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This supplementary material consists of a list of symbols and variables used in the 

paper and in the following 21 appendices. Appendix S1 discusses data used or referred to in 
the appendices. Appendix S2 addresses the computation of some common meteorological 
variables and Appendix S3 outlines the computation of net solar radiation. The application of 
the evaporation models, Penman and Penman-Monteith, is discussed in Appendices S4 and 
S5. Computation of Class-A pan evaporation by the PenPan model is outlined in Appendix 
S6. Actual evaporation estimates using Morton, and Advection-Aridity and like models are 
discussed in Appendices S7 and S8. Appendix S9 describes the computation of potential 
evaporation by several other models. Two methods to estimate deep lake evaporation where 
advected energy and heat storage should be accounted for are outlined in Appendix S10 and 
Appendix S11 describes the application of four methods to estimate shallow lake 
evaporation. The next four appendices deal with evaporation from lakes covered by 
vegetation (Appendix S12), estimating potential evaporation in rainfall-runoff modelling 
(Appendix S13), estimating evaporation from intercepted rainfall (Appendix S14) and 
estimating bare soil evaporation (Appendix S15). In Appendix S16 there is a discussion of 
Class-A pan evaporation equations and pan coefficients. Appendix S17 includes a summary 
of published evaporation estimates. Appendix S18 is a summary of a comparison of 
evaporation estimates by 14 models for six sites across Australia. Detailed worked examples 
for most models are carried out in Appendix S19. Appendix S20 is a Fortran 90 listing of 
Morton’s WREVAP program and Appendix S21 is a worked example of Morton’s CRAE, 
CRWE and CRLE models within the WREVAP framework. 
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List of variables and symbols in the paper and supplementary 
appendices excluding Appendices S20 and S21 

Variable/symbol Description Units* 

Symbols 

AA Advection-Aridity model symbol 

AWBM Rainfall-runoff model symbol 

AWS Automatic Weather Station symbol 

BC Blaney-Criddle evapotranspiration model symbol 

BS Brutsaert-Strickler evaporation model symbol 

CR Complementary Relationship symbol 

CRAE Complementary Relationship Areal Evapotranspiration symbol 

CRLE Complementary Relationship Lake Evaporation symbol 

CRWE Complementary Relationship Wet-surface Evaporation symbol 

𝐸𝑇  Evapotranspiration symbol 

FAO56 RC FAO-56 Reference Crop model symbol 

GG Granger-Gray evaporation model symbol 

HS Hargreaves-Samani evapotranspiration model symbol 

M Month symbol 

Mo Morton evaporation model symbol 

Ma Makkink evaporation equation symbol 

modH Modified Hargreaves evaporation model symbol 

PM Penman-Monteith evapotranspiration model symbol 

𝑃𝐸𝑇  Potential evapotranspiration symbol 

PT Priestley-Taylor evaporation model symbol 

P48 Penman equation with 1948 wind function symbol 

P56 Penman equation with 1956 wind function symbol 

SILO An enhanced Australian climate database symbol 

SW Shuttleworth-Wallace model symbol 

SHE Système Hydrologique Européen rainfall-runoff model symbol 

SIMHYD Rainfall-runoff model symbol 

SWAT Soil and Water Assessment Tool symbol 

Th Thornthwaite evapotranspiration model symbol 

TIN Triangular irregular networks symbol 
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Tu Turc evaporation model symbol 

WREVAP Program combining three Morton models CRAE, CRWE and 
CRLE symbol 

 

Variables 

𝐴  Evaporating area m2 

𝐴𝐿 Lake area (in Kohler and Parmele (1967) procedure) km2, (m2)   

𝐴𝑊 Net water advected energy during ∆𝑡 (net inflow from inflows 
and outflows of water) mm day-1 

𝐴𝑒 Available energy (sensible and latent heat) above canopy MJ m-2 day-1 
𝐴𝑝 Gradient in Equation (S13.1) undefined 
𝐴𝑤  Net water advected energy during ∆𝑡 mm day-1 

𝐴𝑠  Surface area of the lake m2 

𝐴𝑠𝑠 Available energy at sub-strate MJ m-2 day-1 

𝐴𝑖+1 ,𝐴𝑖  Area of adjacent layers m2 

𝑎  Coefficient  undefined 

𝑎𝑝  Constant in PenPan equation dimensionless 

𝑎𝑠 Constant for Ǻngström –Prescott formula dimensionless 

𝑎𝑇ℎ  Exponent in Thornthwaite 1948 procedure undefined 

𝑎𝑜 Constant dimensionless 

𝑏  Coefficient or slope of the regression between two variables undefined 

𝑏0 Constant , or constant in CRAE and CRWE models dimensionless 

𝑏𝑠 Constant for Ǻngström –Prescott formula dimensionless 

𝑏𝑣𝑎𝑟 Working variable undefined 

𝑏1, 𝑏2 Empirical coefficients for Morton’s procedure W m-2 

𝐵 Bowen Ratio dimensionless 

𝐵𝑝 Intercept in Equation (S13.1) undefined 

C Constant = 13 m m 

𝐶𝐻𝑆 Hargreaves-Samani working coefficient undefined 

𝐶𝑜  Cloud cover  oktas 

𝐶𝑐𝑎 , 𝐶𝑠𝑢 Working variables undefined 

𝐶𝑟𝑒𝑡  Amount of water retained on the canopy mm 

𝑐  Parameter in linear Budyko-type relationship undefined 

𝑐𝑎 Specific heat of air MJ kg-1°C-1 
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𝐶𝑓  Fraction of cloud cover dimensionless 

𝑐𝑜 Constant dimensionless 

𝑐𝑠 Volumetric heat capacity of soil MJ m-3 °C-1 

𝐶𝑢 Wind function coefficient undefined 

𝑐𝑤 Specific heat of water MJ kg-1 °C-1 

𝐶𝐷 Number of tenths of the sky covered by cloud dimensionless 

𝐶𝑎𝑡𝑚 Atmospheric conductance m s-1 

𝐶𝑐𝑎𝑛 Canopy conductance m s-1 

𝐶𝑒𝑚𝑝 Empirical coefficient undefined 

𝐷  Day or dimensionless relative drying power dimensionless 

𝐷𝑜𝑌 Day of Year dimensionless 

𝐷𝑝  Dimensionless relative drying power dimensionless 

𝑑 Zero plane displacement height m 

𝑑𝑎𝑦𝑚𝑜𝑛 Number of days in month day 

𝑑𝑟 Relative distance between the earth and the sun undefined 

𝑑𝑠 Effective soil depth m 

𝑑𝑜 Constant dimensionless 

𝐸 Surface evaporation mm day-1 

𝐸𝑙𝑒𝑣 Elevation above sea level m 

𝐸𝐴𝑐𝑡 Actual evaporation rate mm day-1 

𝐸𝐸𝑄 Equilibrium evaporation rate mm day-1 
𝐸𝑀𝑎𝑘  Makkink potential evaporation mm day-1 

𝐸𝑃𝑒𝑛𝑃𝑎𝑛 Modelled Class-A (unscreened) pan evaporation mm day-1 

𝐸𝑖  Lake evaporation on day 𝑖 mm day-1 

𝐸𝑝𝑎 Working variable undefined 

EP2, EP3, EP5 Various definitions of potential evaporation undefined 

𝐸𝑆𝑊 Shuttleworth-Wallace combined evaporation from vegetation 
and soil mm day-1 

𝐸𝑃𝑇(𝑇𝑒) Wet-environment evaporation estimated by Priestley-Taylor 
at 𝑇𝑒 mm day-1 

𝐸𝑃𝑒𝑛,𝑗 Penman estimate of evaporation for specific period mm/unit time 

𝐸𝐷𝐿 Evaporation from a deep lake mm day-1 

𝐸𝐿 Lake evaporation large enough to be unaffected by the upwind 
transition mm day-1 

𝐸𝑀𝑐𝐽  Evaporation from a water body using McJannet et al (2008a) mm day-1 
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𝐸𝑃𝑇 Priestley-Taylor potential evaporation mm day-1 

𝐸𝑃𝑎𝑛,𝑗 Monthly (daily) Class-A pan data in month (day) j mm/unit time 

𝐸𝑃𝑎𝑛 Daily Class-A pan evaporation mm day-1 

𝐸𝑃𝑒𝑛 Penman potential evaporation mm day-1 

𝐸𝑃𝑒𝑛𝑂𝑊  Penman open-surface water evaporation mm day-1 
𝐸𝑃𝑜𝑡 
 

Potential evaporation (in the land environment) or pan-size wet 
surface evaporation mm day-1 

𝐸𝑆𝐿 
 Shallow lake evaporation mm month-1 

𝐸𝑠 Evaporation component due to net heating mm day-1 

𝐸𝑐𝑎𝑛   Transpiration from canopy mm day-1 

𝐸𝑠𝑜𝑖𝑙  Soil evaporation mm day-1 

𝐸𝑤𝑎𝑡𝑒𝑟  Evaporation from standing water  mm day-1 

𝐸�𝑇𝑟𝑎𝑛𝑠  Mean transpiration mm day-1 

𝐸�𝐼𝑛𝑡𝑒𝑟  Mean interception evaporation mm day-1 

𝐸𝑤𝑒𝑡𝑙𝑎𝑛𝑑 Evapotranspiration from the wetland mm day-1 

𝐸�𝑝𝑜𝑡  Mean annual catchment potential evapotranspiration mm year-1 

𝐸�𝑆𝑜𝑖𝑙  Mean soil evaporation mm day-1 

𝐸𝐿,𝑑 Daily estimate of lake evaporation from Webb (1966) equation cm day-1 

𝐸′𝑝𝑎𝑛  Daily Class-A pan evaporation from Webb (1966) equation cm day-1 

𝐸𝑃𝑒𝑛𝑂𝑊′   Open-water evaporation based on modified Penman equation 
incorporating aerodynamic resistance mm day-1 

𝐸1𝑠𝑡 , 𝐸2𝑛𝑑 Radiation and aerodynamic terms respectively in the PM 
model mm day-1 

𝐸�𝑇ℎ,𝑗 
Thornthwaite (1948) estimate of mean monthly PET for month  
𝑗 mm month-1 

𝐸𝑆𝐿𝑥 Average lake evaporation for a crosswind width of x m mm day-1 

𝐸�𝑃𝑒𝑛𝑚𝑎𝑛 Average daily stage 1 evaporation which is assumed to be at or 
near the rate of Penman evaporation mm day-1 

𝐸�𝐴𝑐𝑡 Mean annual catchment evaporation mm year-1 

𝐸𝑇𝐴𝑐𝑡 Actual daily evaporation mm day-1 

𝐸𝑇𝑐  
Well-watered crop evapotranspiration in a semi-arid windy 
environment mm day-1 

𝐸𝑇𝐴𝑐𝑡𝐵𝑆  Actual evapotranspiration estimated by Brutsaert-Strickler 
equation mm day-1 

𝐸𝑇𝐴𝑐𝑡𝐺𝐺  Granger-Gray actual evapotranspiration mm day-1 

𝐸𝑇𝐴𝑐𝑡
𝑆𝐽   Actual evapotranspiration based on the Szilagyi-Jozsa 

equation mm day-1 

𝐸𝑇𝐵𝐶 Evaporation based on the Blaney-Criddle method without mm day-1 
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height adjustment 

𝐸𝑇𝐵𝐶𝐻  Evaporation based on the Blaney-Criddle method with height 
adjustment mm day-1 

𝐸𝑇𝐴𝑐𝑡𝑀𝑜 Morton’s estimate of actual areal evapotranspiration mm day-1 
𝐸𝑇𝑃𝑜𝑡𝑀𝑜  Morton’s estimate of potential evapotranspiration  mm day-1 
𝐸𝑇𝑊𝑒𝑡

 𝑀𝑜   Morton’s estimate of wet-environmental areal 
evapotranspiration  mm day-1 

𝐸𝑇𝐻𝑆 Hargreaves-Samani reference crop evapotranspiration mm day-1 

𝐸𝑇𝐻𝑎𝑟𝑔,𝑗 
Modified Hargreaves monthly potential evapotranspiration 
(month j) mm month-1 

𝐸𝑇𝑃 Potential evaporation of the land environment mm day-1 

𝐸𝑇𝑃𝐸𝑇  Daily potential evaporation mm day-1 

𝐸𝑇𝑃𝑀 Penman-Monteith potential evapotranspiration mm day-1 

𝐸𝑇𝑃𝑜𝑡 Potential evapotranspiration mm day-1 

𝐸𝑇𝑅𝐶 Reference crop evapotranspiration mm day-1 

𝐸𝑇𝑅𝐶𝑠ℎ Reference crop evapotranspiration for short grass (0.12 m 
high) mm day-1 

𝐸𝑇𝑅𝐶𝑡𝑎 Reference crop evapotranspiration for tall grass (0.5 m high) mm day-1 

𝐸𝑇𝑇𝑢𝑟𝑐 Turc’s reference crop evapotranspiration mm day-1 

𝐸𝑇𝑊𝑒𝑡 Wet environment areal evapotranspiration mm day-1 

𝐸𝑇𝑒𝑞𝑃𝑀 Daily equivalent Penman-Monteith potential 
evapotranspiration mm day-1 

𝐸𝑇����𝐴𝑐𝑡 Mean annual catchment evapotranspiration mm year-1 

𝐸𝑎 
Aerodynamic component of Penman’s equation; regional 
drying power of atmosphere; evaporative component due to 
wind 

mm day-1 

𝐸𝐿𝑎𝑟𝑒𝑎  Estimate of open-surface water evaporation as a function of 
lake area mm day-1 

𝐸𝑓𝑤,𝑗 Monthly (daily) open water evaporation in month (day) 𝑗 mm/unit time 

𝐸𝑓𝑤 Daily open water evaporation mm day-1 

𝐸𝑖𝑐 Evaporation from an irrigation channel mm day-1 

𝐸𝑏𝑠𝑜𝑖𝑙(𝑡) Cumulative bare soil evaporation up to time t mm 

𝐸𝑠𝑡𝑎𝑔𝑒 1 Cumulative  stage 1 bare soil evaporation mm 

𝑒  Turc-Pike parameter dimensionless 

𝑒0, 𝑒1, … , 𝑒4 Coefficients in Blaney-Criddle model undefined 

𝐹 Upwind grass fetch m 

𝐹𝐸𝑇 Fetch or length of the identified surface m 

𝐹100 Working variable undefined 
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𝑓  Fu-Zhang parameter dimensionless 

𝑓(φ)  Aridity function undefined 

𝑓(𝑢) Wind speed function units of 𝑢  

𝑓(𝑢2)  Wind speed function at 𝑢2  units of 𝑢2 

𝑓(𝑢)48 1948 Penman wind function units of 𝑢  

𝑓(𝑢)56 1956 Penman wind function units of 𝑢  

𝑓(𝑢)𝐿𝐼𝑁 Linacre Penman wind function units of 𝑢  

𝑓𝑃𝑎𝑛(𝑢) Wind function for Class-A pan units of 𝑢 

𝑓𝑑𝑖𝑟 Fraction of 𝑅𝑠 that is direct dimensionless 

𝑓𝑣 Vapour transfer coefficient in Morton’s procedure W m-2 mbar-1 

𝑓𝑍 Constant in Morton’s procedure W m-2 mbar-1 

𝐺 Soil heat flux MJ m-2 day-1 

𝐺𝐿 Monthly solar and waterborne energy input into lake for 
Morton’s procedure W m-2 

𝐺𝑤  Daily change in heat storage of water body MJ m-2 day-1 

𝐺𝑤(𝑡)   𝑑𝐻(𝑡)/𝑑𝑡  MJ m-2 day-1 

𝐺𝐿𝐵 Available solar and waterborne heat energy at the beginning of 
the month for Morton’s procedure W m-2 

𝐺𝐿𝐸 Available solar and waterborne heat energy at the end of the 
month for Morton’s procedure W m-2 

𝐺𝑊
[𝑡], 𝐺𝑊

[𝑡+1] Value of 𝐺𝑊0  computed [𝑡] and [𝑡 + 1] months previously for 
Morton’s procedure W m-2 

𝐺𝑊0  Solar and waterborne heat input for Morton’s procedure W m-2 

𝐺𝑊𝑖𝑛 Groundwater inflows to lake mm day-1 

𝐺𝑊𝑜𝑢𝑡 Groundwater outflows from lake mm day-1 

𝐺𝑊𝑡  Delayed energy input into the lake for Morton’s procedure W m-2 
𝐺𝑔 Dimensionless relative evaporation parameter dimensionless 

�̅�  Mean heat conductance into the soil MJ m-2 day-1 

𝐺𝑗 Coefficient in Equation (S16.4) undefined 

𝐺𝑠𝑐 Solar constant MJ m-2 min-1 

�̅�𝐷𝑆 Mean annual deep seepage mm year-1 

𝑔  Working variable undefined 

𝐻  Sensible heat flux MJ m-2 day-1 

𝐻�  Mean sensible heat flux MJ m-2 day-1 

𝐻(𝑡)  Total heat energy content of the lake per unit area of the lake 
surface at time 𝑡 MJ m-2 
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ℎ Mean height of the roughness obstacles (including crop)  m 

ℎ𝑤 Water depth m 

ℎ𝑖, ℎ𝑖+1  Depth of water in lake on day 𝑖 and day 𝑖 + 1 respectively m 

ℎ� Mean lake depth m 

ℎ𝑟𝑑𝑎𝑦�������� Mean monthly daylight hours in month hour 

𝑖 Monthly heat index undefined 

i, i-1 Index for days undefined 

𝐼 Annual heat index undefined 

𝐼𝑗 Intercept in Equation (S16.4) undefined 

j,  j-1 Index for months undefined 

𝐾𝑐  Crop coefficient dimensionless 

𝐾𝐸 Coefficient that represents the efficiency of the vertical 
transport of water vapour m day2 kg-1 

𝐾𝑢𝑠 Unsaturated hydraulic conductivity mm day-1 

𝐾𝑗 Monthly (daily) Class-A pan coefficient dimensionless 

𝐾𝑟𝑎𝑡𝑖𝑜  Ratio of incoming solar radiation to clear sky radiation dimensionless 

𝐾𝑃𝑎𝑛 Class-A pan coefficient dimensionless 

𝑘 von Kármán’s constant dimensionless 

𝑙𝑎𝑡 Latitude radians 

𝐿𝐴𝐼 Leaf area index m2 m-2 

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒 Active (sunlit) leaf area index m2 m-2 

𝑚  Number of horizontal layers dimensionless 

𝑀  Month of the year dimensionless 

𝑁 Total day length hour 

𝑛 Duration of sunshine hours in a day hour 

𝑃𝑑 Daily precipitation mm day-1 

𝑃𝑀𝑐𝑎, 𝑃𝑀𝑠𝑢 Evaporation from respectively a closed canopy and bare 
substrate mm day-1 

𝑃� Mean rainfall or mean annual rainfall mm day-1, 
mm year-1 

𝑃𝑖+1  Rainfall on day 𝑖 + 1 mm day-1 

𝑃𝑗 Monthly precipitation in month  j mm month-1 

𝑃𝑟𝑎𝑑 Pan radiation factor dimensionless 

𝑝 Atmospheric pressure (for Morton’s procedure) kPa (mbar) 

𝑝𝑠 Sea-level atmospheric pressure mbar 
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𝑝𝑦 Percentage of actual daytime hours for the specific day 
compared to the day-light hours for the entire year % 

𝑄𝑡 Heat flux increase in stored energy MJ m-2 day-1 

𝑄𝑣 Heat flux advected into the water body MJ m-2 day-1 

𝑄� Mean runoff or mean annual runoff mm day-1, 
mm year-1 

𝑄∗  Net radiation MJ m-2 day-1 

𝑄𝑤𝑏∗   Net radiation at wet-bulb temperature MJ m-2 day-1 

𝑅𝐻 Average monthly relative humidity % 

𝑅� Mean net radiation received MJ m-2 day-1 

REW Readily evaporable water mm 

𝑅𝑖𝑙  Incoming longwave radiation MJ m-2 day-1 
𝑅𝑜𝑙  Outgoing longwave radiation MJ m-2 day-1 
𝑅𝐻𝑚𝑎𝑥 Maximum daily relative humidity % 

𝑅𝐻𝑚𝑒𝑎𝑛 Mean daily relative humidity % 

𝑅𝐻𝑚𝑖𝑛 Minimum daily relative humidity % 

𝑅𝑎 Extraterrestrial radiation MJ m-2 day-1 

𝑅𝑁𝑃𝑎𝑛 Net radiation at Class-A pan MJ m-2 day-1 

𝑅𝑆𝑃𝑎𝑛 Total shortwave irradiance of pan MJ m-2 day-1 

𝑅𝑖𝑙  Incoming longwave radiation MJ m-2 day-1 

𝑅𝑛 Net radiation at evaporating  surface at air temperature (for 
Morton’s procedure) 

MJ m-2 day-1 
(W m-2) 

𝑅𝑛𝑒 Net radiation for the soil-plant surface at 𝑇𝑒 for Morton’s 
procedure W m-2 

𝑅𝑛𝑙 Net longwave radiation MJ m-2 day-1 

𝑅𝑛𝑠 Net incoming shortwave radiation MJ m-2 day-1 

𝑅𝑛𝑤  Net radiation at water surface MJ m-2 day-1 

𝑅𝑜𝑙  Outgoing longwave radiation MJ m-2 day-1 

𝑅𝑠 Measured or estimated incoming solar radiation MJ m-2 day-1 

𝑅𝑠𝑜 Clear sky radiation MJ m-2 day-1 

𝑅𝑛𝑐𝑎𝑛 Net radiation to canopy MJ m-2 day-1 

𝑅𝑛𝑠𝑜𝑖𝑙 Net radiation to soil MJ m-2 day-1 

𝑅𝑛𝑤𝑎𝑡𝑒𝑟 Net radiation to water based on surface water temperature MJ m-2 day-1 

𝑅𝑛𝑤  Net daily radiation based on water temperature MJ m-2 day-1 

𝑅𝑜𝑙𝑤𝑎  Outgoing longwave radiation based on water temperature MJ m-2 day-1 

𝑅𝑜𝑙𝑤𝑏  Outgoing longwave radiation based on wet-bulb temperature MJ m-2 day-1 
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𝑅𝑤𝑏∗   Net radiation to water based on wet-bulb temperature MJ m-2 day-1 

R2 Square of the correlation coefficient dimensionless 

RMSE Root mean square error various 

𝑟𝑐𝑙𝑖𝑚 Climatological resistance s m-1 

𝑟𝑎 Aerodynamic or atmospheric resistance to water vapour 
transport s m-1 

𝑟𝑐 Bulk stomatal resistance s m-1 

𝑟𝑙 Bulk stomatal resistance of a well-illuminated leaf s m-1 

𝑟𝑐50  Aerodynamic resistance for crop height, ℎ  s m-1 

𝑟𝑠 Surface resistance s m-1 

(𝑟𝑠)𝑐  
Surface resistance of a well-watered crop equivalent to FAO 
crop coefficient s m-1 

𝑅𝐴 Average monthly extraterrestrial solar radiation MJ m-2 day-1 

𝑟𝑎𝑎 Aerodynamic resistance between canopy source height and 
reference level s m-1 

𝑟𝑎𝑐 
Bulk boundary layer resistance of vegetation elements in 
canopy s m-1 

𝑟𝑎𝑠 
Aerodynamic resistance between substrate and canopy source 
height s m-1 

𝑟𝑠𝑐 Bulk stomatal resistance of canopy s m-1 

𝑟𝑠𝑠 Surface resistance of substrate s m-1 

S Proportion of bare soil dimensionless 

𝑆𝑐𝑜𝑛  Solar constant MJ m-2 day-1 

𝑆𝑂 Mean water equivalent for extraterrestrial solar radiation in 
month j mm month-1 

