have 1202 
been obtained by least square fitting the empirical values. Empty circles correspond to outliers 1203 
of the log-log linear regression at 5% significance level. (e-h) Empirical histograms of the 1204 
residuals of the log-log linear regression in (a-d) fitted by a normal distribution model with 1205 
zero mean and variance (σj)2 = Var[Vj]; see equation (4).  1206 
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Fig. 6. (a–d) Plots of logarithmically transformed daily rainfall intensities on wet days,
ln [I(t)>0], as a function of the observed change of the river discharge ln [Q(t)−Q(t−1)>0],
for 4 (four) equally populated categories of the previous-day river discharge Q(t−1). The anal-
ysis has been conducted using daily discharges and rainfall data from the location of the hy-
droelectric plant (HP; point A in Fig. 2) for the period 1 October 1974–30 September 1993
(i.e. 19 yr, 656 points). Estimates of the parameters aj and bj (j =1, ..., 4) in Eq. (4) have been
obtained by least square fitting the empirical values. Empty circles correspond to outliers of the
log-log linear regression at 5 % significance level. (e–h) Empirical histograms of the residuals
of the log-log linear regression in (a–d) fitted by a normal distribution model with zero mean
and variance (σj )

2 =Var[Vj ]; see Eq. (4).
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Figure 7: Same as Figure 6 using daily rainfalls from the location of the dam (point B in 1233 
Figure 2) for the period 1st Oct. 1974 – 30th Sep. 1993 (i.e. 19 years, 641 points).  1234 
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Fig. 7. Same as Fig. 6 using daily rainfalls from the location of the dam (point B in Fig. 2) for
the period 1 October 1974–30 September 1993 (i.e. 19 yr, 641 points).
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Figure 8: Same as Figure 7 using daily rainfalls from Moira station (point C in Figure 2) for 1281 
the period 1st Oct. 1975 – 30th Sep. 1993 (i.e. 18 years, 695 points). 1282 
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Fig. 8. Same as Fig. 7 using daily rainfalls from Moira station (point C in Fig. 2) for the period
1 October 1975–30 Septamber 1993 (i.e. 18 yr, 695 points).
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Figure 9: Plots of the parameters aj and bj (j = 1, …, 4) in equation (4), and the error standard 1329 
deviation σj = Var[Vj]0.5 as functions of the previous-day river discharge Q(t-1), for the rainfall 1330 
datasets used in Figures 6 - 8. Lines correspond to least squares (LS) fits to the empirical 1331 
values. 1332 
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Fig. 9. Plots of the parameters aj and bj (j =1, ..., 4) in Eq. (4), and the error standard deviation

σj =Var[Vj ]
0.5 as functions of the previous-day river discharge Q(t−1), for the rainfall datasets

used in Figs. 6–8. Lines correspond to least squares (LS) fits to the empirical values.
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Figure 10: Schematic illustration of the variables in equation (13), for a storm moving over a 1355 
catchment at direction θ; see main text for details. 1356 
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Fig. 10. Schematic illustration of the variables in Eq. (13), for a storm moving over a catchment
at direction θ; see main text for details.
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Figure 11: Correction factor w for the actual evaportranspiration ETact calculated for flat 1375 
catchments, as a function of the mean slope of the basin and its orientation (N: North, S: 1376 
South, E: East; W: West); adapted from DVWK (1996) 1377 
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Fig. 11. Correction factor w for the actual evaportranspiration ETact calculated for flat catch-
ments, as a function of the mean slope of the basin and its orientation (N: North, S: South, E:
East; W: West); adapted from DVWK (1996).
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Figure 12: Observed (dots) and simulated (empty circles, triangles and diamonds) daily 1408 
rainfall intensities at the location of the hydroelectric plant (HP, point A in Figure 2) for the 1409 
period 1st Oct. 1990 – 30th Sep. 1992 (same period as in Figure 1); see main text for details. 1410 
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Fig. 12. Observed (dots) and simulated (empty circles, triangles and diamonds) daily rainfall
intensities at the location of the hydroelectric plant (HP, point A in Fig. 2) for the period 1 Octo-
ber 1990–30 September 1992 (same period as in Fig. 1); see main text for details.
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Figure 13: Monthly means (a), standard deviations (b) and fraction of dry days (c) of the 1433 