SEE Standard error of estimate 
units of 
dependent 
variable 

𝑆𝑀 Soil moisture level mm 

𝑆𝑊𝑖𝑛 Surface water inflows to lake mm day-1 

𝑆𝑊𝑜𝑢𝑡 Surface water outflows from lake mm day-1 

𝑆𝑐 Storage constant month 

𝑆𝑐𝑎𝑛  Storage capacity of the canopy mm 

𝑠 Lake salinity for Morton’s procedure ppm 

𝑇 Temperature, the generalised Turc-Pike coefficient °C, undefined 

TEW Total evaporable water mm 

𝑇𝑎 Air temperature °C 

𝑇𝑑 Dewpoint temperature °C 
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𝑇𝑒 Equilibrium temperature (at evaporating surface) °C 
𝑇𝑗 Monthly mean daily air temperature in month j °C 
𝑇𝑝𝑎𝑛 Mean daily pan water temperature °C 

𝑇𝑠 Temperature of the surface or evaporated water °C 

𝑇𝑤 Temperature of the water °C 

𝑇𝑤𝑏  Wet-bulb temperature °C 

𝑇𝑤0 Temperature from previous time-step °C 

𝑇𝑤,𝑗 − 𝑇𝑤,𝑗−1 Change in surface water temperature from month 𝑗 − 1 to 
month 𝑗 °C 

𝑇𝐿1, 𝑇𝐿2 Average lake temperature at the beginning and end of period °C 

𝑇𝑒′  Working estimate of the equilibrium temperature °C 
𝑇𝑔𝑤𝑖𝑛 Temperature of the groundwater inflows to lake °C 
𝑇𝑔𝑤𝑜𝑢𝑡 Temperature of the groundwater outflows from lake °C 

𝑇𝑖 , 𝑇𝑖−1 Average air temperatures on day 𝑖 and day 𝑖 − 1 respectively °C 
𝑇𝑤,𝑖, 𝑇𝑤,𝑖−1  Surface water temperatures on day 𝑖 and day 𝑖 − 1 respectively °C 

𝑇𝑚𝑎𝑥 Maximum daily air temperature °C 

𝑇𝑚𝑖𝑛 Minimum daily air temperature °C 

𝑇𝑚𝑒𝑎𝑛  Mean daily temperature °C 
𝑇𝑝 Temperature of precipitation °C 

𝑇𝑠𝑤𝑖𝑛 Temperature of the surface water inflows to lake °C 

𝑇𝑠𝑤𝑜𝑢𝑡 Temperature of the surface water outflows from lake °C 

𝑇�   Mean monthly air temperature °C 
𝑇�𝑗 Mean monthly air temperature in month  𝑗 °C 

𝑇𝐷����𝑗 
Mean monthly difference between mean daily maximum air 
temperature and mean daily minimum air temperature (month 
j) 

°C 

𝑡 Cumulative time of bare soil evaporation day 

𝑡𝐿 Lake lag time month 

𝑡1 Length of the stage-1 atmosphere-controlled bare soil 
evaporation period day 

𝑡𝑑𝑎𝑦 Local time of day undefined 

𝑡0 Intermediate variable defined by Equation (S7.15) month 

𝑡𝑚 Number of days in the month day 

[𝑡𝐿] Integral component of lag time month 
𝑇𝑤(𝑧𝑖), 
𝑇𝑤(𝑧𝑖+1)  Water temperature at depths 𝑧𝑖 and 𝑧𝑖+1 °C 
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u Mean daily wind speed m day-1 

𝑢2 Average daily wind speed at 2 m height (original Penman 1948 
and 1956 and Linacre wind function) 

m s-1, 
(miles day-1 ) 

𝑢10 Average daily wind speed at 10 m height m s-1 

𝑢𝑃𝑎𝑛 Average daily wind speed over pan m s-1 

𝑢𝑧 Average daily wind speed at  height z m s-1 

𝑢∗ Friction velocity m s-1 

𝑢� Mean wind speed m s-1 

𝑉𝑃𝐷  Vapour pressure deficit kPa 

𝑉𝑖  Volume of each layer m3 

𝑉1, 𝑉2 Lake volume at the beginning and end of period m3 

𝑉𝑃𝐷2, 𝑉𝑃𝐷50 Vapour pressure deficit at 2m and 50 m respectively kPa 

𝑊  Proportion of open water dimensionless 

w Plant available water coefficient in Zhang 2-parameter model dimensionless 

x Cross wind width of lake m 

z Height of wind speed measurement m 

𝑧𝑒 Depth of surface soil layer m 

𝑧𝑖+1 −  𝑧𝑖  Thickness of each layer m 
 
𝑧2 Height above ground of the water vapour measurement m 

 
𝑧1 Height above ground of the wind speed measurement m 

𝑧ℎ Height of the humidity measurements m 

𝑧𝑑 Zero-plane displacement m 

𝑧𝑚 Height of the instrument above ground m 

𝑧𝑜 Roughness length or roughness height m 

𝑧𝑜ℎ Roughness length governing transfer of heat and vapour m 

𝑧𝑜𝑚 Roughness length governing momentum transfer m 

𝑧𝑜𝑣 Roughness length governing water transfer m 

α Albedo of the evaporating surface dimensionless 

α𝐴 Albedo for Class-A pan dimensionless 

𝛼𝐾𝑃 Proportion of the net addition of energy from advection and 
storage used in evaporation during ∆𝑡 dimensionless 

𝛼𝑆𝑆 Albedo of ground surface surrounding evaporation pan dimensionless 

𝛼𝑝𝑎𝑛 Proportion of energy exchanged through sides of evaporation 
pan dimensionless 
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𝛼𝑃𝑇 Priestley-Taylor coefficient dimensionless 

𝛾 Psychrometric constant (for Morton’s procedure) kPa ° C-1 
(mbar °C-1) 

∆ Slope of the saturation vapour pressure curve kPa °C-1 

∆′  𝑑𝑣𝑇∗/𝑑𝑇 slope of the saturation vapour pressure curve at T kPa °C-1 

Δ𝐻 Change in heat storage (net energy gained from heat storage in 
the water body) MJ m-2 day-1 

∆𝑄 Change in stored energy during ∆𝑡 mm day-1 

∆𝑆 Change in soil moisture storage or stored water mm day-1, 
mm year-1 

∆𝑊  Change in heat storage in water column during the current time 
step MJ m-2 day-1 

∆𝑡 Time interval day 

Δe Slope of the saturation vapour pressure curve at temperature  
𝑇𝑒 for Morton’s procedure mbar °C-1 

Δw  Slope of the vapour pressure curve at water temperature kPa °C-1 

Δwb  Slope of the vapour pressure curve at wet-bulb temperature kPa °C-1 

∆(𝑇𝑒) Slope of the vapour pressure curve at temperature  𝑇𝑒 kPa °C-1 

∆𝐻𝑗,𝑗−1 Change in heat storage from month 𝑗 − 1 to month 𝑗  for 
Vardavas and Fountoulakis (1996) procedure W m-2 

∆𝑇𝑤𝑙 
Change in lake surface water temperature month 𝑗 − 1 to 
month 𝑗  °C 

Δe
′  

Working estimate of the slope of the saturation vapour 
pressure curve at 𝑇𝑒 for Morton’s procedure mbar °C-1 

δ Solar declination radians 

δℎ Difference between heat content of inflows and outflows from 
lake for Morton’s procedure W m-2 

𝛿𝑇𝑒 A small change in the equilibrium temperature undefined 

𝛿𝑣𝑒 = Δe
′ 𝛿𝑇𝑒  undefined 

𝜀𝑠 Surface emissivity dimensionless 

𝜀  Ratio of the temperature variations in the latent heat and 
sensible heat contents of saturated air dimensionless 

𝜀𝑤 Emissivity of water dimensionless 

𝜃  Sun’s altitude degrees 

𝜃𝐹𝐶  Soil moisture content at field capacity % 

𝜃𝑊𝑃 Soil moisture content at wilting point % 

λ Latent heat of vaporisation (for Morton’s procedure) MJ kg-1 
(W day kg-1) 

𝜆𝑒 Working variable undefined 

𝜉 Dimensionless stability factor dimensionless 
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𝜏 Time constant for the storage day 

υ Kinematic viscosity of air m2 s-1 

𝑣4 Afternoon average vapour pressure 4 m above ground for 
Webb (1966) procedure mbar 

𝑣𝑎 Mean daily actual vapour pressure at air temperature  kPa 

𝑣𝑑 Vapour pressure at the reference height  kPa 

𝑣𝑎∗ 
Daily saturation vapour pressure at air temperature (for 
Morton’s procedure) 

kPa 
(mbar) 

𝑣𝑒∗ Saturation vapour pressure at 𝑇𝑒 (for Morton’s procedure) kPa 
(mbar) 

𝑣𝐷∗   Saturation vapour pressure at dew point temperature for 
Morton’s procedure mbar 

𝑣𝐿∗ 
Afternoon average lake saturation vapour pressure for Webb 
(1966) procedure mbar 

𝑣𝑃∗  Afternoon maximum pan saturation vapour pressure for Webb 
(1966) procedure mbar 

(𝑣𝑎∗ − 𝑣𝑎) Vapour pressure deficit at air temperature kPa 

𝑣𝑠∗  Saturation vapour pressure at the water surface kPa 

𝑣𝑤∗   Saturation vapour pressure at the evaporating surface kPa 

𝑣𝑎(𝑇𝑎) 
Vapour pressure at a given height above the water surface 
evaluated at the air temperature 𝑇𝑎 for Vardavas and 
Fountoulakis (1996) procedure 

mbar 

𝑣𝑎∗(𝑇𝑎) 
Saturated vapour pressure at the water surface evaluated at air 
temperature 𝑇𝑎 for Vardavas and Fountoulakis (1996) 
procedure 

mbar 

𝑣𝑒∗′ 
Working estimate of the saturation vapour pressure at 
equilibrium temperature (for Morton’s procedure) mbar 

𝑣𝑇∗   Saturation vapour pressure at temperature, T mbar 
𝑣𝑇𝑎
∗   Saturation vapour pressure at air temperature, 𝑇𝑎 kPa 

𝑣𝑇𝑠
∗   Saturation vapour pressure at surface temperature, 𝑇𝑠 kPa 

�̅�𝑎  Mean daily actual vapour pressure kPa 

𝜌𝑎 Mean air density at constant pressure kg m-3 

𝜌𝑤 Density of water kg m-3 

𝜎 Stefan-Boltzmann constant (for Morton’s procedure) 
MJ K-4 m-2 
day-1  
(W m-2 K-4) 

φ Aridity index dimensionless 

𝜔𝑠 Sunset hour angle radian 

Ω Decoupling coefficient dimensionless 

𝜂𝑎,  𝜂𝑐,  𝜂𝑠 Working variables undefined 
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𝑣𝑇𝑚𝑎𝑥∗   Saturated vapour pressure at Tmax kPa 

𝑣𝑇𝑚𝑖𝑛∗   Saturated vapour pressure at Tmin kPa 
*Where possible a consistent set of units is used throughout the paper and supplementary 
appendices except for Appendices S20 and S21 which relate to Morton’s (1983a, b and 
1986) procedures. In this list of variables where the units are different from the common set, 
model names or references are included in the description. Non-SI units are either included in 
parenthesis along with the model name or the relevant reference is included in parenthesis in 
the description or, if listed separately, the model name or the relevant reference is also 
included. For some intermediate and working variables and where the source reference has 
not identified, the units are described as undefined. 
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Supplementary Material 
Appendix S1 Data 

In this appendix, five issues are addressed – sources of climate data in Australia, 
climate data used in the analyses reported in later appendices, remotely sensed actual 
evapotranspiration, daily and monthly data, and location of meteorological stations relative to 
the target evaporating site. 

Sources of climate data in Australia 
1.  In Australia at Automatic Weather Stations (AWSs) maintained by the Bureau of 

Meteorology and other operators, the following data as a minimum are monitored at a short 
time-step and are recorded as cumulative or average values over a longer interval: rainfall, 
temperature, humidity, wind speed and direction, and atmospheric pressure. Information is 
available at: 

http://www.bom.gov.au/inside/services_policy/pub_ag/aws/aws.shtml 

For Australian at-site daily wind data, it is recommended that, if available, 24-hour wind run 
data (km day-1) be used and converted to wind speed (m s-1). 

2.  Class-A pan evaporation data are also measured on a daily basis and, at some 
locations, the associated temperature and wind at or near the pan water surface are also 
recorded. A high-quality monthly Class-A pan data set of 60 stations across Australia is listed 
by Jovanovic et al. (2008). (Lavery et al. (1997) identified for Australia an extended high-
quality daily rainfall data set consisting of 379 gauges.) 

3.  In many parts of the world an alternative approach to using measured data directly is 
to deploy outputs from spatial interpolation and spatial modelling. If seeking to estimate 
evaporation at a point or localised area using data from a proximally located meteorological 
station, at-site data are optimal; however, these do not always exist. Specific to Australia, if 
seeking an estimate of evaporation for a larger area (e.g., a catchment or an administrative 
region) then gridded output is available. Donohue et al. (2010a; 2010b) have made available 
five potential evaporation formulations being: (i) Morton point; (ii) Morton areal; (iii) 
Penman; (iv) Priestley-Taylor; and (v) Thornthwaite in: 

http://www-data.iwis.csiro.au/ts/climate/evaporation/donohue/Donohue_readme.txt.  

It should be noted here that R. Donohue (pers. comm.) advised that “the reason Morton 
point potential values were so high in Donohue et al (2010b) was because, in their modelling 
of net radiation, they explicitly accounted for actual land-cover dynamics.  Donohue et al 
(2010b) modelled  𝑅𝑠 (incoming shortwave radiation) using the Bristow and Campbell (1984) 
model calibrated to Australian conditions (McVicar and Jupp, 1999), and combined this with 
remotely sensed estimates of albedo (Saunders, 1990) to model 𝑅𝑛𝑠 (net incoming shortwave 
radiation). 𝑅𝑛𝑙 (net longwave radiation) was modelled according to Allen et al (1998) with 
soil and vegetation emissivity weighted by their per-pixel fractions determined from  
remotely sensed data (Donohue et al., 2009).  This procedure differs from Morton’s (1983a)  
methodology, developed over 25 years ago, when remotely sensed data were not routinely 
available, and thus Donohue et al. (2010b) is in contradiction to Morton’s (1983a) 
 methodology.” 

The evaporation formulations in the above web-site are available at 0.05° resolution 
from 1982 onwards at a daily (mm day-1), a monthly (mm month-1), an annual (mm year-1), or 
an annual average (mm year-1) time-step.  From the same web-site, at the same spatial and 

http://www.bom.gov.au/inside/services_policy/pub_ag/aws/aws.shtml
http://www-data.iwis.csiro.au/ts/climate/evaporation/donohue/Donohue_readme.txt
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temporal resolutions as above, nine variables associated with the surface radiation balance are 
provided. They are: surface albedo (unitless), fractional cover (unitless), incoming longwave 
radiation (MJ m-2 day-1), incoming shortwave radiation (MJ m-2 day-1), outgoing longwave 
radiation (MJ m-2 day-1), outgoing shortwave radiation (MJ m-2 day-1), net radiation (MJ m-2 
day-1), top-of-atmosphere radiation (MJ m-2 day-1), and diffuse radiation fraction (unitless).  
Additionally, the following reference datasets are also available including: wind speed at 2m 
(TIN-based (Triangular Irregular Networks), units are m s-1), saturated vapour pressure (Pa), 
vapour pressure deficit (Pa), slope of the saturated vapour pressure curve (Pa K-1), diurnal air 
temperature range (K), mean air temperature (K), Class-A pan evaporation modelled using 
the PenPan formulation (mm period-1), and FAO-56 Reference Crop evapotranspiration (mm 
period-1). It should be noted that Penman (1948) potential evaporation and PenPan 
evaporation are calculated with both a TIN-based wind data and a spline-based wind data.  
The latter for the period from 1 January 1975 can be accessed from (McVicar et al., 2008): 

http://www-data.iwis.csiro.au/ts/climate/wind/mcvicar_etal_grl2008/.  

We prefer using the spline-based wind data for spatial modelling, and when assessing 
trends the TIN-based model provided improved results (Donohue et al., 2010b).  The FAO-56 
Reference Crop (Allen et al., 1998) evapotranspiration only uses the spline-based wind speed 
data.  These data can be linked with basic daily meteorological data (Jones et al., 2009) 
including: precipitation, maximum air temperature, minimum air temperature, and actual 
vapour pressure (Pa) which are all available from:  

http://www.bom.gov.au/climate/ 

The vegetation fractional cover data which are also available (Donohue et al., 2008) 
have been split into its persistent and recurrent components (Donohue et al., 2009); both 
available from: 

 http://datanet.csiro.au/dap/public/landingPage.zul?pid=csiro:AVHRR-derived-fPAR)  

Thus, there is a now a very powerful resource of freely available data for regional 
ecohydrological modelling across Australia.  There is also available a commercially-based 
SILO product of many of the key meteorological grids that are required to model evaporation 
across Australia (Jeffrey et al., 2001). 

Data used in later appendices 
The data used in the later appendices cover the period from January 1979 to February 

2010 and include daily data for Class-A pan evaporation, sunshine hours, maximum and 
minimum temperature, maximum and minimum humidity and average wind speed. A 
minimum amount of missing daily temperature (0.37%), relative humidity (0.16%), sunshine 
hours (0.43%) and wind speed (0.35%) data was infilled for only days in which values were 
available on adjacent days from which the average was used to infill. Only months with a 
complete record of all variables were analysed. As a result the average length of station 
record with all variables is 15.9 years. Some of the analyses in this paper are based on daily 
data for 68 stations located across Australia (Figure S1). Class-A evaporation pan and 
climate data were obtained from the Climate Information Services, National Climate Centre, 
Bureau of Meteorology. Of these stations, 39 are part of the high quality Class-A pan 
evaporation network (Jovanovic et al., 2008, Table 1).  

 

Remotely sensed actual evapotranspiration 

http://www-data.iwis.csiro.au/ts/climate/wind/mcvicar_etal_grl2008/
http://www.bom.gov.au/climate/
http://datanet.csiro.au/dap/public/landingPage.zul?pid=csiro:AVHRR-derived-fPAR
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Remotely sensed estimates of actual evapotranspiration (usually combining remotely 
sensed data with some climate data) are becoming more accurate and more accessible to 
analysts who are not experts in this technology.  There are three main approaches to estimate 
actual evapotranspiration using remote sensing, namely: (i) thermal based methods based on 
the land surface energy balance (e.g., Sobrino et al. (2005), Kalma et al. (2008), Jia et al. 
(2009), Elhaddad et al. (2011), and Yang and Wang (2011)); (ii) methods that use the 
vegetation (and shortwave infrared) indices (e.g., Glenn et al., 2007; 2010; Guerschman et al 
(2009)); and (iii) hybrid methods that combine the surface temperature and vegetation index 
(e.g., Carlson, 2007; Tang et al., 2010).  Readers wishing to pursue such approaches are 
referred to the growing volume of material that is accessible in the international literature. 

Daily and monthly data 
Analyses of most procedures are carried out for a daily and a monthly time-step. In the 

daily analysis, daily values of maximum and minimum temperature, maximum and minimum 
relative humidity, sunshine hours and daily wind run are required. For the analysis using a 
monthly time-step, the average daily values for each month and for each variable are the basis 
of computation. 

Location of meteorological stations relative to the target evaporating site 
In discussing evaporation procedures, most writers are silent on where to measure 

meteorological data to achieve the most accurate estimate of evaporation. For estimating 
evaporation from lakes using Morton’s CRWE or CRLE model, land-based meteorological 
data can be used (Morton, 1983b, page 82). Furthermore, Morton (1986, page 378) notes that 
data measured over water have only a “…relatively minor effect…” on the estimate of lake 
evaporation. Morton (1986, page 378) says the CRAE, which estimate landscape evaporation 
(see Section 2.5.2), is different because “…the latter requires accurate temperature and 
humidity data from a representative [land-based] location”. (A discussion of Morton’s 
evaporation models is presented in Section 2.5.2 and in Appendix S7.) 

Based on a 45,790 ha lake in Holland, Keijman and Koopmans (1973) compared 
Penman (1948) evaporation for seven periods over 32 days with a water balance estimate, an 
energy budget estimate and observed pan evaporation data, where the meteorological 
instruments were located on a floating raft. The authors observed that the Penman (1948) lake 
evaporation estimates are highly correlated and show little bias with the water balance 
estimates and the energy balance estimates. Based on further analysis, Keijman (1974) 
concluded that for estimating energy balance at the centre of a lake land-based meteorological 
measurements downwind from the lake are preferred over measurements upwind.   

In a major study of evaporation from Lake Nasser using three floating AWS, Elsawwaf 
et al. (2010) compared Penman (1956) evaporation with estimates from the Bowen Ratio 
Energy Budget method. The Penman method exhibited negative bias (Elsawwaf et al., 2010) 
which is consistent with the Penman (1948) results recorded in Holland. (In Appendix S4, 
the differences expected between Penman (1948) and Penman (1956) are discussed). 
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Supplementary Material 
Appendix S2 Computation of some common variables 

This appendix includes equations to estimate common variables used in the evaporation 
equations. Values of specific constants are listed in Table S1. 

Mean daily temperature  

𝑀𝑒𝑎𝑛 𝑑𝑎𝑖𝑙𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛
2

  (Allen et al., 1998, Equation 9) (S2.1)  

where 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the maximum and minimum air temperatures (°C), respectively, 
recorded over a 24-hour period. 

Wet-bulb temperature 

𝑇𝑤𝑏 =
0.00066×100𝑇𝑎+

4098𝑣𝑎
�𝑇𝑑+237.3�

2𝑇𝑑

0.00066×100+ 4098𝑣𝑎
�𝑇𝑑+237.3�

2
  (McJannet et al., 2008b, Equation 25) (S2.2) 

where 𝑇𝑤𝑏 is wet-bulb temperature (°C), 𝑇𝑑 is the dew point temperature (°C) and 𝑣𝑎 is actual 
vapour pressure (kPa).   

Dew point temperature 

𝑇𝑑 = 116.9+237.3 ln (𝑣𝑎)
16.78−ln (𝑣𝑎)

   (McJannet et al., 2008b, Equation 26) (S2.3) 

Slope of the saturation vapour pressure curve 

∆=
4098�0.6108𝑒𝑥𝑝� 17.27𝑇𝑎

𝑇𝑎+237.3��

(𝑇𝑎+237.3)2   (Allen et al., 1998, Equation 13) (S2.4) 

where  ∆ is the slope of the saturation vapour pressure curve (kPa °C-1) at the mean daily air 
temperature, 𝑇𝑎 (°C). 

Saturation vapour pressure at temperature, 𝑻(°C) 

𝑣𝑇∗ = 0.6108𝑒𝑥𝑝 � 17.27𝑇
𝑇+237.3

�  (Allen et al., 1998, Equation 11) (S2.5) 

where 𝑣𝑇∗   is the saturation vapour pressure (kPa) at temperature, 𝑇 (°C). 

Daily saturation vapour pressure 

𝑣𝑎∗ = 𝑣𝑎∗ (𝑇𝑚𝑎𝑥)+𝑣𝑎∗ (𝑇𝑚𝑖𝑛)
2

  (Allen et al., 1998, Equation 12) (S2.6) 

where 𝑣𝑎∗ is the daily (24-hour period) saturation vapour pressure (kPa) at air temperature, and 
where the saturation vapour pressures are evaluated at temperatures (°C) 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛. 

Mean daily actual vapour pressure 

𝑣𝑎 =
𝑣𝑎∗ (𝑇𝑚𝑖𝑛)𝑅𝐻𝑚𝑎𝑥

100 +𝑣𝑎∗ (𝑇𝑚𝑎𝑥)𝑅𝐻𝑚𝑖𝑛
100

2
  (Allen et al., 1998, Equation 17) (S2.7) 

where  𝑣𝑎 is the mean daily actual vapour pressure (kPa), 𝑅𝐻𝑚𝑎𝑥 is the maximum relative 
humidity (%) in a day, and  𝑅𝐻𝑚𝑖𝑛 is the minimum relative humidity (%) in a day. 

Mean daily actual vapour pressure using dew point temperature 
If daily dew point temperature is known, then daily actual vapour pressure can be 

estimated thus: 
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𝑣𝑎 = 0.6108𝑒𝑥𝑝 � 17.27𝑇𝑑
𝑇𝑑+237.3

�  (Allen et al., 1998, Equation 14) (S2.8) 

where 𝑇𝑑 is the dew point temperature (°C). 

Psychrometric constant 

𝛾 = 0.00163 𝑝
𝜆
   (Allen et al., 1998, Equation 8) (S2.9) 

where 𝛾 is the psychrometric constant (kPa °C-1), 𝜆 is the latent heat of vaporization = 2.45 
MJ kg-1 (at 20°C), and 𝑝 is atmospheric pressure at elevation 𝑧 m. 

Atmospheric pressure 

𝑝 = 101.3 �293−0.0065𝐸𝑙𝑒𝑣
293

�
5.26

   (Allen et al., 1998, Equation 7) (S2.10) 

where 𝑝 is the atmospheric pressure (kPa) at elevation 𝐸𝑙𝑒𝑣 (m) above mean sea level. 

Zero-plane displacement (displacement height) 

Zero-plane displacement (𝑧𝑑) (m) can be explained as the height within obstacles, e.g., 
trees, in which wind speed is zero. Values are listed in Table S2. Allen et al. (1998, Box 4) 
reported that for a natural crop-covered surface and Wieringa (1986, Table 1) noted for an 
average obstacle height:  

𝑧𝑑 = 2
3
ℎ  (S2.11) 

where ℎ is the mean height of the roughness obstacles (including vegetation) (m). 

Roughness length (height) 

Roughness length (𝑧𝑜) (m) is related to the roughness of the evaporating surface and is 
the optimal parameter for defining terrain effects on wind (Wieringa, 1986, Table 1). Values 
are listed in Table S2. If values are not available for a particular terrain or surface, the 
following relationship can be used: 

𝑧𝑜 ≅
(𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡)

10
 (S2.12) 

Units of evaporation 

Evaporation rates are expressed as depth per unit time, e.g., mm day-1, or the rates can 
also be expressed as energy flux and, noting that the latent heat of water is 2.45 MJ kg-1, it 
follows that 1 mm day-1 of evaporation is equivalent to 2.45 MJ m-2 day-1. 
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Supplementary Material 
Appendix S3 Estimating net solar radiation 

This appendix outlines how net radiation is estimated with and without incoming solar 
radiation data. The method is based on the procedure outlined in Allen et al. (1998, pages 41 
to 53). 

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙 (S3.1) 

where 𝑅𝑛 is the net radiation (MJ m-2 day-1), 𝑅𝑛𝑠 is the net incoming shortwave radiation 
(MJ m-2 day-1), and 𝑅𝑛𝑙 is the net outgoing longwave radiation (MJ m-2 day-1). 

Net shortwave solar radiation is estimated from the measured incoming solar radiation 
(𝑅𝑠) at an Automatic Weather Station and albedo for the evaporating surface as: 

𝑅𝑛𝑠 = (1 − α)𝑅𝑠 (S3.2) 

where 𝑅𝑠 is the measured or estimated incoming solar radiation (MJ m-2 day-1), and α is the 
albedo of the evaporating surface. Several albedo values are listed in Table S3. 

Except for eight sites in Australia (Roderick et al., 2009a, Section 2.3), measured values 
of net longwave radiation are not available. Hence, net outgoing longwave radiation is 
estimated by: 

𝑅𝑛𝑙 = 𝜎(0.34 − 0.14�̅�𝑎0.5) �(𝑇𝑚𝑎𝑥+273.2)4+(𝑇𝑚𝑖𝑛+273.2)4

2
� �1.35 𝑅𝑠

𝑅𝑠𝑜
− 0.35�  (S3.3) 

noting that 𝑅𝑠
𝑅𝑠𝑜

 ≤ 1, and where 𝑅𝑛𝑙 is the net outgoing longwave radiation (MJ m-2 day-1), 𝑅𝑠 

is the measured or estimated incoming solar radiation (MJ m-2 day-1), 𝑅𝑠𝑜 is the clear sky 
radiation (MJ m-2 day-1), �̅�𝑎  is the mean actual daily vapour pressure (kPa), 𝑇𝑚𝑎𝑥 and  𝑇𝑚𝑖𝑛 
are respectively the maximum and the minimum daily air temperature (°C), and 𝜎 is Stefan-
Boltzmann constant (MJ K-4 m-2 day-1). 

𝑅𝑠𝑜 = (0.75 + 2×10−5𝐸𝑙𝑒𝑣)𝑅𝑎  (S3.4) 

where 𝐸𝑙𝑒𝑣 is the ground elevation (m) above mean sea level of the automatic weather station 
(AWS), and 𝑅𝑎 is the extraterrestrial radiation (MJ m-2 day-1) which is the solar radiation on 
a horizontal surface at the top of the earth’s atmosphere and is computed by: 

𝑅𝑎 = 1440
𝜋
𝐺𝑠𝑐𝑑𝑟2[𝜔𝑠𝑠𝑖𝑛(𝑙𝑎𝑡)𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝑙𝑎𝑡)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝜔𝑠)]  (S3.5) 

where 𝐺𝑠𝑐 is the solar constant = 0.0820 MJ m-2 min-1, 𝑑𝑟 is the inverse relative distance 
Earth-Sun, 𝜔𝑠 is the sunset hour angle (rad), 𝑙𝑎𝑡 is latitude (rad) (negative for southern 
hemisphere), and 𝛿 is the solar declination (rad). 

𝑑𝑟2 = 1 + 0.033𝑐𝑜𝑠 � 2𝜋
365

𝐷𝑜𝑌� (S3.6) 

This equation and Equation (S3.5) are modified from the errata provided with Allen et 
al. (1998) for their Equation 23. The amended Equation (S3.6) is shown in McCullough and 
Porter (1971, Equation 2) and amended Equation (S3.5) is shown in McCullough (1968, 
Equation 3). 

𝛿 = 0.409𝑠𝑖𝑛 � 2𝜋
365

𝐷𝑜𝑌 − 1.39�   (S3.7) 

where 𝐷𝑜𝑌 is Day of Year (see below). 
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The sunset hour angle 𝜔𝑠 is estimated from: 

 𝜔𝑠 = 𝑎𝑟𝑐𝑜𝑠[− tan(𝑙𝑎𝑡) tan(δ)]  (S3.8) 

If measured values of 𝑅𝑠 are not available, 𝑅𝑠 can be calculated from the Ǻngström-
Prescott equation (see Martinez-Lonano et al. (1984) and Ulgen and Hepbasli (2004) for 
historical developments and review of the equation) as follows:  

𝑅𝑠 = �𝑎𝑠 + 𝑏𝑠
𝑛
𝑁
�𝑅𝑎 (S3.9) 

where 𝑛 is the observed duration of sunshine hours, 𝑁 is the maximum possible duration of 
daylight hours, and 𝑎𝑠 and 𝑏𝑠 are constants. 𝑎𝑠 represents the fraction of extraterrestrial 
radiation reaching earth on sunless days (𝑛 = 0) and 𝑎𝑠 + 𝑏𝑠 is the fraction of extraterrestrial 
radiation reaching earth on full-sun days (𝑛 = 𝑁). Where calibrated values of 𝑎𝑠 and 𝑏𝑠 are 
not available, values of 𝑎𝑠 = 0.25 and 𝑏𝑠 = 0.5 are preferred (Fleming et al, 1989, Equation 3; 
Allen et al., 1998, page 50). A literature review of more than 50 models revealed that many 
estimates of 𝑎𝑠 and 𝑏𝑠, based on a monthly time-step  have been developed (Menges et al., 
2006, Yang et al, 2006, Roderick, 1999), although only five models are simple linear 
relationships as in Equation (S3.9). For these five models (Bahel et al., 1986; Benson et al., 
1984; Louche et al., 1991; Page, 1961; Tiris et al., 1997 as reported in Menges et al., 2006), 
the average values of 𝑎𝑠 and 𝑏𝑠 are, respectively, 0.20 and 0.55. Roderick (1999, page 181) in 
estimating monthly average daily diffuse radiation for 25 sites in Australia and Antarctica 
commented that his results were consistent with 𝑎𝑠 = 0.23 and 𝑏𝑠 = 0.50 based on Linacre 
(1968) and Stitger (1980). More recently, McVicar et al. (2007, page 202) considered the 
study by Chen et al. (2004) and adopted 𝑎𝑠 = 0.195 and 𝑏𝑠 = 0.5125 for their analysis of the 
middle and lower catchments of the Yellow River. It is recommended, however, that if local 
calibrated values are available for the study area, these values should be used. 

If the number of sunshine hours is unavailable, alternatively cloudiness (in terms of 
oktas – the number of eights of the sky covered by cloud) may have been measured. Chiew 
and McMahon (1991) developed the following empirical relationship relating oktas to 
sunshine hours: 

𝑛 = 𝑎𝑜 + 𝑏𝑜𝐶𝑂 + 𝑐𝑜𝐶𝑂2 + 𝑑𝑜𝐶𝑂3  (S3.10) 

where 𝑛 is the estimated sunshine hours, 𝐶𝑂 is cloud cover in oktas, and 𝑎𝑜, …, 𝑑𝑜 are 
empirical constants and have been estimated for 26 climate stations across Australia. Values 
are provided in Chiew and McMahon (1991, Table A1). Errors in ground-based cloud cover 
estimates are discussed by Hoyt (1977).  

The maximum daylight hours, 𝑁, is given by: 

𝑁 = 24
𝜋
𝜔𝑠  (S3.11) 

where 𝜔𝑠 is the sunset hour angle (rad). 
If sunshine hours or cloudiness are not available for Australia, following Linacre (1993, 

Equation 20) cloudiness can be estimated from: 

𝐶𝐷 = 1 + 0.5𝑙𝑜𝑔𝑃𝑗 + �𝑙𝑜𝑔𝑃𝑗�
2
, 𝑃𝑗 ≥ 1 (S3.12) 

𝐶𝐷 = 1, 𝑃𝑗 < 1 (S3.13) 

where 𝑃𝑗 is the monthly precipitation (mm). 
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Thus, as an alternative to Equation (S3.9), 𝑅𝑠 can be computed from (Linacre (1993, 
Equation 19): 

𝑅𝑠 = (0.85 − 0.047𝐶𝐷)𝑅𝑎 (S3.14) 

where 𝐶𝐷 is the number of tenths of the sky covered by cloud, 𝑅𝑎 is the extraterrestrial 
radiation, and 𝑅𝑠 is the estimate of the incoming solar radiation. 

Estimating separately incoming and outgoing longwave radiation 
In some procedures to estimate evaporation e.g., McJannet et al. (2008b) discussed in 

Appendix S5, outgoing longwave radiation needs to be computed separately from incoming 
longwave radiation rather than being combined as in Equation S3.3. In McJannet et al. 
(2008b) outgoing longwave radiation is estimated as a function of water surface temperature 
and separately as a function of wet-bulb temperature.  

In Equation (S3.1), 𝑅𝑛𝑠 is estimated from Equations (S3.2), (S3.5), and (S3.9), and 

𝑅𝑛𝑙 = 𝑅𝑜𝑙 − 𝑅𝑖𝑙  (S3.15) 

where 𝑅𝑜𝑙 is the outgoing longwave radiation (MJ m-2 day-1), and 𝑅𝑖𝑙 is the incoming 
longwave radiation (MJ m-2 day-1).  

Following McJannet et al. (2008b, Equation 13) incoming longwave radiation may be 
estimated as follows: 

𝑅𝑖𝑙 = �𝐶𝑓 + �1 − 𝐶𝑓� �1 − �0.261𝑒𝑥𝑝(−7.77 × 10−4𝑇𝑎2)���𝜎(𝑇𝑎 + 273.15)4 (S3.16)  

where 𝑅𝑖𝑙 is the incoming longwave radiation (MJ m-2 day-1), 𝑇𝑎 is the mean daily air 
temperature (°C), 𝜎 is the Stefan-Boltzman constant (MJ K-4 m-2 day-1), and 𝐶𝑓 is the 
fraction of cloud cover estimated from (McJannet et al, 208b, Equations 14 and 15): 

𝐶𝑓 = 1.1 − 𝐾𝑟𝑎𝑡𝑖𝑜, 𝐾𝑟𝑎𝑡𝑖𝑜 ≤ 0.9 (S3.17) 

𝐶𝑓 = 2(1 − 𝐾𝑟𝑎𝑡𝑖𝑜), 𝐾𝑟𝑎𝑡𝑖𝑜 > 0.9 (S3.18) 

where 𝐾𝑟𝑎𝑡𝑖𝑜 = 𝑅𝑠
𝑅𝑠𝑜

, 𝑅𝑠𝑜 and 𝑅𝑠 are estimated from Equations (S3.4) and (S3.9). 

Outgoing longwave radiation is estimated as a function of water temperature and/or 
wet-bulb temperature as follows McJannet at al. (2010, Equations 22 and 29): 

𝑅𝑜𝑙𝑤𝑎 = 0.97𝜎(𝑇𝑤 + 273.15)4   (S3.19) 

where 𝑅𝑜𝑙𝑤𝑎 is the outgoing longwave radiation (MJ m-2 day-1) based on water temperature, 
and 𝑇𝑤 is the water temperature (°C), 

𝑅𝑜𝑙𝑤𝑏 = 𝜎(𝑇𝑎 + 273.15)4 + 4𝜎(𝑇𝑎 + 273.15)3(𝑇𝑤𝑏 − 𝑇𝑎)   (S3.20) 

where 𝑅𝑜𝑙𝑤𝑏 is the outgoing longwave radiation (MJ m-2 day-1) based on wet-bulb 
temperature, and 𝑇𝑤𝑏 is the wet-bulb temperature (°C). 

Estimating Day of Year (adapted from Allen et al., 1998, page 217) 

The Day of Year (𝐷𝑜𝑌) is computed for each day (D) of each month (M) as: 
DoY=INTEGER(275*M/9 – 30 + D) – 2 (S3.21) 

IF (M < 3) THEN DoY = DoY + 2 (S3.22) 
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IF(leap year and (M > 2) THEN  DoY = DoY + 1 (S3.23) 

Note that year 2000 is a leap year, whereas 1900 is not a leap year. 
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Appendix S4 
Penman model 

The Penman or combination equation (Penman, 1948, Equation 16) for estimating 
open-water evaporation is defined as: 

𝐸𝑃𝑒𝑛𝑂𝑊 = ∆
∆+𝛾

𝑅𝑛𝑤
𝜆

+ 𝛾
∆+𝛾

𝐸𝑎  (S4.1) 

where 𝐸𝑃𝑒𝑛𝑂𝑊 is the daily open-water evaporation (mm day-1), 𝑅𝑛𝑤 is the net radiation at the 
water surface (MJ m-2 day-1), 𝐸𝑎 (mm day-1) is a function of wind speed, saturation vapour 
pressure and average vapour pressure, ∆ is the slope of the vapour pressure curve (kPa °C-1) 
at air temperature, 𝛾 is the psychrometric constant (kPa °C-1), and 𝜆 is the latent heat of 
vaporization (MJ kg-1). See Dingman (1992, Section 7.3.5) for a detailed discussion of 
Penman and evaporation issues in general. 

In preparing this supplementary appendix, we were cognisant of de Bruin’s (1987) 
comment. “The result of the [recent] developments … is that Penman's formula experienced a 
large number of changes in the last decades and that at this very moment tens of different 
versions of the formula exist. This causes a tremendous confusion.” Thus, in the following 
material we identified several keys features of the Penman equation for inclusion herein.  

It is noted in Section 2.1.1 that Equation (S4.1) is based on simplifying assumptions to 
account for the fact that the temperature of the evaporating surface is unknown. References 
for readers wishing to follow up on this topic include Monteith (1965), Monteith (1981) and 
Raupach (2001). Some commentary is provided at the end of this Section. 

To estimate 𝑅𝑛𝑤, details are given in Appendix S3. In estimating 𝑅𝑛𝑤 an appropriate 
value of albedo (𝛼) should be used, which depends on the evaporating surface (Table S3); for 
open-water 𝛼 = 0.08. Although Penman (1948, pages 132 and 137) used 6-day and monthly 
time-steps in his studies, several analysts have used a daily time-step.  

To estimate 𝐸𝑎 (mm day-1) in Equation (S4.1), one should use: 

𝐸𝑎 = 𝑓(𝑢)(𝑣𝑎∗ − 𝑣𝑎) (S4.2) 

where 𝑓(𝑢) is the wind function and (𝑣𝑎∗ − 𝑣𝑎) is the vapour pressure deficit (kPa). In this 
paper, although there are several wind functions available (their application is discussed at the 
end of this appendix), we have adopted Penman’s (1956) equation as standard: 

𝑓(𝑢) = 1.313 + 1.381𝑢2 (S4.3) 

where 𝑢2 is the average daily wind speed (m s-1) at 2 m, and vapour pressure is measured in 
kPa. (In Australia, wind run is recorded at 9 am as the accumulated value over the previous 
24 hours and, therefore, in Equation (S4.3) mean daily wind speed is based on the 
accumulated 24-hour value.)  

Equations for estimating 𝑣𝑎∗, 𝑣𝑎 and ∆ are set out in Appendix S2. 
In the Penman equation, it is assumed there is no change in heat storage nor heat 

exchange with the ground, and no advected energy and, hence, the actual evaporation does 
not affect the overpassing air (Dingman, 1992, Section 7.3.5). Data required to apply the 
equation includes solar radiation (or sunshine hours or cloudiness), wind speed, air 
temperature and relative humidity, all averaged over the time-step adopted. 

Adjustment for the height of the wind speed measurement in Penman equation 
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If wind measurements are not available at 2 m the following equation may be used to 
adjust 𝑢𝑧. This is important as the wind speed coefficients in Penman have been calibrated for 
wind speed at 2 m. 

𝑢2 = 𝑢𝑧
ln ( 2𝑧0

)

ln ( 𝑧𝑧0
)
 (S4.4) 

where 𝑢2 and 𝑢𝑧 are respectively the wind speeds (m s-1) at heights 2 m and 𝑧 m, and 𝑧0 is the 
roughness height. 

Form of wind function 
Over the years Penman and other authors have suggested several forms for the wind 

function. The form of the original Penman (1948) wind function (using wind speed 𝑢2 in 
miles day-1 and vapour pressure in mm of mercury) is: 

𝑓(𝑢)48 = 0.35(1 + 9.8×10−3𝑢2) (S4.5) 

where 𝑓(𝑢)48 is the 1948 Penman wind function. Some authors (e.g., Szilagyi and Jozsa, 
2008, page 173) have labelled this equation as the Rome wind function. 

In 1956, Penman (1956) suggested that the original wind function should be reduced to 
accommodate both the Lake Hefner evaporation results and the original Rothamsted tank 
evaporation as follows: 

𝑓(𝑢)56 = 0.35(0.5 + 9.8×10−3𝑢2) (S4.6) 

where 𝑓(𝑢)56 is the 1956 Penman wind function. 

This equation in which 𝑢2 is in miles per day and the saturation deficit is in units of mm 
of mercury is equivalent to Equation (S4.3) in which the average daily wind speed 𝑢2 is in m 
s-1 and the vapour pressure deficit is in units of kPa. Based on a study of several reservoirs in 
Australia and Botswana, Fleming et al. (1989, page 59) adopted this form of the wind 
function. Shuttleworth (1992, Section 4.4.4) observed that the Penman equation with the 
original wind function overestimated evaporation from large lakes by 10% to 15%. Linacre 
(1993, page 243 and Appendix 1) observed from the median of 26 studies he identified and 
his own analysis of the heat transfer coefficient of water, that the coefficient was in the range 
2.3𝑢 to 2.6𝑢 W m-2 K-1 (and 𝑢 in m s-1), which implies that  

𝑓(𝑢)𝐿𝐼𝑁 is between  0.31(9.8×10−3𝑢2) and 0.35(9.8×10−3𝑢2) (S4.7) 

where 𝑓(𝑢)𝐿𝐼𝑁 is the Linacre wind function, 𝑢2 is in miles day-1 and vapour pressure in mm 
of mercury for comparison with Equations S4.5 and S4.6. 

Based on Brutsaert (1982), Valiantzas (2006, page 695) reported that the 1948 function 
is used more frequently than the 1956 function in hydrologic applications. However, Cohen et 
al. (2002, Section 4) reporting Stanhill (1963) noted the 1948 wind function to be 
unrealistically high. Using the FAO CLIMWAT global data (~5000 stations world-wide), 
Valiantzas (2006) compared the 𝐸𝑃𝑒𝑛 values for the three wind functions and found that the 
following relationships held with an R2 = 0.991: 

𝐸𝑃𝑒𝑛𝑂𝑊|𝑓(𝑢)48  ≈ 1.06𝐸𝑃𝑒𝑛𝑂𝑊|𝑓(𝑢)56  ≈ 1.12𝐸𝑃𝑒𝑛𝑂𝑊|𝑓(𝑢)𝐿𝐼𝑁  (S4.8) 
This result approximates our analysis which is based on applying the three wind 

functions to the 68 Australian stations (Table S4) as summarised below: 

𝐸𝑃𝑒𝑛𝑂𝑊|𝑓(𝑢)48  ≈ 1.11𝐸𝑃𝑒𝑛𝑂𝑊|𝑓(𝑢)56  ≈ 1.19𝐸𝑃𝑒𝑛𝑂𝑊|𝑓(𝑢)𝐿𝐼𝑁  (S4.9) 
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Table S4 also shows a comparison with FAO-56 Reference Crop evapotranspiration and 
Priestley-Taylor evaporation as well as 10th and 90th percentile values. 

Valiantzas (2006, page 696) suggested the 1948 wind function be adopted as standard 
in the Penman equation, however, noting the comments above by Shuttleworth (1992, Section 
4.4.4), Linacre (1993) and Cohen et al (2002), we have adopted the Penman (1956) form of 
the wind function in this paper. In terms of the units used (vapour pressure in kPa, and mean 
daily wind speed in m s-1), the Penman 1956 wind function is: 

𝑓(𝑢) = 1.313 + 1.381𝑢2 (S4.10) 

For comparison, Penman’s 1948 wind function in the same units as Equation (S4.10) 
(vapour pressure in kPa, and wind speed in m s-1) is: 

𝑓(𝑢) = 2.626 + 1.381𝑢2 (S4.11) 

Penman equation without wind data 
Valiantzas (2006, Equation 33) proposed the following equation for situations where no 

wind data are available: 

 𝐸𝑃𝑒𝑛𝑂𝑊 ≈ 0.047𝑅𝑆(𝑇𝑎 + 9.5)0.5 − 2.4 �𝑅𝑠
𝑅𝑎
�
2

+ 0.09(𝑇𝑎 + 20) �1 − 𝑅𝐻𝑚𝑒𝑎𝑛
100

�  (S4.12) 

where 𝐸𝑃𝑒𝑛𝑂𝑊 is Penman’s open-water evaporation (mm day-1), 𝑅𝑠 is the measured or 
estimated incoming solar radiation (MJ m-2 day-1), 𝑇𝑎 is the mean daily temperature (°C), 𝑅𝑎 
is the extraterrestrial solar radiation (MJ m-2 day-1) and 𝑅𝐻𝑚𝑒𝑎𝑛 is the mean daily relative 
humidity (%). This assumes the albedo for water is 0.08 and the “0.09” in Equation (S4.12) 
applies to the Penman (1948) wind function. If one uses the Penman (1956) wind function, 
“0.09” should be replaced by “0.06”. Based on six years of daily data from California, 
Valiantzas (2006) compared Equation (S4.12) with Equation (S4.1) using monthly data and 
found the modified equation performed satisfactorily (R2 = 0.983, the long term ratio of 
“approximate” to “reference” evaporation was 0.995, and SEE = 0.25 mm day-1) compared 
with the standard Penman equation. 