measured [I(t); dotted lines] and simulated [Ī̂(t); dashed-dotted lines] rainfall time-series, 1434 
obtained using daily rainfalls from the location of the hydroelectric plant (HP, point A in 1435 
Figure 2). The aforementioned statistics are compared with those of spatial rainfall averages 1436 
[Ī(t); solid lines] over the catchment.  1437 
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Fig. 13. Monthly means (a), standard deviations (b) and fraction of dry days (c) of the mea-

sured [I(t); dotted lines] and simulated (
ˆI(t); dashed-dotted lines) rainfall time-series, obtained

using daily rainfalls from the location of the hydroelectric plant (HP, point A in Fig. 2). The afore-
mentioned statistics are compared with those of spatial rainfall averages (I(t)); solid lines] over
the catchment.
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Figure 14: Same as Figure 13, for the case when using point rainfall measurements from the 1460 
location of the Dam (point B in Figure 2). 1461 
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Fig. 14. Same as Fig. 13, for the case when using point rainfall measurements from the location
of the Dam (point B in Fig. 2).
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Figure 15: Same as Figure 14, for the case when using point rainfall measurements from the 1484 
location of Moira (point C in Figure 2). 1485 
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Fig. 15. Same as Fig. 14, for the case when using point rainfall measurements from the location
of Moira (point C in Fig. 2).
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Figure 16: Annual rainfall totals (a), yearly standard deviations (b), and fraction of dry days 1507 

(c) of the measured [I(t); dotted lines] and simulated [Ī̂(t); dashed-dotted lines] rainfall time-1508 
series, obtained using daily rainfalls from the location of the hydroelectric plant (HP, point A 1509 
in Figure 2). The aforementioned quantities are compared with those of spatial rainfall 1510 
averages over the catchment [Ī(t); solid lines]. In (a), the annual discharge per unit area of the 1511 
basin is shown in gray.  1512 
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Fig. 16. Annual rainfall totals (a), yearly standard deviations (b), and fraction of dry days (c) of

the measured (I(t); dotted lines) and simulated (
ˆI(t); dashed-dotted lines) rainfall time-series,

obtained using daily rainfalls from the location of the hydroelectric plant (HP, point A in Fig. 2).
The aforementioned quantities are compared with those of spatial rainfall averages over the
catchment (I(t); solid lines). In (a), the annual discharge per unit area of the basin is shown in
gray.
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Figure 17: (a) lag-0 cross-correlation between daily rainfall and runoff values conditional on 1538 
wet conditions {i.e. corr[Q(t), I(t)| I(t) > 0]}, (b) lag-1 autocorrelation of daily river discharges 1539 
conditional on wet conditions {i.e. corr[Q(t), Q(t-1)| I(t) > 0]}, (c) same as (b) but for the case 1540 
of dry conditions {i.e. corr[Q(t), Q(t-1)| I(t) = 0]}. Dotted lines have been obtained using the 1541 
historical rainfall and runoff time series at the location of the hydroelectric plant (HP, point A 1542 
in Figure 2), solid lines using the spatially averaged rainfall intensities, and dashed-dotted 1543 
lines have been calculated by ensemble averaging the results from 100 realizations of spatial 1544 
rainfall estimates using the procedure described in Sections 3-5. 1545 
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Fig. 17. (a) lag-0 cross-correlation between daily rainfall and runoff values conditional on wet
conditions (i.e. corr[Q(t), I(t)|I(t)>0]), (b) lag-1 autocorrelation of daily river discharges condi-
tional on wet conditions (i.e. corr[Q(t), Q(t−1)|I(t)>0]), (c) same as (b) but for the case of dry
conditions (i.e. corr[Q(t), Q(t−1)|I(t)=0]). Dotted lines have been obtained using the historical
rainfall and runoff time series at the location of the hydroelectric plant (HP, point A in Fig. 2),
solid lines using the spatially averaged rainfall intensities, and dashed-dotted lines have been
calculated by ensemble averaging the results from 100 realizations of spatial rainfall estimates
using the procedure described in Sects. 3–5.
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Figure A.1: Schematic illustration of a regularly shaped catchment approximated by a disc 1562 
with characteristic linear dimension (diameter) Lc. The raingauge is located at point Φ. 1563 

 Γ 
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Fig. A1. Schematic illustration of a regularly shaped catchment approximated by a disc with
characteristic linear dimension (diameter) Lc. The raingauge is located at point Φ.
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