Modifying Penman equation by including aerodynamic turbulence 
According to Fennessey (2000), van Bavel (1966) modified the original Penman 1948 

equation to take into account boundary layer resistance as follows: 

𝐸𝑃𝑜𝑡𝑂𝑊′ = ∆
∆+𝛾

𝑅𝑛−𝐺
𝜆

+ 𝛾
∆+𝛾

ρ𝑎𝑐𝑎(𝑣𝑎∗−𝑣𝑎)

𝜆𝑟𝑎
  (S4.13) 

where 𝐸𝑃𝑜𝑡𝑂𝑊′  is the modified Penman open water evaporation (mm day-1) incorporating 
aerodynamic resistance, 𝜌𝑎 is the mean air density at constant pressure (kg m-3), 𝑐𝑎 is the 
specific heat of the air (MJ kg-1 °C-1), and 𝑟𝑎 is an “aerodynamic or atmospheric resistance” 
to water vapour transport (s m-1). Equation (S4.13) for open water is equivalent to the 
Penman-Monteith Equation (S5.1) with the surface resistance 𝑟𝑠 set to zero.  

To estimate aerodynamic resistance, McJannet et al. (2008a) introduced a specific wind 
function incorporating lake area into the Calder and Neal (1984) aerodynamic resistance 
equation as follows: 

𝑟𝑎 = 86400 𝜌𝑎𝑐𝑎

𝛾�5𝐴�
0.05

(3.80+1.57𝑢10)
   (S4.14) 
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where 𝑟𝑎 is the aerodynamic resistance over a lake (s m-1), 𝐴 is the lake area (km2) 𝜌𝑎 is the 
mean air density at constant pressure (1.2 kg m-3), 𝑐𝑎 is the specific heat of the air 
(0.001013MJ kg-1 °C-1), 𝛾 is the psychrometric constant (0.0668 kPa °C-1 at mean sea-level 
pressure 101.3 kPa), 𝑢10 is the wind speed (m s-1) at 10 m height, yielding 𝑟𝑎 for a lake at sea-
level as: 

𝑟𝑎 = 410

�5𝐴�
0.05

(1+0.413𝑢10)
   (S4.15) 

It is noted here that 𝑟𝑎 is a function of wind speed as well as lake area. 

Chin (2011, Equation 12) offered an alternative equation to estimate 𝑟𝑎 for wind speeds 
(𝑢2) (m s-1) measured at 2 m height and for no adjustment for lake area as follows: 

𝑟𝑎 = 400
(1+0.536𝑢2) (S4.16) 

Price (1994) estimated 𝑟𝑎 for Lake Ontario, Canada during a six-week summer period in 
1991. Based on 2015 samples he determined a mean value of 𝑟𝑎 = 201 ± 122 s m-1. The wide 
range of observed values is a function of wind-speed. 

Estimating ∆ under extreme conditions 
McArthur (1992, page 306) explains the assumptions behind ∆ in the Penman equation 

(Equation (S4.1)). Equation (S4.17) provides the physically correct estimate of ∆, which 
requires knowledge of the evaporating surface temperature (𝑇𝑠). 

∆=
�𝑣𝑇𝑠
∗ −𝑣𝑇𝑎

∗ �
(𝑇𝑠−𝑇𝑎)   (S4.17) 

However, because 𝑇𝑠 is generally unknown, ∆ is approximated as the slope of the saturated 
vapour pressure curve at air temperature as follows: 

∆′= 𝑑𝑣𝑇
∗

𝑑𝑇
     evaluated at air temperature (𝑇𝑎)  (S4.18) 

 In most practical situations ∆′ is an acceptable approximation to ∆ when the surface 
and air temperatures are close (McArthur (1992, page 306)). Under extreme conditions, high 
aerodynamic resistance, high humidity and low temperature, the surface and air temperatures 
diverge and this approximation breaks down (Paw U (1992, page 299)) and can lead to under-
estimating evaporation by about 10% (Slatyer and McIlroy, 1961; Paw U and Gao, 1988). 
Milly (1991), McArthur (1992) and Paw U (1992) provide a discussion of alternate 
procedures to estimate evaporation under such conditions. 
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Supplementary Material 
Appendix S5 Penman-Monteith and FAO-56 Reference Crop models 

The Penman-Monteith model defined below is usually adopted to estimate potential 
evapotranspiration, 𝐸𝑃𝑀 (mm day-1). The equation is based on Allen et al. (1998, Equation 3): 

𝐸𝑇𝑃𝑀 = 1
𝜆

Δ(𝑅𝑛−𝐺)+𝜌𝑎𝑐𝑎
�𝑣𝑎
∗ −𝑣𝑎�
𝑟𝑎

Δ+𝛾�1+𝑟𝑠
𝑟𝑎
�

 (S5.1) 

where 𝐸𝑇𝑃𝑀 is the Penman-Monteith potential evapotranspiration (mm day-1), 𝑅𝑛 is the net 
radiation at the vegetated surface (MJ m-2 day-1) incorporating an albedo value appropriate 
for the evaporating surface (Table S3), 𝐺 is the soil heat flux (MJ m-2 day-1), 𝜌𝑎 is the mean 
air density at constant pressure (kg m-3), 𝑐𝑎 is the specific heat of the air (MJ kg-1 °C-1), 𝑟𝑎 is 
an “aerodynamic or atmospheric resistance” to water vapour transport, i.e., from the leaf 
surface to the atmosphere (s m-1) (Dunin and Greenwood, 1986, page 48), 𝑟𝑠 is a “surface 
resistance” term, that is the resistances from within the plant to the bulk leaf surfaces (s m-1) 
(Dunin and Greenwood, 1986, page 48), (𝑣𝑎∗ − 𝑣𝑎) is the vapour pressure deficit (kPa),  𝜆 is 
the latent heat of vaporization (MJ kg-1), ∆ is the slope of the vapour pressure curve (kPa °C-
1) at air temperature, and 𝛾 is the psychrometric constant ( kPa °C-1). 𝐺 is defined as (Allen et 
al., 1998, Equation 41): 

𝐺 = 𝑐𝑠𝑑𝑠 �
𝑇𝑖−𝑇𝑖−1

∆𝑡
�  (S5.2) 

where 𝑐𝑠 is  the volumetric heat capacity of soil (MJ m-3 °C-1) (for an average soil moisture 
𝑐𝑠 ≅ 2.1, Grayson et al., 1996, page 33), 𝑑𝑠 is the effective soil depth (m), 𝑇𝑖 and 𝑇𝑖−1 are the 
average air temperatures (°C) on day 𝑖 and i-1 respectively, and ∆𝑡 is time-step (day).  

It is noted in Section 2.1.2 that Equation (S5.1) is based on simplifying assumptions to 
account for the fact that the temperature of the evaporating surface is unknown. References 
for readers wishing to follow up on this topic include Monteith (1965), Monteith (1981) and 
Raupach (2001). An aspect of this issue is discussed in the previous section dealing with 
Equation (S4.14).  

Generally, for daily time-steps 𝐺 can be assumed to be negligible (Allen et al., 1998, 
page 68). 

Values of aerodynamic resistance and surface (or canopy) resistance 

𝑟𝑎, the aerodynamic resistance, controls the removal of water vapour from the plant 
surface under neutral stability conditions and is defined for an evaporating surface by Allen et 
al. (1998, Equation 4) as follows: 

𝑟𝑎 =
𝑙𝑛�𝑧𝑚−𝑑

𝑧𝑜𝑚
�𝑙𝑛�

𝑧ℎ−𝑑
𝑧𝑜ℎ

�

𝑘2𝑢𝑧
 (S5.3) 

where 𝑧𝑚 is the height of the wind instrument (m), 𝑧ℎ is the height of the humidity 
measurements (m), 𝑑 is the zero plane displacement height (m), 𝑧𝑜𝑚 is the roughness length 
governing momentum transfer (m), 𝑧𝑜ℎ is the roughness length governing transfer of heat and 
vapour (m), 𝑘 is von Kármán’s constant (0.41), and 𝑢𝑧 is the wind speed at height 𝑧𝑚 (m s-1). 

According to Allen et al. (1998, page 21), for a wide range of crops, 𝑑 and 𝑧𝑜𝑚 can be 
estimated from the crop height (h) as: 
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𝑑 = 0.67ℎ, and (S5.4) 

𝑧𝑜𝑚 = 0.123ℎ (S5.5) 

and 𝑧𝑜ℎ can be approximated from: 

𝑧𝑜ℎ = 0.1𝑧𝑜𝑚 (S5.6) 

Some typical values of 𝑟𝑎 are listed in Table S2. 
According to Chin (2011, Equation 12), Equation (S5.3) and the following Equation 

(S5.7), which is for water, are conventional practice for the PM equation.  

𝑟𝑎 =
4.72�𝑙𝑛�𝑧𝑚𝑧𝑜

�
2
�
2

1+0.54𝑢𝑧
   (S5.7) 

where 𝑧𝑚 is the height of wind measurements and 𝑧𝑜 (roughness length) is: 

𝑧𝑜 = (𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡)
10

 (S5.8) 

For water 𝑧𝑜 = 0.001 m (Table S2). 

𝑟𝑠, the surface resistance term, in vegetation represents bulk stomatal resistance or 
canopy resistance, which is a property of the plant type and its water stress level. This term 
controls the release of water to the plant or soil surface; some typical values of 𝑟𝑠 are listed in 
Table S2. For water, 𝑟𝑠 = 0. 

Again following Allen et al. (1998, Equation 5), an alternative definition of 𝑟𝑠 after 
Szeicz et al. (1969, Equation 9) is: 

𝑟𝑠 = 𝑟𝑙
𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒

 (S5.9) 

where 𝑟𝑙 is the bulk stomatal resistance of a well-illuminated leaf (s m-1), and 𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒 is the 
active (sunlit) leaf area index (m2 (of leaf area) m-2 (of soil surface)). It is further noted by 
Allen et al. (1998) that 𝑟𝑙 is influenced by climate, water availability and vegetation type. 
They provide a simple example for a grass reference crop as follows: 

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒 = 0.5𝐿𝐴𝐼, and (S5.10) 

and a general equation for LAI of grass is: 

𝐿𝐴𝐼 = 24ℎ (S5.11) 

where ℎ is the crop height (m). 

Given the stomatal resistance of a single leaf of grass is ~100 s m-1 and the crop height 
is 0.12 m (Allen et al., 1998, page 22), then 𝑟𝑠 for a grass reference surface is: 

𝑟𝑠 = 100
0.5×24×0.12

 = 70 s m-1 (S5.12) 

Dingman (1992, page 296, footnote 9) notes that atmospheric conductance, 𝐶𝑎𝑡𝑚, is the 
inverse of aerodynamic resistance:  

  𝐶𝑎𝑡𝑚 =  1
𝑟𝑎

 (S5.13) 

Also, it is implied from Dingman (1992, page 299) that canopy conductance, 𝐶𝑐𝑎𝑛, is 
the inverse of surface resistance: 

 𝐶𝑐𝑎𝑛 =  1
𝑟𝑠

  (S5.14) 
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Based on data collected in the Amazonian forest, Shuttleworth (1988) proposed that for 
a dry canopy the surface resistance can be described by the following quadratic function of 
time of day, with 𝑟𝑠 falling to a minimum late morning and rising to a very large value at dusk 
as follows: 

𝑟𝑠 = 1000

12.17−0.531�𝑡𝑑𝑎𝑦−12�−0.223�𝑡𝑑𝑎𝑦−12�
2   (S5.15) 

where 𝑟𝑠 is surface or canopy resistance (s m-1) and 𝑡𝑑𝑎𝑦 is local time of day in hours. 

Readers interested in this topic are referred to Sharma (1984), Kelliher et al (1995), 
Magnani et al. (1998), Silberstein et al. (2003) and Amer and Hatfield (2004).   

To understand the relative importance of radiation and atmospheric demand (through 
the vapour pressure deficit) in the transpiration process, Jarvis and McNaughton (1986, A16) 
introduced a decoupling coefficient, Ω, (Equation S5.16) which ranges between 0 and 1 and is 
a measure of the decoupling between the conditions at the surface of a leaf and in the 
surrounding air: 

Ω =
Δ
𝛾+1

Δ
𝛾+1+

𝑟𝑠
𝑟𝑎

   (S5.16) 

Wallace and McJannet (2010, page 109) explain the significance of Ω as follows. When Ω is 
small there is a strong coupling between the canopy and the atmosphere and, consequently, 
canopy conductance, the vapour pressure deficit and wind speed strongly influence 
transpiration, whereas as Ω approached 1 (complete decoupling) radiation is the dominant 
factor affecting transpiration. This relationship is explained mathematically by Kumagai et al 
(2004, Equation 3) as follows: 

𝐸𝑇𝑃𝑀 = Ω𝐸1𝑠𝑡 + (1 − Ω)𝐸2𝑛𝑑  (S5.17) 

where 𝐸1𝑠𝑡 is the radiation (first) term in the PM model (Equation S5.1) and 𝐸2𝑛𝑑 is 
aerodynamic (second) term.  

FAO-56 Reference Crop Evapotranspiration 

If we substitute for 𝑟𝑎 and 𝑟𝑠 in Equation (S5.1) using the relevant equations in Allen et 
al. (1998, Equations (3) and (4)) and adopting the properties of the FAO-56 hypothetical crop 
of assumed height of 0.12 m, a surface resistance of 70 s m-1 and an albedo of 0.23, the 
substitutions yield the familiar FAO-56 Reference Crop evapotranspiration, 𝐸𝑇𝑅𝐶, equation 
(Allen et al., 1998, Equation 6): 

𝐸𝑇𝑅𝐶 =
0.408Δ(Rn−G)+γ 900

Ta+273
u2(𝑣𝑎∗−𝑣𝑎)

Δ+γ(1+0.34u2) = 𝐸𝑇𝑅𝐶𝑠ℎ (S5.18) 

where 𝐸𝑇𝑅𝐶𝑠ℎ is the Reference Crop evapotranspiration for short grass (mm day-1), u2 is the 
average daily wind speed (m s-1) at 2 m, and Ta is the mean daily air temperature (°C). Meyer 
(1999) discusses the application of the Penman-Monteith equation to inland south-eastern 
Australia. 

ASCE-EWRI Standardized Penman-Monteith Equation 
The ASCE-EWRI Standardized Penman-Monteith Equation (S5.19) (ASCE, 2005, 

Equation 1, Table 1) was developed to estimate potential evapotranspiration from a tall crop 
with the following characteristics: vegetation height 0.50 m, surface resistance 45 s m-1 and 
albedo of 0.23.  The equivalent equation to Equation (S5.18) for tall grass is: 
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𝐸𝑇𝑅𝐶𝑡𝑎 =
0.408Δ(Rn−G)+γ 1600

Ta+273
u2(𝑣𝑎∗−𝑣𝑎)

Δ+γ(1+0.38u2)  (S5.19) 

where 𝐸𝑇𝑅𝐶𝑡𝑎 is the Reference Crop evapotranspiration for tall grass (mm day-1). 

Adjustment for height of wind speed measurement in Penman-Monteith and FAO-56 
Reference Crop equations 

The following equation is to adjust wind speed for instrument height associated with 
short grassed surfaces (Allen et al., 1998, Equation (47)): 

𝑢2 = 𝑢𝑧
4.87

𝑙𝑛(67.8𝑧−5.42) (S5.20) 

where 𝑢2 and  𝑢𝑧 are respectively the wind speeds at heights 2 m and z m. 

Reference Crop equation without wind data 
Valiantzas (2006, Equation 39) proposed the following equation (which is similar to the 

simplified Penman equation, see Equation (S4.12)), to estimate monthly Reference Crop 
evapotranspiration for situations where no wind data are available: 

 𝐸𝑇𝑅𝐶 ≈ 0.038𝑅𝑆(𝑇� + 9.5)0.5 − 2.4 �𝑅𝑆
𝑅𝐴
�
2

+ 0.075(𝑇� + 20) �1 − 𝑅𝐻
100
�  (S5.21) 

where 𝐸𝑇𝑅𝐶 is the Reference Crop estimate of evapotranspiration for short grass (mm day-1), 
𝑅𝑆 is the measured or estimated average monthly incoming solar radiation (MJ m-2 day-1), 𝑇� 
is the mean monthly air temperature (°C), 𝑅𝐴 is the average monthly extraterrestrial solar 
radiation (MJ m-2 day-1) and 𝑅𝐻 is the mean monthly relative humidity (%). This procedure 
assumes the albedo = 0.25 (rather than the standard 0.23) for a crop. For 535 northern 
hemisphere climate stations, monthly estimates of 𝐸𝑅𝐶 based on Equation (S5.21) were 
compared with the standard reference crop Equation (S5.18). The approximate model 
performed very well on a sub-set of 4461 monthly estimates (R2 = 0.951), the long term ratio 
of “approximate” to “reference” was 1.03, and SEE = 0.34 mm day-1. 

Application of Penman-Monteith to water bodies based on equilibrium temperature  
An interesting application of the Penman-Monteith equation (Equation (S5.1) to a range 

of water bodies (irrigation channels, ponds, lakes, reservoirs streams and floodplains) was 
carried out by McJannet et al. (2008b) who set  𝑟𝑠 = 0 for water bodies (Table S2). The 
approach is outlined in Appendix S11.  

Shuttleworth-Wallace 
To deal with sparse vegetation Shuttleworth and Wallace (1985, Equations 11 to 18) 

modified the PM model to separate evapotranspiration into soil evaporation and transpiration. 
Wessel and Rouse (1994) further modified the Shuttleworth-Wallace (SW) model to 
accommodate evaporation from water surfaces but recommended that this component be not 
included in the SW approach. The Shuttleworth and Wallace (1985) equations are: 

𝐸𝑆𝑊 = 1
𝜆

(𝐶𝑐𝑎𝑃𝑀𝑐𝑎 + 𝐶𝑠𝑢𝑃𝑀𝑠𝑢) (S5.22) 

𝑃𝑀𝑐𝑎 = 1
𝜆

∆𝐴𝑒+
�𝜌𝑐𝑎�𝑣𝑎

∗ −𝑣𝑎�−∆𝑟𝑎
𝑐𝐴𝑠𝑠�

𝑟𝑎
𝑎+𝑟𝑎

𝑐

∆+𝛾�1+ 𝑟𝑠
𝑐

𝑟𝑎
𝑎+𝑟𝑎

𝑐 �
      (S5.23) 
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𝑃𝑀𝑠𝑢 = 1
𝜆

∆𝐴𝑒+
�𝜌𝑐𝑎�𝑣𝑎

∗ −𝑣𝑎�−∆𝑟𝑎
𝑠 (𝐴𝑒−𝐴𝑠𝑠)�

𝑟𝑎
𝑎+𝑟𝑎

𝑠

∆+𝛾�1+ 𝑟𝑠
𝑠

𝑟𝑎
𝑎+𝑟𝑎

𝑠 �
       (S5.24) 

𝐶𝑐𝑎 = 1
�1+ 𝜂𝑐𝜂𝑎

𝜂𝑠(𝜂𝑐+𝜂𝑎)�
    (S5.25) 

𝐶𝑠𝑢 = 1
�1+ 𝜂𝑠𝜂𝑎

𝜂𝑐(𝜂𝑠+𝜂𝑎)�
    (S5.26) 

𝜂𝑎 = (∆ + 𝛾)𝑟𝑎𝑎  (S5.27) 

 𝜂𝑠 = (∆ + 𝛾)𝑟𝑎𝑠 + 𝛾𝑟𝑠𝑠 (S5.28) 

𝜂𝑐 = (∆ + 𝛾)𝑟𝑎𝑐 + 𝛾𝑟𝑠𝑐  (S5.29) 

where 𝐸𝑆𝑊 is the Shuttleworth-Wallace combined evaporation (mm day-1) from the 
vegetation and the soil, 𝑃𝑀𝑐𝑎 and 𝑃𝑀𝑠𝑢 are respectively the evaporation (mm day-1) from a 
closed canopy and from bare substrate, 𝐴𝑒 is the available energy (MJ m-2 day-1) defined as 
the above-canopy fluxes of sensible heat and latent heat, and 𝐴𝑠𝑠 is the energy (MJ m-2 day-1) 
available at the substrate, 𝜆 is the latent heat of vaporization (MJ kg-1), ∆ is the slope of the 
vapour pressure curve (kPa °C-1), 𝛾 is the psychrometric constant (kPa °C-1), 𝑐𝑎 is the 
specific heat of the air (MJ kg-1 °C-1) at air temperature, (𝑣𝑎∗ − 𝑣𝑎) is the vapour pressure 
deficit (kPa), 𝑟𝑎𝑎 is the aerodynamic resistance between the canopy source height and the 
reference level (s m-1), 𝑟𝑎𝑐 is the bulk boundary layer resistance of the vegetative elements in 
the canopy level (s m-1), 𝑟𝑎𝑠 is the aerodynamic resistance between the substrate and canopy 
source height level (s m-1), 𝑟𝑠𝑐 is the bulk stomatal resistance of the canopy level (s m-1), and  
𝑟𝑠𝑠 is the surface resistance of the substrate level (s m-1). Wessel and Rouse (1994, Section 
4.1) were unable to determine the soil surface resistance, 𝑟𝑠, and adopted a value of 500 s m-1 
for their hourly analysis. 

It appears that Shuttleworth and Wallace (1985) did not prescribe the appropriate time-
step that should be used in their model but Wessel and Rouse (1994) adopted both an hourly 
and daily time-step in their simulations. Readers interested in applying the SW model should 
refer to Stannard (1993) and Federer et al. (1996).  

Weighted Penman-Monteith 
In order to estimate the evaporation from a wetland, Wessel and Rouse (1994, Equation 

14) proposed the following weighted Penman-Monteith approach: 

𝐸𝑤𝑒𝑡𝑙𝑎𝑛𝑑 = 𝐿𝐴𝐼 𝐸𝑐𝑎𝑛 + 𝑆 𝐸𝑠𝑜𝑖𝑙 + 𝑊 𝐸𝑤𝑎𝑡𝑒𝑟  (S5.30) 

where 𝐸𝑤𝑒𝑡𝑙𝑎𝑛𝑑 is the evapotranspiration (mm day-1) from the wetland, 𝐸𝑐𝑎𝑛 is the 
transpiration (mm day-1) from the canopy, 𝐸𝑠𝑜𝑖𝑙 is the soil evaporation (mm day-1),  𝐸𝑤𝑎𝑡𝑒𝑟 is 
the evaporation (mm day-1) from the standing water, 𝐿𝐴𝐼 is the leaf area index, and S and W 
are respectively the proportion of total area of bare soil and open water. 𝐸𝑐𝑎𝑛, 𝐸𝑠𝑜𝑖𝑙 and  
𝐸𝑤𝑎𝑡𝑒𝑟 are the Penman-Monteith estimates of ET for the canopy, soil and water as specified 
by Drexler et al. (2004, Equations 17 to 19): 

𝐸𝑐𝑎𝑛 = 1
𝜆

∆(𝑅𝑛𝑐𝑎𝑛−𝐺)+𝜌𝑐𝑎�𝑣𝑎
∗ −𝑣𝑎� 
𝑟𝑎

Δ+𝛾�1+𝑟𝑐𝑟𝑎
�

    (S5.31) 

𝐸𝑠𝑜𝑖𝑙 = 1
𝜆

∆�𝑅𝑛𝑠𝑜𝑖𝑙−𝐺�+
𝜌𝑐𝑎�𝑣𝑎

∗ −𝑣𝑎� 
𝑟𝑎

Δ+𝛾�1+𝑟𝑠
𝑠

𝑟𝑎
�

   (S5.32) 
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𝐸𝑤𝑎𝑡𝑒𝑟 = 1
𝜆

∆�𝑅𝑛𝑤𝑎𝑡𝑒𝑟−𝐺�+
𝜌𝑐𝑎�𝑣𝑎

∗ −𝑣𝑎� 
𝑟𝑎

Δ+𝛾
   (S5.33) 

where 𝐸𝑐𝑎𝑛, 𝐸𝑠𝑜𝑖𝑙, and 𝐸𝑤𝑎𝑡𝑒𝑟 are respectively the evaporation (mm day-1) from the canopy, 
soils and water, 𝑅𝑛𝑐𝑎𝑛, 𝑅𝑛𝑠𝑜𝑖𝑙, and 𝑅𝑛𝑤𝑎𝑡𝑒𝑟 are respectively the net solar radiation (MJ m-2 day-
1) to the canopy, soil and water, 𝐺 is the heat flux transfer (MJ m-2 day-1) to and from the soil 
and water, and other variables are defined above. 

Matt-Shuttleworth 
Shuttleworth and Wallace (2009, page 1904) recommend that the FAO-56 Reference 

Crop method (Allen et al., 1998) should not be applied to irrigation areas like those in 
Australia that are semi-arid and windy. They recommend that the Matt-Shuttleworth (M-S) 
model be adopted in place of the FAO-56 Reference Crop method. The M-S model consists 
of five steps (details are given in Shuttleworth and Wallace (2009, as Equations 5, 8, 9, and 
10): 

1. Select the surface resistance for the target crop (from Shuttleworth and Wallace (2009, 
Table 3). For example, for rye grass the surface resistance is 66 s m-1. 

2. Calculate 

𝑟𝑐𝑙𝑖𝑚 = 86400 𝜌𝑎𝑐𝑎(𝑉𝑃𝐷)
∆𝑅𝑛

  (S5.34) 

where 𝑟𝑐𝑙𝑖𝑚 is termed the climatological resistance (s m-1), 𝜌𝑎 is the mean air density (kg m-3) 
at constant pressure, 𝑐𝑎 is the specific heat of the air (MJ kg-1 °C-1),  (𝑉𝑃𝐷) is the vapour 
pressure deficit (kPa), ∆ is the slope of the vapour pressure curve (kPa °C-1) at air 
temperature, and 𝑅𝑛 is the net radiation (MJ m-2 day-1) at the vegetated surface. The 86,400 
constant converts the radiation energy from MJ m-2 day-1 to MJ m-2 sec-1. 

3. Calculate 

 𝑉𝑃𝐷50
𝑉𝑃𝐷2

= �302(∆+𝛾)+70𝛾𝑢2
208(∆+𝛾)+70𝛾𝑢2

� + 1
𝑟𝑐𝑙𝑖𝑚

��302(∆+𝛾)+70𝛾𝑢2
208(∆+𝛾)+70𝛾𝑢2

� �208
𝑢2
� − �302

𝑢2
��  (S5.35) 

where 𝑉𝑃𝐷50 and 𝑉𝑃𝐷2 are the vapour pressure deficits (kPa) at 50 m and 2 m height, and 𝑢2 
is the mean daily wind speed (m s-1) at 2 m height. 

4. Calculate  

𝑟𝑐50 = 1
(0.41)2 𝑙𝑛 �

(50−0.67ℎ)
(0.123ℎ) � 𝑙𝑛 �

(50−0.67ℎ)
(0.0123ℎ) �

𝑙𝑛�(2−0.08)
0.0148 �

𝑙𝑛�(50−0.08)
0.0148 �

    (S5.36) 

where 𝑟𝑐50 is the aerodynamic coefficient (s m-1) for crop height (ℎ) 

5. Calculate 

𝐸𝑇𝑐 = 1
𝜆

∆𝑅𝑛+
𝜌𝑎𝑐𝑎𝑢2(𝑉𝑃𝐷2)

𝑟𝑐
50 � 𝑉𝑃𝐷50𝑉𝑃𝐷2

�

∆+𝛾�1+(𝑟𝑠)𝑐𝑢2
𝑟𝑐
50 �

  (S5.37) 

where 𝐸𝑇𝑐 is the well-watered crop evapotranspiration in a semi-arid and windy location, 𝜆 is 
the latent heat of vaporization (MJ kg-1), (𝑟𝑠)𝑐 is the surface resistance (s m-1) of a well-
watered crop equivalent to the FAO crop coefficient (Shuttleworth and Wallace, 2009, Table 
3), and other variables are defined previously. 

At five locations in Australia, Shuttleworth and Wallace (2009) compared water 
requirements estimated by the Matt-Shuttleworth method with the requirements estimated by 
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FAO-56 Reference Crop method (Allen et al., 1998, Chapter 4) for irrigated sugar cane, 
cotton and short pasture. The analysis showed that within a growing season the differences 
between the two procedures varied considerably. However, over an entire season the M-S 
evapotranspiration estimate was 3% to 15% higher for sugar cane, 6% higher for cotton and 
between 0.5% and 2.5% for pasture compared to the FAO-56 method (Shuttleworth and 
Wallace, 2009, Table 4 and page 1905). 
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Supplementary Material 
Appendix S6 PenPan model 

There have been several variations of the Penman equation to model the evaporation 
from a Class-A evaporation pan. Linacre (1994) developed a physical model which he called 
the Penpan formula or equation. Rotstayn et al. (2006) coupled the radiative component of 
Linacre (1994) and the aerodynamic component of Thom et al. (1981) to develop the PenPan 
model which is defined, using the symbols of Johnson and Sharma (2010), as follows: 

𝐸𝑃𝑒𝑛𝑃𝑎𝑛 = ∆
∆+𝑎𝑝𝛾

𝑅𝑁𝑃𝑎𝑛
𝜆

+ 𝑎𝑝𝛾
∆+𝑎𝑝𝛾

𝑓𝑃𝑎𝑛(𝑢)(𝑣𝑎∗ − 𝑣𝑎)  (S6.1) 

where 𝐸𝑃𝑒𝑛𝑃𝑎𝑛 is the modelled Class-A (unscreened) pan evaporation (mm day-1), 𝑅𝑁𝑃𝑎𝑛 is 
the net radiation (MJ m-2 day-1) at the pan, ∆ is the slope of the vapour pressure curve (kPa 
°C-1) at air temperature,  𝛾 is the psychrometric constant (kPa °C-1), and 𝜆 is the latent heat of 
vaporization (MJ kg-1), 𝑎𝑝 is a constant adopted as 2.4, 𝑣𝑎∗ − 𝑣𝑎 is the vapour pressure deficit 
(kPa), and 𝑓𝑃𝑎𝑛(𝑢) is defined as (Thom et al., 1981, Equation 34): 

𝑓𝑃𝑎𝑛(𝑢) = 1.201 + 1.621 𝑢2  (S6.2) 

where 𝑢2  is the average daily wind speed at 2 m height (m s-1).  

To estimate 𝑅𝑁𝑃𝑎𝑛, we refer to Rotstayn et al. (2006, Equations 4 and 5)): 

𝑅𝑁𝑃𝑎𝑛 = (1 − 𝛼𝐴)𝑅𝑆𝑃𝑎𝑛 − 𝑅𝑛𝑙 (S6.3) 

𝑅𝑆𝑃𝑎𝑛 = [𝑓𝑑𝑖𝑟𝑃𝑟𝑎𝑑 + 1.42(1 − 𝑓𝑑𝑖𝑟) + 0.42𝛼𝑠𝑠]𝑅𝑆 (S6.4) 

where 𝑅𝑆𝑃𝑎𝑛 is the total shortwave radiation (MJ m-2 day-1) received by the pan, 𝑅𝑛𝑙 is the 
net outgoing longwave radiation (MJ m-2 day-1) from the pan, 𝑅𝑆 is the incoming solar 
radiation (shortwave) (MJ m-2 day-1) at the surface, 𝑓𝑑𝑖𝑟 is the fraction of 𝑅𝑆 that is direct, 
𝑃𝑟𝑎𝑑 is a pan radiation factor, 𝛼𝐴 is the albedo for a Class-A pan given as 0.14 (Linacre, 
1992) as reported by Rotstayn et al. (2006, page 2), and 𝛼𝑠𝑠 is the albedo of the ground 
surface surrounding the evaporation pan (Table S3). To be consistent with Equation (S3.1) 
we have assumed the net outgoing longwave radiation 𝑅𝑛𝑙 as positive. As noted by Roderick 
et al. (2007, page 1), 𝑅𝑆𝑃𝑎𝑛 > 𝑅𝑆 because of the interception of energy by the pan walls. 

 𝑓𝑑𝑖𝑟 and 𝑃𝑟𝑎𝑑 are defined as: 

 𝑓𝑑𝑖𝑟 = −0.11 + 1.31 𝑅𝑆
𝑅𝑎

 (S6.5) 

𝑃𝑟𝑎𝑑 = 1.32 + 4 × 10−4𝑙𝑎𝑡 + 8 × 10−5𝑙𝑎𝑡2 (S6.6) 

where 𝑅𝑎 is the extraterrestrial radiation (MJ m-2 day-1), and 𝑙𝑎𝑡 is the absolute value of 
latitude in degrees. 

The equations to estimate 𝑅𝑛𝑙 are set out in Appendix S3. The above analysis is carried 
out on a monthly time-step. 

Application to Australian data 

Using the PenPan model (with 𝑎𝑠 = 0.23 and 𝑏𝑠 = 0.50 as noted in Appendix S3), the 
mean monthly ratio of the PenPan evaporation, adjusted for the bird-screen, to the Class-A 
pan evaporation over the 68 stations (consisting of approximately 11840 ratios over all 
months) is 1.078. The monthly evaporation estimates are plotted in Figure S3. The 
performance of the PenPan model in estimating Class-A pan evaporation is satisfactory 
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although the PenPan values are biased towards slightly higher values at lower evaporations. 
These results compare favourably with PenPan versus Class-A pan evaporation results of 
Rotstayn et al. (2006, Figure 4), Roderick et al. (2007, Figure 1) and Johnson and Sharma 
(2010, Figure 1) especially as we use the standard climate data available through the Bureau 
of Meteorology National Climate Centre and sunshine hours as the basis of estimating solar 
radiation. 

An objective of this supplementary material was to develop for Australia mean monthly 
evaporation pan coefficients (relating open surface-water based on Penman to Class-A pan 
evaporation). Confidence in the monthly Penman estimates is based on the fact that the 
PenPan estimates, which utilise the same climatic data and a similar model structure as for the 
Penman model, were found to estimate the monthly pan evaporation very satisfactorily. In 
order to estimate Penman evaporation suitable for computing pan coefficients, we varied 𝑎𝑠 
and 𝑏𝑠 values so that the overall monthly PenPan/Class-A pan ratio for the 68 stations was 
unity. We argue that the optimised values of 𝑎𝑠 = 0.05 and 𝑏𝑠 = 0.65 obtained in this way 
provided realistic monthly Penman values and, therefore, realistic pan coefficients. The mean 
monthly pan coefficients for the 68 Australian stations are listed in Table S6. 
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Supplementary Material 

Appendix S7 Morton models 
In 1985, Morton et al. (1985) published the program WREVAP which sets out 

operational aspects for computing estimates of areal evapotranspiration and lake evaporation. 
WREVAP contains three models CRAE (Complementary Relationship Areal 
Evapotranspiration) (Morton, 1983a), CRWE (Complementary Relationship Wet-Surface 
Evaporation) (Morton, 1983b) and CRLE (Complementary Relationship Lake Evaporation) 
(Morton, 1986). CRAE computes evapotranspiration for the land-based environment whereas 
CRWE deals with shallow lakes and CRLE considers deep lakes where water-borne heat 
input and energy storage are key issues. The three models are shown comparatively in Table 
2 and are described in detail below. 

In Morton’s procedure, measurements of solar radiation are not required but are 
estimated through sunshine duration. However, if solar radiation data are available they may 
be used. The climate variables necessary to compute Morton’s monthly evaporation are mean 
monthly maximum and minimum air temperature, dew point temperature (or monthly relative 
humidity), monthly sunshine duration and mean annual rainfall. For periods shorter than one 
month, Morton (1983a, page 28) imposed a limit on the shortest time-step for analysis and 
advocated a minimum of five days. However, for hydrological applications, Morton (1986, 
page 379) permits daily time-step analysis so long as the daily values are accumulated to a 
week or longer. But, it is important for lake analysis, described in CRLE below, that the time-
step of analysis be one month (Morton (1986, page 379). 

Morton (1986, page 378) notes that the CRLE model estimates are sensitive to radiation 
inputs (or sunshine hours) but insensitive to errors in air temperature and relative humidity 
inputs, whereas the CRAE model requires accurate air temperature and relative humidity 
from a representative location. For lakes, land-based meteorological data can be used 
(Morton, 1983b, page 82). Furthermore, Morton (1986, page 378) notes that data measured 
over water have only a “…relatively minor effect…” on the estimate of lake evaporation. 

 CRAE 
The CRAE model consists of three components: potential evapotranspiration, wet-

environment areal evapotranspiration and actual areal evapotranspiration. A discussion of 
each component follows. 

Estimating potential evapotranspiration (𝐸𝑇𝑃𝑜𝑡 in Figure 1) 
Morton’s approach to estimating potential evapotranspiration for a catchment or a large 

vegetated surface is to solve the energy-balance and the vapour transfer equations 
respectively for potential evapotranspiration and the equilibrium temperature: 

𝐸𝑇𝑃𝑜𝑡𝑀𝑜  = 1
𝜆
�𝑅𝑛 − [𝛾𝑝𝑓𝑣 + 4𝜖𝑠𝜎(𝑇𝑒 + 273)3](𝑇𝑒 − 𝑇𝑎)� (S7.1) 

𝐸𝑇𝑃𝑜𝑡𝑀𝑜  = 1
𝜆
�𝑓𝑣(𝑣𝑒∗ − 𝑣𝐷∗ )� (S7.2) 

where 𝐸𝑇𝑃𝑜𝑡𝑀𝑜  is Morton’s estimate of point potential evaporation (mm day-1), 𝑅𝑛 is the net 
radiation (W m-2) for soil-plant surfaces at air temperature, 𝛾 is the psychrometric constant 
(mbar °C-1), 𝑝 is the atmospheric pressure (mbar), 𝑓𝑣 is a vapour transfer coefficient (W m-2 
mbar-1), 𝜖𝑠 is the surface emissivity, 𝜎 is the Stefan-Boltzmann constant (W m-2 K-4),  𝑇𝑒 and 
𝑇𝑎 are the equilibrium and air temperatures (°C), 𝑣𝑒∗ is the saturation vapour pressure (mbar) 
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at 𝑇𝑒, 𝑣𝐷∗  is the saturation vapour pressure (mbar) at dew point temperature, and 𝜆 is the latent 
heat of vaporisation (W day kg-1). (Note, the units used in Morton’s procedures have been 
adopted here to ensure that the correct values of the empirical constants are included.) 

𝑓𝑣 is given by: 

𝑓𝑣 = �𝑝𝑠
𝑝
�
0.5 𝑓𝑧

𝜉
 (S7.3) 

where 𝑝𝑠 and 𝑝 are the sea-level atmospheric pressure (mbar) and at-site atmospheric pressure 
(mbar) respectively, 𝑓𝑍 is a constant (W m-2 mbar-1), and 𝜉 is a dimensionless stability factor 
estimated from: 

𝜉 = 1

0.28�1+
𝑣𝐷
∗

𝑣𝑎
∗ �+

𝑅𝑛∆

�𝛾𝑝�𝑝𝑠𝑝 �
0.5

𝑏0𝑓𝑧�𝑣𝑎
∗ −𝑣𝐷

∗ ��

  noting that 𝜉 ≥ 1 (S7.4) 

where 𝑣𝐷∗  is the saturation vapour pressure (mbar) at dew point temperature, 𝑣𝑎∗ is the 
saturation vapour pressure (mbar) at air temperature, ∆ is the slope of the saturation vapour 
pressure curve (mbar °C-1) at air temperature, and 𝑏0 = 1.0 for the CRAE model (Table 2).  

Morton (1983a, Section 5.1) sets out the following procedure to find 𝑇𝑒 by iteration, and 
then 𝐸𝑃𝑜𝑡𝑀𝑂 can be estimated from Equation (S7.1). Assume a trial value of 𝑇𝑒′, which yields Δe′  
and 𝛿𝑇𝑒 = 𝑇𝑒 − 𝑇𝑒′, hence 𝛿𝑣𝑒 = Δe′ 𝛿𝑇𝑒 and 𝑣𝑒∗′ = 𝑣𝑒

∗ + 𝛿𝑣𝑒. Equating Equations (S7.1) and 
(S7.2) and substituting gives:  

𝛿𝑇𝑒 =
𝑅𝑛
𝑓𝑣
+𝑣𝑎∗−𝑣𝑒∗′+𝜆𝑒�𝑇−𝑇𝑒′�

�Δe′ +𝜆𝑒�
  (S7.5) 

where 𝜆𝑒 = 𝛾𝑝 + 4𝜖𝜎(𝑇𝑒+273)3

𝑓𝑣
 (S7.6) 

and variables are defined previously. 
Initially, 𝑇𝑒′ is set equal to the air temperature and the iterative procedure continues until 

𝛿𝑇𝑒 becomes <0.01°C. Further details of the procedure are not included here but a worked 
example is provided in Appendix S21.  

Estimating wet-environment areal evapotranspiration (𝐸𝑇𝑊𝑒𝑡 in Figure 1) 
To estimate the wet-environment areal evapotranspiration, which is equivalent to the 

conventional definition of potential evapotranspiration, Morton added an empirically derived 
advection constant (𝑏1) to the Priestley-Taylor equation (Equation (6) with G = 0) as follows: 

𝐸𝑇𝑊𝑒𝑡
 𝑀𝑜  = 1

𝜆
�𝑏1 + 𝑏2

𝑅𝑛𝑒
�1+𝛾𝑝Δe

�
� (S7.7) 

where 𝐸𝑇𝑊𝑒𝑡
 𝑀𝑜   is the wet-environment areal evapotranspiration (mm day-1), 𝑅𝑛𝑒 is the net 

radiation (W m-2) for the soil-plant surface at 𝑇𝑒 (°C), Δe is the slope of the saturation vapour 
pressure curve (mbar °C-1)  at 𝑇𝑒 (°C), 𝑏1 and 𝑏2 are empirical coefficients, and the other 
variables are as defined previously. Values of 𝑏1 and 𝑏2, which were derived by Morton 
(1983a, page 25) for representative regions, are set out in Table 2. 𝑅𝑛𝑒 is estimated as follows 
(Morton, 1983a, Equation C37): 

𝑅𝑛𝑒 = 𝐸𝑇𝑃𝑜𝑡𝑀𝑜 + 𝛾𝑝𝑓𝑣(𝑇𝑒 − 𝑇𝑎)   (S7.8) 
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In their analysis of Australian data, Wang et al. (2001) adopted after calibration  𝑓𝑍 = 
29.2 Wm-2 mbar-1 (Equation (S7.3)) and 𝑏1 and 𝑏2(Equation S7.7) equal to 13.4 Wm-2 and 
1.13 Wm-2 instead of 28 Wm-2 mbar-1, 14 Wm-2, and 1.2 Wm-2 respectively (Table 2) to 
give an overall value of the Priestley-Taylor coefficient, 𝛼𝑃𝑇, equal to 1.26 rather than 
Morton’s 1.32 value. Chiew and Leahy (2003, Section 2.3) argue that the recalibrated values 
better represent Australian data. Our analysis for Australia stations (to be reported in later 
document) confirms that the Wang et al. (2001) calibrated parameters yield more realistic 
results than those of Morton.  

Estimating actual areal evapotranspiration (𝐸𝑇𝐴𝑐𝑡 in Figure 1) 

To estimate Morton’s actual areal evapotranspiration (𝐸𝑇𝐴𝑐𝑡𝑀𝑜) (mm day-1), one uses the 
results from Equations (S7.1) and (S7.7) in the Complementary Relationship as follows: 

𝐸𝑇𝐴𝑐𝑡𝑀𝑜 = 2𝐸𝑇𝑊𝑒𝑡
 𝑀𝑜  − 𝐸𝑇𝑃𝑜𝑡𝑀𝑜 (S7.9) 

Morton (1983a, page 29) argues that as the models are completely calibrated they are 
accurate world-wide. 

Limitations of CRAE model 
Morton (1983a, page 28) points out five limitations of the CRAE model: 

1.  The model requires accurate measurements of humidity data. 
2.  The model should not be used for intervals of three days or less, however, as Morton 

(1983a) notes, so long as the accumulated values for a week or longer are accurate then a 
daily time-step is acceptable. (For lake evaporation, a monthly time-step should be used 
(Morton et al., 1985)). 

3.  The CRAE model should not be used near sharp discontinuities, e.g., near the edge 
of an oasis. 

4.  The climatological station should be representative of the area of interest. 
5.  Because the CRAE model does not use knowledge about the soil-vegetation system, 

it should not be used to examine the impact of natural or man-made change in the system. 

Documentation of CRAE model 
Documentation of the detailed steps to apply the CRAE model is given in Morton 

(1983a), Appendix C, and will not be repeated here. Our Appendix S21 provides a worked 
example. 

CRWE 
In CRWE, the only difference to CRAE is that the radiation absorption and the vapour 

transfer characteristics reflect the water surface rather than a vegetated surface (Morton, 
1983b) (Table 2). The CRWE model provides estimates of lake-size wet surface evaporation 
from routine climate data observed in the land environment. Furthermore, according to 
Morton (1986, page 371) monthly evaporation can be accumulated to provide reliable 
estimates of lake evaporation at the annual time-step for lakes up to approximately 30 m 
deep. To estimate the evaporation from a shallow lake, Equation (S7.7) is applied with 
coefficients 𝑏1 and  𝑏2 taking values given in Table 2. 

CRLE 
In the CRLE model, the computational procedure to estimate lake evaporation is the 

same as that used in CRWE except that the energy term is net energy available, which 
depends on solar and water inputs for the current and previous months. In estimating deep 
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lake evaporation on a monthly time-step, where changes in sub-surface heat storage may be 
important, Morton (1986, page 376) adopts a classical lag and route procedure where the 
routing is a linear storage function. The 1986 method, which we adopt herein, is different to 
Morton’s (1983b, Section 3) method. In the 1983 method, storage routing is applied to 
estimates of the shallow lake evaporation, whereas in Morton’s (1986) procedure, the solar 
and water borne inputs are routed and then lake evaporation is estimated. Using Morton’s 
symbols we summarise the four-step procedure of Morton (1986) as follows. Firstly, 
estimates of the solar and water borne heat input are computed: 

𝐺𝑊0 = (1 − 𝛼)𝑅𝑠 − 𝑅𝑛𝑙 + δℎ (S7.10) 

where 𝐺𝑊0  is the solar and waterborne heat input (W m-2), 𝑅𝑠 is the incident global radiation 
(W m-2), 𝑅𝑛𝑙 is the net outgoing longwave radiation (W m-2), 𝛼 is albedo for water, (1 −
𝛼𝑅𝑠 is the net incoming shortwave radiation (W m-2), and δℎ, which is usually small, is the 
difference between heat content of inflows and outflows from the lake (W m-2). However, δℎ 
may be important for small lakes that receive cooling water with elevated temperatures, e.g., 
from a thermal power station or for a small deep lake with seasonal heat input from a large 
river (Morton, 1986, page 376). Note that Equation (S7.10) is different to Morton (1986, 
Equation 2) in that he appears not to have included net longwave radiation at this point in the 
analysis. 

Secondly, the delayed energy input is computed from: 

𝐺𝑊𝑡 = 𝐺𝑊
[𝑡𝐿] + (𝑡𝐿 − [𝑡𝐿]) �𝐺𝑊

[𝑡𝐿+1] − 𝐺𝑊
[𝑡𝐿]� (S7.11) 

where [𝑡𝐿] and (𝑡𝐿 − [𝑡𝐿]) are the integral and fractional components of the lake lag or delay 
time, 𝑡𝐿, (months), 𝐺𝑊

[𝑡𝐿] and 𝐺𝑊
[𝑡𝐿+1] are respectively the value (W m-2) of 𝐺𝑊0  computed for 

[𝑡𝐿] and for [𝑡𝐿 + 1] months previously. 
The third step uses a linear routing procedure to route on a monthly time-step the 

available input energy, 𝐺𝑊𝑡 , through the storage as follows: 

𝐺𝐿𝐸 = 𝐺𝐿𝐵 + 𝐺𝑊
𝑡 −𝐺𝐿𝐵
0.5+𝑆𝑐

 (S7.12) 

𝐺𝐿 = 0.5(𝐺𝐿𝐸 + 𝐺𝐿𝐵) (S7.13) 

where 𝐺𝐿 is the monthly lake energy input (W m-2), 𝐺𝐿𝐵 and 𝐺𝐿𝐸 are the available solar and 
waterborne heat energy (W m-2) at the beginning and end of the month respectively, and 𝑆𝑐 is 
the storage coefficient or routing constant (months). 

To compute 𝑆𝑐 and 𝑡𝐿, the average lake depth and the lake salinity are taken into 
account as follows: 

𝑆𝑐 = 𝑡0

�1+� ℎ
�
93�

7
�
 (S7.14) 

𝑡0 = 0.96 + 0.013ℎ�  with 0.039ℎ� ≤ 𝑡0 ≤ 0.13ℎ� (S7.15) 

𝑡𝐿 = 𝑡0

�1+ 𝑠
27000�

2  with 𝑡 ≤ 6.0 (S7.16) 

where 𝑡0 is the soft water delay time (months), ℎ� is the average depth of the lake (m), and 𝑠 is 
the lake salinity (ppm) (1 ppm ~ 1.56 microS cm-1 or EC units). 
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The final step is to input monthly values of 𝐺𝐿 as 𝑅𝑛 into Equation S7.1 to estimate 
deep lake monthly evaporation.  

Typically, reservoir evaporation exceeds the evapotranspiration that would have 
occurred from the inundated area in the natural state. This net evaporation can be estimated as 
the difference between lake evaporation and actual areal evapotranspiration (Morton, 1986, 
item 4, page 386). 

In Morton’s procedure, solar radiation measurements are not required as these are 
estimated from the other observed climate variables in the model. Chiew and Jayasuriya 
(1990) and Szilagyi (2001, page 198) indicate that estimates of daily global and net radiation 
by the Morton (1983a, Appendix C.1.2) procedure are accurate. Some researchers, e.g., Wang 
et al. (2001) and Szilagyi and Jozsa (2008) have used observed solar radiation data instead of 
Morton’s empirical estimate of 𝑅𝑇, which is equivalent to 𝑅𝑠 in this paper. 

A listing of a Fortran 90 version of Program WREVAP, which follows closely Morton 
(1983a, Appendix C) and the routing scheme described in Morton (1986), is provided in 
Appendix S20.  

Australian application of the complementary relationship 
Wang et al. (2001) used Morton’s (1983a) model to produce a series of maps for  

Australia showing mean monthly areal potential evapotranspiration, point potential 
evapotranspiration and areal actual evapotranspiration; these terms were adopted by Wang et 
al (2001). The maps, which are at 0.1°(~10 km) grid resolution, are available at 
http://www.bom.gov.au/climate/averages and as a hard-copy in Wang et al. (2001). The 
detailed methodology is described in Chiew et al. (2002). Wang et al. (2001) provides the 
following guidelines for the application of the maps noting that they should not be used in 
estimating open water evaporation: 

• Areal potential evapotranspiration (equivalent to Morton’s wet environment areal 
evapotranspiration 𝐸𝑇𝑊𝑒𝑡

 𝑀𝑜  ) 
o Large area with unlimited water supply 
o “Areal” > 1 km2 
o Upper limit to actual evapotranspiration in rainfall-runoff modelling studies 
o Evapotranspiration from a large irrigation area with no shortage of water 

• Point potential evapotranspiration (equivalent to Morton’s potential evapotranspiration 
𝐸𝑇𝑃𝑜𝑡𝑀𝑜 ) 
o ET from a point with unlimited water supply 
o A small irrigation area surrounded by unirrigated area 
o Approximate preliminary estimate of evaporation from farm dams and shallow water 

storages 

Based on 55 locations across Australia Chiew and Leahy (2003) found that 𝐸𝑇𝑃𝑜𝑡 could 
be used as a substitute for Class-A pan evaporation. 

Following an extensive analysis of potential evaporation formulations across Australia, 
Donohue et al. (2010b, page 192) have provided two of the Morton evaporation estimates 
namely areal potential evapotranspiration and point potential evapotranspiration as daily 
time-step grids. However, they concluded that the Morton point potential method is unable to 
reproduce evaporation dynamics observed across Australia and is unsuitable for general use. 
However, R. Donohue (pers. comm.) advised that “the reason Morton point potential values 
were so high in Donohue et al. (2010b) was because, in their modelling of net radiation, they 
explicitly accounted for actual land-cover dynamics.  This procedure differs from Morton’s 

http://www.bom.gov.au/climate/averages
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(1983) methodology, developed over 25 years ago, when remotely sensed data were not 
routinely available, and thus Donohue et al. (2010b) is in contradiction to Morton’s (1983) 
 methodology.” 
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Supplementary Material 
Appendix S8 Advection-Aridity and like models 

Advection-aridity model 
Based on the Complementary Relationship, Brutsaert and Strickler (1979, page 445) 

proposed the Advection-Aridity (AA) model to estimate actual evapotranspiration (𝐸𝑇𝐴𝑐𝑡) in 
which they adopted the Penman equation for potential evapotranspiration (𝐸𝑇𝑃𝑜𝑡) and the 
Priestley-Taylor equation for the wet-environment (𝐸𝑇𝑊𝑒𝑡). The Complementary 
Relationship is: 

𝐸𝑇𝐴𝑐𝑡 = 2𝐸𝑇𝑊𝑒𝑡 − 𝐸𝑇𝑃𝑜𝑡 (S8.1) 
and substituting for the Penman (Equation (4)) and Priestley-Taylor (Equation (6)) and 
rearranging yields: 

𝐸𝑇𝐴𝑐𝑡𝐵𝑆 = (2𝛼𝑃𝑇 − 1) Δ
Δ+𝛾

𝑅𝑛
𝜆
− 𝛾

Δ+𝛾
𝑓(𝑢2)(𝑣𝑎∗ − 𝑣𝑎) (S8.2) 

where 𝐸𝑇𝐴𝑐𝑡𝐵𝑆  is the actual areal evapotranspiration (mm day-1) based on Brutsaert and 
Strickler (1979), 𝑅𝑛 is the net radiation (MJ m-2 day-1) at the evaporating vegetative surface, 
𝛼𝑃𝑇 is the Priestley-Taylor parameter, 𝑢2 is the average daily wind speed in m s-1, 𝑣𝑎∗ and 𝑣𝑎 
are respectively the saturation vapour pressure and the vapour pressure of the overpassing air 
(kPa) at aie temperature, Δ is the slope of the saturation vapour pressure curve at air 
temperature (kPa °C-1), 𝛾 is the psychrometric constant (kPa °C-1) and 𝜆 is the latent heat of 
vaporization (MJ kg-1). 

Based on an energy budget for a rural catchment in Holland, Brutsaert and Strickler 
(1979, page 445) adopted a Priestley and Taylor (1972) constant 𝛼𝑃𝑇 of 1.28 rather than 1.26 
(see Section 2.1.3) and Penman’s (1948) wind function 𝑓(𝑢2) as: 

𝑓(𝑢2) = 2.626 + 1.381𝑢2   (S8.3) 
which, according to Brutsaert and Strickler (1979, page 445), is equivalent to a surface of 
moderate roughness. In the comparison, 𝑅𝑛 was measured by a net radiometer and surface 
albedo did not need to be assessed. If measured values of  𝑅𝑛 are not available the adopted 
value of albedo should be appropriate for the surface conditions (see Table S3). 

Brutsaert and Strickler (1979, Figures 1 to 4) tested their model at a daily time-step and 
observed that integrating the daily ET estimates over three days achieved better agreement 
with energy budget estimates than single day estimates. Equation (S8.2) sometimes generates 
negative ET values at the daily time-step. 

Hobbins et al. (2001a) applied the AA model of Brutsaert and Strickler (1979) and the 
CRAE model of Morton (1983a) to 120 minimally impacted U.S. catchments and found the 
AA model underestimated annual actual evapotranspiration by 10.6% of mean annual 
precipitation; the CRAE model overestimated annual evapotranspiration by only 2.5% of 
precipitation (Hobbins et al., 2001a, Abstract). Hobbins et al. (2001b) recalibrated the AA 
model for a larger data set (139 minimally impacted basins) and adopted monthly regional 
wind functions, 𝑓(𝑢2). Using 𝛼𝑃𝑇 = 1.3177 they achieved a more satisfactory result than the 
original AA model. Another application of the AA model and the Zhang et al. (2001) model 
is by Brown et al. (2008, Table 1) who examined the spatial distribution of water supply in 
the United States. Across the U.S., the AA model overestimated the US Geological Survey 
gauged data by 4% and the Zhang model underestimated the gauged data by 5%. 
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Monteith (1981, page 24) offers the following comment regarding the Brutsaert and 
Strickler equation. “The scheme … has the merit of elegance and simplicity but its 
foundations need strengthening. Apart from the uncertainty which surrounds the value of α 
and it physical significance, Bouchet’s hypothesis of complementarity between actual and 
potential rates of evaporation needs to be substantiated by an appropriate model of the 
planetary boundary layer.” 

Granger-Gray model 
To estimate actual evapotranspiration from non-saturated lands, Granger and Gray 

(1989) developed a modified form of the Penman (1948) equation following Granger (1998) 
as follows: 

𝐸𝑇𝐴𝑐𝑡𝐺𝐺 = ∆𝐺𝑔
∆𝐺𝑔+𝛾

𝑅𝑛−G
𝜆

+ 𝛾𝐺𝑔
∆𝐺𝑔+𝛾

𝐸𝑎  (S8.4) 

where 𝐸𝑇𝐴𝑐𝑡𝐺𝐺  is the actual evapotranspiration (mm day-1) based on Granger and Gray (1989), 
𝑅𝑛 is the net radiation (MJ m-2 day-1) near the evaporating surface  (hence the albedo adopted 
is for the evaporating surface), 𝐺 is the heat flux into the soil (MJ m-2 day-1), 𝜆 is the latent 
heat of vaporization (MJ kg-1), Δ is the slope of the saturation vapour pressure curve at air 
temperature (kPa °C-1), and 𝛾 is the psychrometric constant (kPa °C-1), 𝐸𝑎 is the drying 
power of the air (Equation S4.2), and 𝐺𝑔 is a dimensionless evaporation parameter, which is 
based on several surface types, and is defined as (Granger, 1998, Equations 6 and 7): 

𝐺𝑔 = 1
0.793+0.20𝑒4.902𝐷𝑝 + 0.006𝐷𝑝  (S8.5) 

where 𝐷𝑝, a dimensionless relative drying power, is defined as:  

 𝐷𝑝 = 𝐸𝑎
𝐸𝑎+

𝑅𝑛−𝐺
𝜆

 (S8.6) 

where 𝐺 is set to zero. 
Adopting a daily time-step, Xu and Chen (2005, page 3725) compared, inter alia, 

Granger-Gray (GG) model with 12 years of daily lysimeter observations located at 
Mönchengladbach-Rheindahlen meteorological station in Germany and found the GG model 
performed better than the Brutsaert and Strickler Advection-Aridity model and the Morton 
CRAE model (Xu and Chen (2005, Abstract). 

Szilagyi-Jozsa model 
Based on theoretical considerations, Szilagyi (2007) offered an alternative modification 

of the AA model which was further amended by Szilagyi and Jozsa (2008, Equation (10)) to 
the following: 

𝐸𝑇𝐴𝑐𝑡
𝑆𝐽 = 2𝐸𝑃𝑇(𝑇𝑒) − 𝐸𝑃𝑒𝑛 (S8.7) 

where 𝐸𝑇𝐴𝑐𝑡
𝑆𝐽  is actual evapotranspiration (mm day-1), 𝐸𝑇𝑃𝑇(𝑇𝑒) is wet-environment 

evaporation (mm day-1) estimated by Priestley-Taylor at  𝑇𝑒 (°C), 𝐸𝑃𝑒𝑛 is potential 
evapotranspiration (mm day-1) estimated by Penman using the 1948 wind function. 

To evaluate 𝑇𝑒, Szilagyi and Jozsa (2008) considered the Bowen Ratio (Bowen, 1926) 
for a small lake or sunken pan and found the equilibrium surface temperature, 𝑇𝑒, could be 
estimated iteratively on a daily basis from (Szilagyi and Jozsa, 2008, Equation (8)): 

𝑅𝑛
𝜆𝐸𝑃𝑒𝑛

= 1 + 𝛾(𝑇𝑒−𝑇𝑎)
𝑣𝑒∗−𝑣𝑎

 (S8.8) 
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where 𝑅𝑛 is the available energy (MJ m-2 day-1), 𝐸𝑃𝑒𝑛 is the Penman evaporation (mm day-1) 
based on 𝑇𝑎, and  𝑇𝑒 and 𝑇𝑎 are respectively the equilibrium and air temperatures (°C), 𝑣𝑒∗ is 
the saturation vapour pressure (kPa) at 𝑇𝑒, 𝑣𝑎 is the actual vapour pressure (kPa) at 𝑇𝑎, 𝜆 is 
the latent heat of vaporization (MJ kg-1), and 𝛾 is the psychrometric constant (kPa °C-1).  

Based on daily data and adopting 𝛼𝑃𝑇 = 1.31 but applying the Complementary 
Relationship to obtain monthly 𝐸𝑇𝐴𝑐𝑡

𝑆𝐽  values, Szilagyi and Jozsa (2008) tested Equation (S8.7) 
against actual evaporation estimated by Morton’s WREVAP model for 210 SAMSON (Solar 
and Meteorological Surface Observation Network) stations in the United States and found 
excellent agreement (R2 = 0.95) (Szilagyi and Jozsa, 2008, Figure 6). Szilagyi et al (2009, 
page 574) applied their modified AA model to 25 watersheds, 194 SAMSON sites and 53 
semi-arid SAMSON sites and concluded that their modified AA model performed better than 
the Brutsaert and Strickler (1979) traditional AA model.    

In applying Equation (S8.7), a daily time-step is used and an albedo value for the 
vegetative surface is adopted. We note that when we applied Equation (S8.7) to days of very 
low net radiation, negative values of evaporation were occasionally estimated, a feature also 
observed in the Brutsaert and Strickler (1979, page 448) Aridity-Advection model (see 
Appendix S18). 
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Supplementary Material 
Appendix S9 Additional evaporation equations 

Although the following empirical equations (except the energy based procedure 
described at the end of this appendix) have been extensively referenced or widely used in past 
practice and therefore are included in this paper, we are of the view that the more physically-
based equations described earlier are generally more appropriate for estimating evaporation or 
evapotranspiration. This is particularly so in regions where empirical coefficients have not 
been derived.  

Dalton-type equations 
Mass-transfer equations of the following form were first described by John Dalton in 

1802 and are known as Dalton-type equations (Dingman, 1992, Section 7.3.2): 

𝐸 = 𝐶𝑒𝑚𝑝𝑓(𝑢)(𝑣𝑠∗ − 𝑣𝑎)   (S9.1) 

where 𝐸 is the actual surface evaporation (mm day-1), 𝑓(𝑢) is an appropriate wind function, 
𝑣𝑠∗ is the saturation vapour pressure (kPa) at the evaporating surface, 𝑣𝑎 is the atmospheric 
vapour pressure (kPa), and 𝐶𝑒𝑚𝑝 is an empirical constant. McJannet et al. (2012) reviewed 19 
studies for estimating open water evaporation and proposed a wind function (Equation 14) 
that depends on the area of the evaporating surface (see Section 2.4.2). 

Thornthwaite (1948) 
In the Thornthwaite evaporation method, the only meteorological data required to 

compute mean monthly potential evapotranspiration is mean monthly air temperature,   The 
original steps in Thornthwaite’s (1948) procedure involved a nomogram and tables, which 
can be represented by the follow equations (Xu and Singh, 2001, Equations 4a and 4b): 

𝐸�𝑇ℎ,𝑗 = 16 �ℎ𝑟𝑑𝑎𝑦
���������

12
� �𝑑𝑎𝑦𝑚𝑜𝑛

30
� �10𝑇

�𝐽
𝐼
�
𝑎𝑇ℎ

  (S9.2) 

where 𝐸�𝑇ℎ,𝑗 is the Thornthwaite 1948 estimate of mean monthly potential evapotranspiration 
(mm month-1) for month 𝑗, (𝑗 = 1 to 12), ℎ𝑟𝑑𝑎𝑦�������� is the mean daily daylight hours in month 𝑗, 
𝑑𝑎𝑦𝑚𝑜𝑛 is the number of days in month 𝑗, 𝑇�𝐽 is the mean monthly air temperature (oC) in 
month 𝑗, and 𝐼 is the annual heat index. The annual heat index is estimated as the sum of the 
monthly indices: 

𝐼 = ∑ 𝑖𝑗12
𝑗=1    (S9.3) 

where 𝑖 = �𝑇
�𝐽
5
�
1.514

  (S9.4) 

and 𝑎𝑇ℎ = 6.75 × 10−7𝐼3 − 7.71 × 10−5𝐼2 + 0.01792𝐼 + 0.49239 (S9.5) 

It is noted that strict application of Thornthwaite (1948) yields only 12 values of 
potential evapotranspiration, a mean value for each calendar month.  However, in several 
studies, Thornthwaite’s procedure has been modified to allow a time series of daily (Federer 
et al., 1996; Donohue et al., 2010b) or monthly (Xu and Singh, 2001; Lu et al., 2005; Amatya 
et al., 1995; Xu and Chen, 2005; Trajkovic and Kolakovic, 2009) potential evaporation values 
to be computed. 

Building on Thornthwaite’s (1948) water balance procedure used in his climate 
classification analysis, Thornthwaite and Mather (1957) developed a procedure for computing 
a water balance. We suggest readers planning to use the Thornthwaite-Mather method pay 
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attention to Black’s (2007) paper in which he notes that there are significant differences 
between a 1955 version of the methodology and the 1957 version which, according to Black 
(2007), is the correct procedure. The Thornthwaite and Mather (1957) methodology consists 
of applying the 1948 procedure in a water balance context. Scozzafava and Tallini (2001) 
provide an example. 

Makkink model 
G.F. Makkink, as reported by de Bruin (1981, Equation 5), simplified the Penman 

(1948) equation by disregarding the aerodynamic term but compensated the evaporation 
estimate by introducing two empirical coefficients as follows:  

𝐸𝑀𝑎𝑘 = 0.61 � ∆
∆+𝛾

𝑅𝑠
2.45

� − 0.12  (S9.6) 

where 𝐸𝑀𝑎𝑘 is the Makkink potential evaporation (mm day-1), 𝑅𝑠 is the solar radiation 
(incoming shortwave) (MJ m-2 day-1) at the water surface, ∆ is the slope of the vapour 
pressure curve (kPa °C-1) at air temperature, and 𝛾 is the psychrometric constant (kPa °C-1). 
According to Rosenberry et al. (2004, Table 1), a monthly time-step is used in the Makkink 
computations. 

FAO-24 Blaney and Criddle (Allen and Pruitt, 1986) 
There have been a number of modifications made to the original Blaney (1959) 

equation for estimating the consumptive use or reference crop evapotranspiration. We outline 
here the Reference Crop FAO-24 (Allen and Pruitt, 1986; Jensen et al, 1990) version of 
Blaney and Criddle which is for a grass-related crop evapotranspiration. The method is based 
on several empirical coefficients which were developed from data measured at adequately 
watered, agricultural lysimeter sites (Allen and Pruitt, 1986), located in the dry western 
United States where advection effects were strong (Yin and Brook, 1992). 

The FAO-24 Reference Crop version of Blaney-Criddle is defined as (Allen and Pruitt, 
1986, Equations 1, 2 and 3; Shuttleworth, 1992, Equation 4.2.45):  

𝐸𝑇𝐵𝐶 = �0.0043𝑅𝐻𝑚𝑖𝑛 −
𝑛
𝑁
− 1.41� + 𝑏𝑣𝑎𝑟𝑝𝑦(0.46𝑇𝑎 + 8.13)   (S9.7) 

𝑏𝑣𝑎𝑟 = 𝑒0 + 𝑒1𝑅𝐻𝑚𝑖𝑛 + 𝑒2
𝑛
𝑁

+ 𝑒3u2 + 𝑒4𝑅𝐻𝑚𝑖𝑛
𝑛
𝑁

+ 𝑒5𝑅𝐻𝑚𝑖𝑛u2  (S9.8) 

where 𝐸𝑇𝐵𝐶 is the Blaney-Criddle Reference Crop evapotranspiration (mm day-1), 𝑅𝐻𝑚𝑖𝑛 is 
the minimum relative daily humidity (%), n/N is the measured sunshine hours divided by the 
possible daily sunshine hours, 𝑝𝑦 is the percentage of actual daytime hours for the day 
compared to the day-light hours for the entire year, 𝑇𝑎 is the average daily air temperature 
(oC), and u2 is average daily wind speed (m s-1) at 2 m. The recommended values of the 
coefficients are from Frevert et al. (1983, Table 1) as follows: 𝑒0 = 0.81917, 𝑒1 = -0.0040922, 
𝑒2 = 1.0705, 𝑒3 = 0.065649, 𝑒4= -0.0059684, 𝑒5 = -0.0005967. Due to lower minimum daily 
temperatures at higher elevation (McVicar et al., 2007 Figure 3), Allen and Pruitt (1986) 
incorporate an adjustment for elevation to the FAO-24 Blaney-Criddle equation for arid and 
semi-arid regions following Allen and Brockway (1983) as follows: 

𝐸𝑇𝐵𝐶𝐻 = 𝐸𝑇𝐵𝐶 �1 + 0.1 𝐸𝑙𝑒𝑣
1000

�   (S9.9) 
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where 𝐸𝑇𝐵𝐶𝐻  is the Blaney-Criddle Reference Crop evapotranspiration adjusted for site 
elevation and 𝐸𝑙𝑒𝑣 is the elevation of the site above mean sea level (m). 

Doorenbos and Pruitt (1992, page 4) note that the BC procedure should be used “with 
scepticism” in equatorial regions (where air temperatures are “relatively constant”), for small 
islands and coastal areas (where air temperature is affected by sea temperature), for high 
elevations (due to environmental lapse rate induced low mean daily air temperature) and in 
monsoonal and mid–latitude regions (with a wide variety of sunshine hours). 

It is noted that the original Blaney-Criddle procedure incorporates only monthly 
temperature data. Consequently, the coefficients 𝑒0, …, 𝑒5 and the climate variables 𝑅𝐻𝑚𝑖𝑛, , 
𝑇𝑎, 𝑢2 in Equations (S9.7) and (S9.8), which were based on the crop consumptive use in 
western United States using the original BC model, will not represent potential evaporation in 
regions with climates differing from those in western United States. This may explain the 
Doorenbos and Pruitt (1992) comment in the previous paragraph.  

Although the BC method has been used at both a daily and a monthly time-step (Allen 
and Pruitt, 1986), a monthly period is recommended (Doorenbos and Pruitt, 1992, page 4; 
Nandagiri and Kovoor, 2006, page 240). 

Turc (1961) 
The Turc method (Turc 1961) is one of the simplest empirical equations used to 

estimate reference crop evapotranspiration under humid conditions. (Note that the Turc 
(1961) equations are very different to those proposed in Turc (1954, 1955).) The Turc 1961 
equation, based on daily data, is quoted by Trajković and Stojnić (2007, Equation 1) as: 

𝐸𝑇𝑇𝑢𝑟𝑐 = 0.013(23.88𝑅𝑠 + 50) � 𝑇𝑎
𝑇𝑎+15

�  (S9.10) 

where 𝐸𝑇𝑇𝑢𝑟𝑐 is the reference crop evapotranspiration (mm day-1), 𝑇𝑎 is the average air 
temperature (oC), and 𝑅𝑠 is the incoming solar radiation (MJ m-2 day-1).  

For non-humid conditions (RH < 50%), the adjustment provided by Alexandris et al. 
(2008, Equation 5b) may be used. 

𝐸𝑇𝑇𝑢𝑟𝑐 = 0.013(23.88𝑅𝑠 + 50) � 𝑇𝑎
𝑇𝑎+15

� �1 + 50−𝑅𝐻
70

�   (S9.11) 

where 𝑅𝐻 is the relative humidity (%). 

Because Jensen et al. (1990) identified that the Turc (1961) method performs 
satisfactorily in humid regions (see Table 5), Trajković and Kolaković (2009) developed an 
empirical factor to adjust 𝐸𝑇𝑇𝑢𝑟𝑐 for wind speed. Details are given in Trajković and 
Kolaković (2009). 

Hargreaves-Samani (Hargreaves and Samani, 1985) 
The Hargreaves-Samani equation (Hargreaves and Samani, 1985, Equations 1 and 2), 

which estimates reference crop evapotranspiration, is as follows: 

𝐸𝑇𝐻𝑆 = 0.0135𝐶𝐻𝑆
𝑅𝑎
𝜆

(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5(𝑇𝑎 + 17.8)  (S9.12) 

where 𝐸𝑇𝐻𝑆 is the reference crop evapotranspiration (mm day-1), 𝐶𝐻𝑆 is an empirical 
coefficient, 𝑅𝑎 is the extraterrestrial radiation (MJ m-2 day-1), 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝑇𝑎 are respectively 
the maximum, minimum and average daily air temperature (oC). Samani (2000, Equation 3) 
proposed a modification to the empirical coefficient to reduce the error associated with the 
estimation of solar radiation as follows: 
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 𝐶𝐻𝑆 = 0.00185(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)2 − 0.0433(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) + 0.4023   (S9.13) 
According to Amatya et al. (1995, Table 4), weekly or monthly data should be used in 

the Hargreaves-Samani model in the computation of reference crop evapotranspiration rates. 

Modified Hargreaves 
The modified Hargreaves procedure (Droogers and Allen, 2002), as adapted by Adam 

et al (2006, Equation 6), allows one to estimate the reference crop evapotranspiration without 
wind data using monthly values of rainfall, air temperature, daily air temperature range, and 
extra-terrestrial solar radiation as follows: 

𝐸𝑇𝐻𝑎𝑟𝑔,𝑗 = 0.0013𝑆𝑂�𝑇𝑗 + 17.0��𝑇𝐷����𝑗 − 0.0123𝑃𝑗�
0.76

 (S9.14) 

where, for a given month j, 𝐸𝑇𝐻𝑎𝑟𝑔,𝑗 is the modified Hargreaves monthly reference crop 
evapotranspiration (mm day-1), 𝑇𝑗  is the monthly mean daily air temperature (°C), 𝑇𝐷����𝑗 is the 
mean monthly difference between mean daily maximum air temperature and mean daily 
minimum air temperature (°C) for month j, 𝑃𝑗 is the monthly precipitation (mm month-1), and 
S0 is the mean monthly water equivalent for extraterrestrial solar radiation (mm day-1). If 𝑇𝐷����𝑗 
data are unavailable, New et al. (2002) have provided 10′ latitude/longitude gridded mean 
monthly diurnal air temperature range. Again, following the approach of Adam et al. (2006, 
Equations 7, 8, 9 and 10), S0 is estimated by: 

𝑆0 = 15.392𝑑𝑟2�𝜔𝑠𝑠𝑖𝑛(𝑙𝑎𝑡)𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝑙𝑎𝑡)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝜔𝑠)� (S9.15) 

where 𝑙𝑎𝑡 is the latitude of the location in radians (negative for southern hemisphere), dr is 
the relative distance between the earth and the sun, given by: 

𝑑𝑟2 = 1 + 0.033𝑐𝑜𝑠 � 2π
365

𝐷𝑜𝑌� (S9.16) 

where 𝐷𝑜𝑌 is the Day of Year (see Appendix S3), ωs is the sunset hour angle in radians (see 
Adam et al., 2006, page 22 for boundary conditions) and is given by: 

𝜔𝑠 = 𝑎𝑟𝑐𝑜𝑠(−𝑡𝑎𝑛(𝑙𝑎𝑡)tan (𝛿)) (S9.17) 

and δ is the solar declination in radians given by: 

δ = 0.4093𝑠𝑖𝑛 � 2𝜋
365

𝐷𝑜𝑌 − 1.405�                                                                   (S9.18)  

Evapotranspiration estimates are based on a monthly time-step. 

Application based on energy balance 
A very different approach to the application of energy balance is by McLeod and 

Webster (1996, Equations 8 and 9) who used data from an instrumented irrigation channel to 
estimate channel evaporation from:  

𝐸𝑖𝑐 = (𝑅𝑛+𝑄𝑣−𝑄𝑡)

�1+𝐵+𝑐𝑤𝑇𝑠λ �

∆𝑡
λ

  (S9.19) 

where 𝐸𝑖𝑐 is the evaporation from the irrigation channel (mm day-1), 𝑅𝑛 is the net radiation on 
the water surface (MJ m-2 day-1), 𝑄𝑣 is the heat flux advected into the water body (MJ m-2 
day-1), 𝑄𝑡 is the heat flux increase in stored energy (MJ m-2 day-1), 𝐵 is the Bowen Ratio, 𝑐𝑤 
is specific heat of water (MJ kg-1 °C-1), 𝑇𝑠 is the temperature of the evaporated water (°C), ∆𝑡 
is time interval over which the fluxes are estimated (day), and λ is the latent heat of 
vaporisation (MJ kg-1). 
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Supplementary Material 
Appendix S10 Estimating deep lake evaporation  

Based on a review of the literature, Table S5 provides guidelines to define deep and 
shallow lakes for the purpose of estimating lake evaporation. (The background to Table S5 is 
discussed in the Appendix S11.) 

Kohler and Parmele (1967) 

The Penman estimate of open-water evaporation, 𝐸𝑃𝑒𝑛𝑂𝑊, (Equation (12)) is a starting 
point to estimate evaporation from a deep lake using the Kohler and Parmele (1967) 
procedure. To account for water advected energy and heat storage, Kohler and Parmele 
(1967, Equation 12) recommended the following relationship: 

𝐸𝐷𝐿 = 𝐸𝑃𝑒𝑛𝑂𝑊 + 𝛼𝐾𝑃(𝐴𝑤 −
∆𝑄
∆𝑡

) (S10.1) 

where 𝐸𝐷𝐿 is the evaporation from the deep lake (mm day-1), 𝐸𝑃𝑒𝑛𝑂𝑊 is the Penman open-
water evaporation (mm day-1), 𝛼𝐾𝑃 is the proportion of the net addition of energy from 
advection and storage used in evaporation during ∆𝑡, 𝐴𝑤 is the net water advected energy 
during ∆𝑡 (mm day-1), and ∆𝑄

∆𝑡
 is the change in stored energy (mm day-1). Kohler and Parmele 

(1967, page 1002) illustrated their method adopting ∆𝑡 = 1 day. The three other terms are 
complex and following Dingman (1992, Equations 7.38, 7.31 and 7.32 respectively) can be 
computed from: 

𝛼𝐾𝑃 = ∆

∆+𝛾+
4𝜀𝑤𝜎(𝑇𝑤+273.2)3

𝜌𝑤λ𝐾𝐸𝑢
 
 (S10.2) 

𝐴𝑤 = 𝑐𝑤𝜌𝑤
 𝜆

(𝑃𝑑𝑇𝑝 + 𝑆𝑊𝑖𝑛𝑇𝑠𝑤𝑖𝑛 − 𝑆𝑊𝑜𝑢𝑡𝑇𝑠𝑤𝑜𝑢𝑡 + 𝐺𝑊𝑖𝑛𝑇𝑔𝑤𝑖𝑛 − 𝐺𝑊𝑜𝑢𝑡𝑇𝑔𝑤𝑜𝑢𝑡)  (S10.3) 

∆𝑄 = 𝑐𝑤𝜌𝑤
𝐴𝐿𝜆

(𝑉2𝑇𝐿2 − 𝑉1𝑇𝐿1)  (S10.4) 

where ∆ is the slope of the vapour pressure curve (kPa °C-1) at air temperature, 𝜀𝑤 is the 
effective emissivity of the water (dimensionless), 𝜎 is the Stefan-Boltzman constant (MJ m-2 
day-1 K-4), 𝑇𝑤 is the temperature of the water (°C), 𝑇𝑝 is the temperature of precipitation 
(°C), 𝑐𝑤 is the specific heat of water (MJ kg-1 °C-1), 𝑃𝑑 is the precipitation rate (mm day-1), λ 
is the latent heat of vaporization (MJ kg-1), 𝐾𝐸 is a coefficient that represents the efficiency of 
the vertical transport of water vapour (kPa-1), 𝑢 is mean daily wind speed (m day-1), SW and 
GW represent surface and ground water inflows and outflows as per subscript (mm day-1) 
and V’s and T’s represent respective average lake volumes (m3) and temperatures (°C), 𝐴𝐿 is 
lake area (m2), and 1 and 2 identify values at the beginning and end of ∆𝑡. Generally, for 
surface lakes GW will be small with respect to SW and can be ignored, but for a deep void 
following surface mining, groundwater may need to be assessed. Estimation of  𝐾𝐸 (m day2 
kg-1) is based on Equation (S10.5), but may need to be adjusted for atmospheric stability (see 
Dingman, 1992, Equation 7.2): 

𝐾𝐸 = 0.622 𝜌𝑎
𝑝𝜌𝑤

1

6.25�𝑙𝑛�
𝑧𝑚−𝑧𝑑
𝑧0

��
2 (S10.5) 

where 𝜌𝑎 is the density of air (kg m-3), 𝜌𝑤 is the density of water (kg m-3), 𝑝 is the 
atmospheric pressure (kPa), 𝑧𝑚 is the height above ground level (m) at which the wind speed 
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and vapour pressure are measured (m), 𝑧𝑑 is the zero-plane displacement (m), and 𝑧0 is the 
roughness height of the surface (m). 

Harbeck (1962) found that lake area accounted for much of the variability in 𝐾𝐸 and, as 
an alternative to Equation (S10.5), 𝐾𝐸 can be estimated by (Dingman, 1992, Equation 7-19): 

𝐾𝐸 = 1.69×10−5𝐴𝐿−0.05 (S10.6) 

where 𝐴𝐿 is the lake area (km2). 
Because changes in daily energy cannot be estimated with sufficient accuracy relative 

to the other fluxes, Kohler and Parmele (1967, page 1002) based their comparisons on periods 
of a week to a month, not daily.  

Vardavas and Fountoulakis (1996) 
The Vardavas and Fountoulakis (1996) method for estimating monthly evaporation 

from a deep lake, in which seasonal heat storage effects are significant, is based on the 
Penman equation (Penman, 1948):  

𝐸𝐷𝐿 = � ∆
∆+𝛾

�𝐸𝑠 + � 𝛾
∆+𝛾

�𝐸𝑎 (S10.7) 

where 𝐸𝐷𝐿 is the evaporation (mm day-1) for a deep lake, 𝐸𝑠 is the evaporation component 
(mm day-1) due to net heating, 𝐸𝑎 is the evaporation component (mm day-1) due to wind, ∆ is  
the slope of the vapour pressure curve (kPa °C-1) at air temperature, and 𝛾 is the 
psychrometric constant (kPa °C-1). 

 𝐸𝑠 = 1
𝜆

(𝑅𝑛 + Δ𝐻) (S10.8) 

where 𝑅𝑛 is the net radiation (MJ m-2 day-1) at the water surface, 𝜆 is the latent heat of 
vaporization (MJ kg-1), and Δ𝐻 is the net energy gained from heat storage in the water body 
(MJ m-2 day-1). 

Following Vardavas and Fountoulakis (1996, Equation 28), Δ𝐻 is determined on a 
monthly basis using: 

∆𝐻𝑗,𝑗−1 = −48.6ℎ� ∆𝑇𝑤𝑙
𝑡𝑚

 (S10.9) 

where ∆𝐻𝑗,𝑗−1 is the change in heat storage (W m-2) from month j-1 to month j, ℎ� is the mean 
lake depth (m), ∆𝑇𝑤𝑙 = 𝑇𝑤,𝑗 − 𝑇𝑤,𝑗−1, i.e., the change in surface water temperature (°C) from 
month j-1 to month j, and 𝑡𝑚 is the number of days in the month. 

𝐸𝑎 is the wind component defined by Penman (1948) as: 

𝐸𝑎 = 𝑓(𝑢�)[𝑣𝑎∗(𝑇𝑎) − 𝑣𝑎(𝑇𝑎)]   (S10.10) 

where 𝑢� is average daily wind speed (m s-1), 𝑣𝑎∗(𝑇𝑎) is the saturation vapour pressure (mbar) 
at the water surface evaluated at air temperature 𝑇𝑎 (°C), and 𝑣𝑎(𝑇𝑎) is the vapour pressure 
(mbar) at a given height above the water surface evaluated at the air temperature (°C), and 

  𝑓(𝑢�) = 𝐶𝑢𝑢� (S10.11) 

where 𝐶𝑢 can be evaluated as set out below. Estimated values of 𝐶𝑢 by Vardavas and 
Fountoulakis (1996, page 144) for four Australian reservoirs (Manton, Cataract, Mundaring 
and Eucumbene) range from 0.11 to 0.13 mm day-1/(m s-1 mbar). 
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Following Vardavas (1987, Equation 23) 𝐶𝑢 can be evaluated from: 

𝐶𝑢 = 3966

𝑇𝑎𝑙𝑛�
𝑧2
𝑧𝑜𝑣

�𝑙𝑛� 𝑧1
𝑧𝑜𝑚

�
 (S10.12) 

where 𝑇𝑎 is the air temperature (K), 𝑧1 is the height above ground of the wind speed 
measurement (m), 𝑧2 is the height above ground of the water vapour measurement (m). 𝑧𝑜𝑚, 
the momentum roughness (m), and 𝑧𝑜𝑣, the roughness length for water vapour (m), are given 
by: 

𝑧𝑜𝑚 = 0.135 υ
𝑢∗

 (S10.13) 

𝑧𝑜𝑣 = 0.624 υ
𝑢∗

 (S10.14) 

where υ is the kinematic viscosity of air (m2 s-1) and is estimated by: 

υ = 2.964×10−7 𝑇𝑎
3/2

𝑝
 (S10.15) 

where 𝑇𝑎 is the air temperature (K), and 𝑝 is the atmospheric pressure (kPa). 

The friction velocity, 𝑢∗, is computed from: 

𝑢� =  𝑢∗
𝑘
𝑙𝑛 � 𝑧2𝑢∗

0.135υ
� (S10.16) 

where 𝑘 is von Kármán’s constant, 𝑢� is the mean wind speed (m s-1), 𝑧2 is the height above 
ground of water vapour measurement (m), and υ is the kinematic viscosity of air (m2 s-1). 𝑢∗ 
can be estimated by a numerical iteration technique, e.g., Newton-Raphson. 

Other approaches that may be appropriate 
Several approaches that have been included under Appendix S11 Estimating shallow 

lake evaporation may be appropriate for deep lakes. In particular, McJannet et al. (2008b) 
procedure has been tested for two deep lakes.   
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Supplementary Material 
Appendix S11 Estimating shallow lake evaporation 

Based on a review of the literature, Table S5 provides guidelines to define deep and 
shallow lakes for the purpose of estimating lake evaporation. According to Monteith (1981, 
page 9), it is inappropriate to apply the Penman equation to estimating evaporation from open 
water bodies that exceed “… a metre or so in depth…” because of the damping due to heat 
stored in the water. Morton’s (1986) analysis indicates “… the CRLE model has little 
advantage over the CRWE at depths less than 1.5 m”. For shallow lakes of 3 m mean depth, 
de Bruin (1978) and Sacks et al (1994) consider it unnecessary to take account of seasonal 
heat storage in estimating lake evaporation, whereas Fennessey (2000), in his study of a 
shallow lake of 2 m mean depth, incorporated monthly heat storage. For a shallow lake 
(average depth of 0.6 m and characterised by a bottom crust of a thick frozen mud layer) in 
Hudson Bay, Canada, Stewart and Rouse (1976) incorporated heat flux through the bottom of 
the lake and the heat capacity of the water. 

Based on the above evidence we suggest as a general guide that seasonal heat storage 
be taken into account for shallow lakes with an average water depth of 2 m or more. For 
shallow lakes with water depth less than 2 m, we prefer the Penman equation (Equation (12)) 
with the 1956 wind function.. 

Shallow lake evaporation by Penman equation based on the equilibrium temperature 
(Finch, 2001)  

 To take heat storage into account, Finch (2001) used the concept of equilibrium 
temperature and tested the accuracy of the method by estimating evaporation from a shallow 
lake. A description of the model is presented by Keijman (1974) and de Bruin (1982).  As 
noted in Section (2.1.4), the equilibrium temperature is the temperature of the surface water 
when the net rate of heat exchange at the water surface is zero (Edinger et al., 1968, page 
1139). In this context, Sweers (1976, page 377) assumes that, although on clear calm days a 
water body will exhibit strong temperature gradients near the water surface, the top 0.5 m – 
1.0 m or so is well mixed and its mean temperature specifies the surface temperature. 

To estimate shallow lake evaporation, Finch (2001) adopted Penman (1948) but 
incorporated the Sweers (1976, Equation 18) wind function (Equation (S11.2)) and the 
equilibrium temperature. In the method it is assumed the water column is well mixed and the 
heat flux at the bed of the water body can be neglected (Finch, 2001, pages 2772). For each 
daily time-step, the following nine equations are computed: 

𝜆𝐸 = ∆(𝑅𝑛𝑤−𝐺𝑤)+𝛾𝜆𝑓(𝑢)(𝑣𝑎∗−𝑣𝑎)
(∆+𝛾)   (S11.1) 

𝜆𝑓(𝑢) = 0.864(4.4 + 1.82𝑢)  (S11.2) 

where 𝐸 is daily lake evaporation (mm day-1), 𝑅𝑛𝑤 is the net daily radiation (MJ m-2 day-1) 
based on the surface water temperature, 𝐺𝑤 is the daily change in heat storage (MJ m-2 day-

1), 𝜆 is the latent heat of vaporisation (MJ kg-1), (𝑣𝑎∗ − 𝑣𝑎) is the vapour pressure deficit (kPa) 
at air temperature,  𝛾 is psychrometric constant (kPa K-1),  ∆ is the slope of the saturation 
vapour curve (kPa K-1) at air temperature, and 𝑢 is the mean daily wind speed (m s-1) at 10 m. 
(Note that many wind measuring instruments are at a height of 2 m rather than 10 m and for 
those situations the wind speed needs to be adjusted by Equation (S4.4).)  

However, before  𝑅𝑛𝑤 and 𝐺𝑤 can be estimated the daily surface water temperature of 
the lake needs to be estimated as follows: 
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𝑇𝑤,𝑖 = 𝑇𝑒 + �𝑇𝑤,𝑖−1 − 𝑇𝑒�𝑒
1
𝜏    (S11.3) 

where 𝑇𝑤,𝑖, 𝑇𝑤,𝑖−1 are the surface water temperatures (°C) on day 𝑖 and day 𝑖 − 1 
respectively, and 𝑇𝑒  is the equilibrium temperature (°C) and 𝜏 is equilibrium temperature 
time constant (days). 𝑇𝑒 and 𝜏 are estimated as follows: 

𝑇𝑒 = 𝑇𝑤𝑏 + 𝑅𝑤𝑏
∗

4𝜎(𝑇𝑤𝑏+273.1)3+𝜆𝑓(𝑢)(Δwb+𝛾)  (Finch, 2001, page 2773) (S11.4) 

where 𝑅𝑤𝑏∗  is the net radiation (MJ m-2 day-1) based on wet-bulb temperature (𝑇𝑤𝑏) (°C) and 
is estimated by: 

𝑅𝑤𝑏∗ = (1 − 𝛼)𝑅𝑠 + 𝑅𝑖𝑙 − 𝐶𝑓[𝜎(𝑇𝑎 + 273.1)4 + 4𝜎(𝑇𝑎 + 273.1)3(𝑇𝑤𝑏 − 𝑇𝑎)]  (S11.5) 

𝜏 = 𝜌𝑤𝑐𝑤ℎ𝑤
4𝜎(𝑇𝑤𝑏+273.1)3+𝜆𝑓(𝑢)(Δwb+𝛾) (Finch, 2001, page 2772) (S11.6) 

where 𝜏 is the equilibrium temperature time constant (days), 𝑇𝑤𝑏 is the mean daily wet-bulb 
temperature (°C), 𝑅𝑠 is the shortwave solar radiation (MJ m-2 day-1), 𝛼 is the albedo for a 
water surface (Finch (2001) estimated using Payne (1972)), 𝑅𝑖𝑙 is incoming longwave 
radiation (MJ m-2 day-1), 𝐶𝑓 is a cloudiness factor, 𝜎 is the Stefan-Boltzman constant (MJ m-

2 K-4 day-1),  𝑇𝑎 is mean daily air temperature (°C) at screen height, Δwb is the slope of the 
saturation vapour curve (kPa K-1) at wet-bulb temperature, 𝛾 is the psychrometric constant 
(kPa K-1), 𝜌𝑤 is the density of water (kg m-3), 𝑐𝑤 is the specific heat of water (MJ m-2 K-4 day-

1), and  ℎ𝑤 is the depth of the lake (m). 

Thus, having an estimate of the surface water temperatures from Equation (S11.3), 𝑅𝑛𝑤 
and 𝐺𝑤 are estimated from: 

𝑅𝑛𝑤 = (1 − 𝛼)𝑅𝑠 + 𝑅𝑖𝑙 − 𝐶𝑓�𝜎(𝑇𝑎 + 273.1)4 + 4𝜎(𝑇𝑎 + 273.1)3�𝑇𝑤,𝑖−1 − 𝑇𝑎�� (S11.7) 

𝐺𝑤 = 𝜌𝑤𝑐𝑤ℎ𝑤�𝑇𝑤,𝑖 − 𝑇𝑤,𝑖−1�  (S11.8) 

where 𝑅𝑛𝑤 is the net radiation given the surface water temperature, 𝑇𝑤,𝑖, 𝑇𝑤,𝑖−1 are the surface 
water temperature on day 𝑖 and day 𝑖 − 1 respectively. 

Next, 𝜆𝐸 can be estimated using Equation S11.1 and the depth of water ℎ𝑤 on day  
𝑖 + 1 is estimated as: 

ℎ𝑖+1 = ℎ𝑖 + 𝑃𝑖+1 − 𝐸𝑖  (S11.9) 

where 𝑃𝑖+1 is the rainfall measured on day 𝑖 + 1 and 𝐸𝑖 is the lake evaporation on day 𝑖. 
According to deBruin (1982, page 270) because water bodies up to 10 m deep are 

generally well mixed by wind, the model is of practical significance. The meteorological data 
are assumed to be land-based (Finch, 2001, page 2771) and the model uses a daily time-step. 

The model was applied by Finch (2001) to a small reservoir at Kempton Park, UK 
resulting in the annual evaporation being 6% lower than the measured value. 

Shallow lake evaporation by finite difference model (Finch and Gash, 2002) 
Finch and Gash (2002) proposed a finite difference approach as an alternative to 

estimating shallow lake evaporation. The steps are set out as follows (Finch and Gash, 2002, 
Figure 1): 

1. Estimate ∝ (shortwave albedo for the water surface). 
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2. Set the first estimate of 𝑇𝑤 (average water temperature) at the beginning of the 
current time-step to the value at the end of the previous time-step. 

3. Calculate the average 𝑇𝑤. 
4. Calculate 𝑅𝑛 (net radiation). 
5. Calculate 𝑓(𝑢) (𝑢 is wind speed at a height of 10 m). 
6. Calculate 𝜆𝐸 (latent heat flux) and 𝐻 (sensible heat flux). 
7. Calculate 𝑊(change in heat storage in water column during the current time-step). 
8. Calculate a new estimate of 𝑇𝑤 at the end of the time-step. 
9. Is the difference between the last estimate of 𝑇𝑤 and the present one < 0.01? 
10. If no, return to step 3, otherwise proceed to the next time-step. 

The equations to estimate the above variables are as follows (Finch and Gash, 2002): 

∝ = 𝑓(𝑔,𝜃 )  (S11.10) 

𝑔 = 𝑅𝑠
𝑆𝑐𝑜𝑛 𝑠𝑖𝑛𝜃

𝑑𝑟
2

 1 (S11.11) 

𝑇𝑤 = 𝑇𝑤,𝑖−1 + �𝑇𝑤,𝑖−𝑇𝑤,𝑖−1
2

�  (S11.12) 

𝑅𝑛𝑤 = 𝑅𝑠(1 − 𝛼) + 𝑅𝑖𝑙 − 𝐶𝑓𝜎(𝑇𝑤 + 273.1)4  (S11.13) 

𝑓(𝑢) = 0.216𝑢
Δ+𝛾

  for 𝑇𝑤 ≤ 𝑇𝑎  (S11.14) 

𝑓(𝑢) =
0.216𝑢�1+10(𝑇𝑤−𝑇𝑎)

𝑢2
�
0.5

Δ+𝛾
  for 𝑇𝑤 > 𝑇𝑎  (S11.15) 

𝜆𝐸 = 𝑓(𝑢)(𝑣𝑤∗ − 𝑣𝑑)  (S11.16) 

𝐻 = 𝛾𝑓(𝑢)(𝑇𝑤 − 𝑇𝑎)  (S11.17) 

∆𝑊 = 𝑅𝑛 −  𝜆𝐸 − 𝐻  (S11.18) 

𝑇𝑤,𝑖 = 𝑇𝑤,𝑖−1 + ∆𝑊
𝜌𝑤𝑐𝑤ℎ𝑤

  (S11.19) 

where 𝛼 is shortwave albedo for the water surface,  𝑅𝑠 is the incoming shortwave radiation 
(MJ m-2 d-1), 𝑆𝑐𝑜𝑛 is the solar constant = 0.0820 MJ m-2 day-1, 𝜃 is the Sun’s altitude (°), 𝑑𝑟 is 
the ratio of the actual to mean Earth-Sun separation or the inverse relative distance Earth-Sun, 
𝑇𝑤 is average water temperature (°C), 𝑇𝑤,𝑖 and 𝑇𝑤,𝑖−1 are, respectively, the estimated water 
temperature (°C) at the end of the current and previous periods, 𝑇𝑎 is the air temperature (°C) 
at the reference height, 𝑅𝑛𝑤 is the net radiation (MJ m-2 d-1), 𝑅𝑖𝑙 is incoming longwave 
radiation (MJ m-2 day-1) , 𝐶𝑓 is a cloudiness factor, 𝜎 is the Stefan-Boltzman constant (MJ m-2 
K-4 day-1), Δ is the slope of the saturation vapour pressure curve at air temperature (kPa K-1), 
𝛾 is the psychrometric constant (kPa K-1), 𝑢 is wind speed (m s-1) at a height of 10 m, 𝑣𝑤∗  is 
the saturation vapour pressure at the water temperature (kPa), 𝑣𝑑 is the vapour pressure at the 
reference height (kPa), 𝜆𝐸 is the latent heat flux (MJ m-2 d-1), 𝐻 is the sensible heat flux (MJ 
m-2 d-1), ∆𝑊 is change in heat storage in water column during the current time-step (MJ m-2 d-

1), 𝜌𝑤 is the density of water (kg m-3), 𝑐𝑤 is the specific heat of water, and ℎ𝑤 is the depth of 
water (m). 

                                                 
1 In Equation (S11.11), we have adopted Payne’s equation (Payne, 1972, Equation 3; see also Berger et al, 1993, 
Equation 2) and Simpson and Paulson (1979, Equation 2) in which 𝑑𝑟2 is used rather than 𝑑𝑟 as published in the 
Finch and Gash (2002) paper. 
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𝑅𝑠 is either measured solar radiation or estimated from Equation S3.9 and 𝑅𝑖𝑙 may be 
estimated from Equation (S3.16). Finch and Gash (2002) used Payne (1972, Table 1) to 
estimate ∝ knowing 𝑔 and  𝜃. 𝑔 requires 𝑑 to be estimated which is computed from: 

𝑑𝑟2 = 1 + 0.033𝑐𝑜𝑠 � 2𝜋
365

𝐷𝑜𝑌�  (S11.20) 

where 𝐷𝑜𝑌 is day of year (𝐷𝑜𝑌 = 1, 2, …, 365). 

𝜃 is estimated as follows (Al-Rawi, 1991, Equation 1): 

sin𝜃 = cos  (𝑙𝑎𝑡) cos  (𝛿) cos  (𝜔𝑠) + sin  (𝑙𝑎𝑡) sin  (𝛿)   (S11.21) 

where 𝑙𝑎𝑡 is latitude in radians, 𝛿 is the solar declination angle in radians, and 𝜔𝑠 is the sunset 
hour angle in radians. 𝛿 and 𝜔𝑠 can be estimated from Equations (S9.18) and (S9.17) 
respectively. 

Lake evaporation by Penman-Monteith equation based on the equilibrium 
temperature (McJannet et al., 2008b) 

McJannet et al. (2008b) adopted the Penman-Monteith as the basis of applying the 
equilibrium temperature to estimate lake evaporation for a range of water bodies – shallow 
and deep lakes and an irrigation canal. Their approach is similar to that used by Finch (2001). 
We reproduce below the method proposed and tested by McJannet et al. (2008b). Evaporation 
is estimated as follows: 

𝐸𝑀𝑐𝐽 = 1
𝜆
�
𝛥𝑤(𝑄∗−𝐺𝑤)+86400𝜌𝑎𝑐𝑎�𝑣𝑤

∗ −𝑣𝑎�
𝑟𝑎

𝛥𝑤+𝛾
�  (S11.22) 

where 𝐸𝑀𝑐𝐽 is the evaporation from the water body (mm day-1), 𝑄∗ is the net radiation (MJ m-

2 day-1), 𝐺𝑤 is the change in heat storage in the water body (MJ m-2 day-1), 𝜌𝑎 is the density of 
air (kg m-3), 𝑐𝑎 is the specific heat of air (MJ kg-1 K-1), 𝑣𝑤∗  is the saturation vapour pressure at 
water temperature (kPa), 𝑣𝑎 is the daily vapour pressure (kPa) taken at 9:00 am, 𝜆 is the latent 
heat of vaporisation (MJ kg-1), 𝛥𝑤 is the slope of the saturation water vapour curve at water 
temperature (kPa °C-1), 𝛾 is the psychrometric constant (kPa °C-1), and 𝑟𝑎 is the aerodynamic 
resistance (s m-1) and is defined by Calder and Neal (1984, page 93) and McJannet et al. 
(2008b, Appendix B, Equation 10) as: 

𝑟𝑎 = 𝜌𝑎𝑐𝑎
𝛾� 𝑓(𝑢)

86400�
 (S11.23) 

where from Sweers (1976, page 398) and modified by McJannet et al. (2008b, Appendix B, 
Equation 11) and converting units from W m-2 mbar-1 to MJ m-2 kPa-1 day-1 yields: 

𝑓(𝑢) = �5
𝐴
�
0.05

(3.80 + 1.57𝑢10)  (S11.24) 

where 𝑢10 is the wind speed (m s-1) at 10 m and 𝐴 (km2) is the area of the water body, and 
other variables are defined previously. (For elongated water bodies, the square of the width 
was adopted as the area (Sweers, 1976, page 398).) 

𝑄∗ in Equation (S11.22) is defined as: 

𝑄∗ = 𝑅𝑠(1 − 𝛼) + (𝑅𝑖𝑙 −  𝑅𝑜𝑙)  (S11.25) 

where 𝑅𝑠 is the total daily incoming shortwave radiation (MJ m-2 day-1), 𝛼 is albedo for water 
(= 0.08), 𝑅𝑖𝑙 is the incoming longwave radiation (MJ m-2 day-1), and 𝑅𝑜𝑙 is the outgoing 
longwave radiation (MJ m-2 day-1). 
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𝑅𝑖𝑙 = �𝐶𝑓 + �1 − 𝐶𝑓� �1 − �0.261 𝑒𝑥𝑝(−7.77 × 10−4𝑇𝑎2)���𝜎(𝑇𝑎 + 273.15)4 (S11.26) 

where 𝐶𝑓 is the fraction of cloud cover, 𝑇𝑎 is the mean daily air temperature (°C), and 𝜎 is the 
Stefan-Boltzmann constant (MJ m-2 K-4 day-1). 

𝑅𝑜𝑙 = 0.97 𝜎(𝑇𝑤 + 273.15)4  (S11.27) 

where 𝑇𝑤 is the water temperature (°C) which will vary for each time-step and must be 
estimated before Equation (S11.22) can be applied. 

Because the heat storage in a water body affects surface water temperatures and, 
therefore, evaporation, it is necessary to predict heat storage changes over time which depend 
on the equilibrium temperature (𝑇𝑒), the time constant for the storage (𝜏), as well as the water 
temperature (𝑇𝑤). Equilibrium temperature is the surface temperature at which the net rate of 
heat exchange is zero (see Section 2.1.4). Again, following McJannet et al. (2008b, Equation 
23), we estimate water temperature, based on de Bruin (1982, Equation 10), from the 
following equation: 

𝑇𝑤 = 𝑇𝑒 + (𝑇𝑤0 − 𝑇𝑒)exp �− 1
𝜏
�  (S11.28) 

where 𝑇𝑤0 is the water temperature (°C) in the previous time-step, 𝑇𝑒 is the equilibrium 
temperature (°C), and 𝜏 is the time constant (day). 

Following McJannet et al. (2008b, Equation 5), the time constant (𝜏) in days is given by 
(de Bruin, 1982, Equation 4): 

𝜏 = 𝜌𝑤𝑐𝑤ℎ𝑤
4𝜎(𝑇𝑤𝑏+273.15)3+𝑓(𝑢)(Δwb+𝛾)  (S11.29) 

where 𝜌𝑤 is the density of water (kg m-3), 𝑐𝑤 is the specific heat of water (MJ kg-1 K-1), ℎ𝑤 is 
the water depth (m), 𝛥𝑤𝑏 is the slope of the saturation water vapour curve (kPa °C-1) 
estimated at wet-bulb temperature (𝑇𝑛) (°C). The water depth ℎ𝑤 could be a time-series if 
required (see Equation (S11.9). 

The equilibrium temperature is estimated from (de Bruin, 1982, Equation 3): 

𝑇𝑒 = 𝑇𝑤𝑏 + 𝑄𝑤𝑏
∗

4𝜎(𝑇𝑤𝑏+273.15)3+𝑓(𝑢)(Δwb+𝛾)   (S11.30) 

where 𝑄𝑤𝑏∗  is the net radiation at wet-bulb temperature and is estimated by: 

𝑄𝑤𝑏∗ = 𝑅𝑠(1 − 𝛼) + �𝑅𝑖𝑙 − 𝑅𝑜𝑙𝑤𝑏�  (S11.31) 

and where 𝑅𝑜𝑙𝑤𝑏  is the outgoing longwave radiation (MJ m-2 day-1) at wet-bulb temperature 
and is estimated as follows: 

𝑅𝑜𝑙𝑤𝑏 = 𝜎(𝑇𝑎 + 273.15)4 + 4𝜎(𝑇𝑎 + 273.15)3(𝑇𝑤𝑏 − 𝑇𝑎)  (S11.32) 

The change in heat storage, Gw, is calculated from (McJannet et al. (2008b, Equation 
31):  

𝐺𝑤 = 𝜌𝑤𝑐𝑤ℎ𝑤(𝑇𝑤 − 𝑇𝑤0)   (S11.33) 

Thus, for the time-step in question, 𝑇𝑤 and 𝐺𝑤 are now known and 𝐸𝑀𝑐𝐽 in Equation 
(S11.22) can be computed. 

The McJannet et al. (2008b) model operates at a daily time-step. 
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Based on the above approach, McJannet et al. (2008b) applied gridded climate data to 
estimate average daily (and monthly) evaporation for a range of water bodies from an 
irrigation canal to five large lakes. Overall, the modelled estimates are within 10% of the 
independent evaporation estimates (McJannet et al., 2008b, Section 5.7), however, the 
correlation coefficient between monthly modelled and observed evaporation values is very 
low for two of the lake studies.  

A worked example is provided in Appendix S19. 

The differences between Finch (2001) and McJannet et al. (2008b) procedures to 
estimate lake evaporation are: 

Finch (2001) McJannet et al. (2008b) 

Adopted Penman (1948) equation Adopted Penman-Monteith equation 

Wind function depends on wind speed Wind function depends on wind speed and lake 
area  

Adjusted water level for daily rainfall and 
daily evaporation loss 

No adjustment of water level for rainfall or 
evaporation 

Tested on one 10 m lake in UK Tested on three shallows lakes, a weir, an 
irrigation channel and two deep reservoirs 

 
Lake evaporation by lake-specific vertical temperature profiles   

Sometimes for a lake, monthly or seasonal vertical water temperature profiles are 
available that can be used to estimate the vertical water body heat flux (𝐺𝑤 in Equations 
(S11.1) and (11.22)). Fennessey (2000) provides an example for a shallow lake in 
Massachusetts, U.S as follows: 

𝐺𝑤 is defined more precisely as a function of time 

𝐺𝑤(𝑡) = 𝑑𝐻(𝑡)
𝑑𝑡

   (S11.34) 

where 𝐻(𝑡) is the total heat energy content of the lake per unit area of the lake surface at time 
𝑡 (MJ m-2) and is computed by: 

𝐻(𝑡) = 𝜌𝑤𝑐𝑤
𝐴𝑠

∑ �𝑇𝑤(𝑧𝑖+1)+𝑇𝑤(𝑧𝑖)
2

�𝑚
𝑖=1 𝑉𝑖 (S11.35) 

where the lake is segregated into 𝑚 horizontal layers, each layer being (𝑧𝑖+1 − 𝑧𝑖) thick (m) ,  
𝜌𝑤 is the density of water (kg m-3), 𝑐𝑤 is the specific heat of water (MJ kg-1 K-1), 𝐴𝑠 is the 
surface area of the lake (m2), 𝑇𝑤(𝑧𝑖) and 𝑇𝑤(𝑧𝑖+1) are respectively the water temperature at 𝑧𝑖 
and  𝑧𝑖+1, and 𝑉𝑖 is the volume (m3) of each layer defined by: 

𝑉𝑖 = (𝐴𝑖+1+𝐴𝑖)(𝑧𝑖+1−𝑧𝑖)
2

  (S11.36) 

 Thus, 𝐺𝑤(𝑡) can be incorporated in the Penman based equation of Finch (2001) 
(Equation S11.1) or in the Penman-Monteith based equation of McJannet et al. (2008b) 
(Equation S11.22).  
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Supplementary Material 
Appendix S12 Estimating evaporation from lakes covered by 

vegetation 
Brezny et al. (1973, Table 1) measured the evaporation rate of cattail, Typha augustfolia 

L., in 0.36 m2 tanks in Rajashan, India. Over approximately 75 days, they found that the 
evaporation from tanks with plants was 52% more than the evaporation from tanks without 
plants. In contrast, based on a comparison of measured evaporation from Barren Box Swamp 
(a lake covered with cattail, Typha orientalis PRESL., in NSW, Australia) compared with a 
lake devoid of vegetation, Linacre et al. (1970, Table IV) observed over three days 34% less 
evaporation from the swamp compared to a nearby lake without vegetation. Linacre et al. 
(1970, page 385) attributed the lower observed evaporation from swamp compared with the 
lake evaporation to lower albedo of the clear water in the lake, to the shelter provided by the 
reeds in the swamp, and to the internal resistance to water movement of the reeds. These 
contrasting results illustrate the difficulty in assessing the impact of vegetation on evaporation 
from lakes.   

There is an extensive body of literature addressing the question of evaporation from 
lakes covered by vegetation. Abtew and Obeysekera (1995) summarise the results of 19 
experiments which, overall, show that the transpiration of macrophytes is greater than open 
surface water. However, most experiments were not carried out in situ. On the other hand, 
Mohamed et al. (2008) lists the results of 11 in situ studies (estimating evaporation by eddy 
correlation or Bowen Ratio procedures) in which wetland evaporation is overall less than 
open surface water.   

Based on theoretical considerations and a literature survey, Idso (1981) offered the 
following observations. Firstly, reliable experiments assessing the relative rates of 
evaporation from vegetated water bodies and open surface water must be conducted in situ 
(Idso (1981, page 46). Secondly, for extensive water bodies covered by vegetation, 
evaporation will most likely be lower than the open surface water estimate (Idso (1981, page 
47). It is noted that Anderson and Idso (1987, page 1041) concluded that canopy surface 
geometry is important in the evaporative process and, therefore, for small or narrow canopies 
(e.g., macrophytes along stream reaches where advective energy is significant), evaporative 
water losses greater than open water can occur.  

Drexler et al. (2004, page 2072) in a review of models and methods to estimate wetland 
evapotranspiration offered the following comments. 

1. For many wetland types, the physical processes are poorly characterised. 
2. Generalisation is difficult because of variable nature of the results, even within 

well-studied vegetation types. 
3. The wetland environment is very varied, making it particularly difficult to measure 

ET. 
4. Seasonal variation of ET is also an important consideration. 

A number of models – Penman (Appendix S4), Penman-Monteith (Appendix S5), the 
Shuttleworth-Wallace variation of Penman-Monteith (Appendix S5), and Priestley-Taylor 
(Section 2.1.3) – have been used in several studies (Wessel and Rouse, 1994; Abtew and 
Obeysekera, 1995; Souch et al. 1998; Bidlake, 2000; Lott and Hunt, 2001; Jacobs et al., 2002; 
Drexler et al., 2004) to estimate the rate of evaporation from a lake covered by vegetation. 
Table S7 summarises seven comparisons and suggests that the weighted Penman-Monteith 
method which is able to account for variations of 𝑟𝑎 and 𝑟𝑠 for different vegetation surface 
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performs satisfactorily. For this model, and based on one experiment, the mean model 
estimate of lake evaporation compared to a mean measured value was 1.10. 

Readers are referred to a very recent review by Clulow et al (2012) in which they 
discuss, inter alia, under what conditions Penman, Priestley-Taylor and Penman-Monteith 
models can be used to estimate actual evaporation from a lake covered by vegetation. 
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Supplementary Material 
Appendix S13 Estimating potential evaporation in rainfall-runoff 

modelling 
Several procedures including Penman-Monteith, Priestley-Taylor and Morton have 

been used in daily and monthly rainfall-runoff modelling at a daily or monthly time-step to 
estimate potential evaporation/evapotranspiration. In the Penman-Monteith model the 
aerodynamic and surface roughness coefficients (𝑟𝑎 and 𝑟𝑠 respectively) need to be specified 
in Equation (5). Some typical values of 𝑟𝑎 and 𝑟𝑠 are listed in Table S2. In a sensitivity 
analysis in which the Penman-Monteith equation was incorporated into the SHE model 
(Abbott et al., 1986a, b), Beven (1979, page 176 and Figure 5) adopted constant values of 𝑟𝑎 
= 46 s m-1 for grass and 4 s m-1 for pine forest. However, values varied from mid-day (𝑟𝑠 = 
50 s m-1 for grass and 100 s m-1 for pine forest) to mid-night ( 𝑟𝑠 = 200 s m-1 for grass and 
400 s m-1 for pine forest). Beven concluded that the evapotranspiration estimates were very 
dependent on the values of the aerodynamic and canopy resistance parameters. 

In using the Priestley-Taylor algorithm (Equation (6)) for estimating catchment 
potential evapotranspiration, the parameter 𝛼𝑃𝑇 needs to be specified. Zhang et al (2001, 
Equation 4) adopted 1.28 and Raupach et al. (2001, page 1152) recommended 1.26. It should 
be noted that the 𝛼𝑃𝑇 ‘constant’ is commonly set to 1.26 although optimised values vary 
greatly depending on the moisture and advective conditions in which the measurements are 
made (see Table S8). This is not surprising as the Priestley-Taylor algorithm was developed 
assuming non-advective conditions and without recourse to measurement of the aerodynamic 
component. 

One of the advantages of Morton’s (1983a) CRAE method to estimate potential 
evapotranspiration is that it does not require wind data as input and, therefore, has been used 
extensively in Australia to estimate historical monthly potential evapotranspiration in rainfall-
runoff modelling (Chiew and Jayasuria, 1990; Chiew and McMahon, 1993; Chiew et al., 
1993; Jones et al., 1993; Siriwardena et al., 2006). In many water engineering applications, 
analysis depends on measured or estimated monthly runoff and potential evaporation over an 
extended period, often more than 100 years.  

There are at least two options available to analysts to estimate Morton’s 𝐸𝑇𝑊𝑒𝑡 in 
Australia. One approach is to use the mean monthly areal potential values (equivalent to wet 
environment areal evapotranspiration using Morton’s nomenclature) produced jointly by the 
CRC for Catchment Hydrology and the Bureau of Meteorology in 2001 (see 
http://www.bom.gov.au/climate/averages and Wang et al. (2001) with detailed methodology 
described in Chiew et al. (2002)). For daily modelling, the mean monthly values can be 
disaggregated into equal daily values. A major disadvantage with this approach is that there is 
no variation in potential evapotranspiration from year to year. However, Chapman (2003, 
Section 5) applied four rainfall-runoff models to 15 catchments in Australia and concluded 
that, in terms of modelling daily streamflow, equally good results could be obtained by using 
average monthly potential evapotranspiration data in the place of daily potential 
evapotranspiration values.  Rather than adopting average monthly values, Oudin et al. (2005) 
used average daily values in an application of four rainfall-runoff models to 308 catchments 
in Australia, France and the United States. They concluded that the average daily potential 
evaporation values resulted in modelled runoffs that were little different to those produced 
using daily varying potential evaporation (Oudin et al., 2005, Tables 3 and 4). 

http://www.bom.gov.au/climate/averages
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The second option is to estimate Morton’s wet environmental evapotranspiration from 
climate data using Equation (18). Chiew and Jayasuria (1990) reviewed Morton’s wet 
environmental evapotranspiration and compared, for three locations in south-eastern 
Australia, daily estimates of Morton’s wet environmental evapotranspiration with Penman’s 
free-water evaporation. They concluded that (i) Morton’s model can estimate successfully 
daily global and net radiation (Chiew and Jayasuria, 1990, page 293); (ii) Morton’s wet 
environment evaporation can be used to represent potential evapotranspiration in rainfall-
runoff modelling (Chiew and Jayasuria, 1990, page 293); (It should be noted that this 
assessment was based on Penman rather than the more appropriate Penman-Monteith model.) 
(iii) Morton’s 𝐸𝑇𝑊𝑒𝑡 cannot estimate low potential evapotranspiration values accurately and 
underestimates high values (Chiew and Jayasuria, 1990, page 291). 

Based on data for 19 climate stations in Australia from 1970 to 1989, Chapman (2001) 
demonstrated that overall pan evaporation data are a better estimate of potential 
evapotranspiration than maximum air temperature. Furthermore, he developed the following 
simple relationship (applicable only to Australia) that could be used if no other data were 
available to estimate potential evaporation for catchment modelling purposes: 

𝐸𝑇𝑒𝑞𝑃𝑀 = 𝐴𝑝𝐸𝑃𝑎𝑛 + 𝐵𝑝 (S13.1) 

where 𝐸𝑇𝑒𝑞𝑃𝑀 is the daily equivalent Penman-Monteith potential evaporation (mm day-1), 
𝐸𝑃𝑎𝑛 is the daily Class-A pan evaporation (mm day-1), and 𝐴𝑝 and 𝐵𝑝 are given by: 

𝐴𝑝 = 0.17 + 0.011𝐿𝑎𝑡 (S13.2) 

𝐵𝑝 = 10(0.66−0.211 𝐿𝑎𝑡) (S13.3) 

where 𝐿𝑎𝑡 is the latitude of the catchment in degrees South.  



66 

 

Supplementary Material 
Appendix S14 Estimating evaporation of intercepted rainfall 

It is recognised that interception is variable in space and in time. According to Klaassen 
et al. (1998) the interception storage of water in dense forests is an important process and 
varies seasonally (Gerrits et al., 2010) and across vegetation types. Crockford and Richardson 
(2000) note that because interception is dependent on rainfall and other meteorological 
variables it is difficult to make conclusions about interception losses for specific vegetation 
types. 

Because potential evaporation rates are higher in the hotter months of a year and lower 
during colder months, interception is seasonal. Other factors such as rainfall intensity, wind, 
and snow also impact interception storage and, hence, interception evaporation (Gerrits et al., 
2010). Gerrits et al. (2010) note that although interception storage can be very variable; for 
the beech forest they studied in Luxembourg, its size played a minor role in evaporation. 
Stewart (1977) has shown that the evaporation of transpired water is very different to the 
evaporation of intercepted water and, hence, it is important that these two components are 
considered separately. 

Although Herbst et al. (2008) state that the Gash model (Gash, 1979) is the most widely 
and successfully used interception model, Gerrits et al. (2010) adopted the Rutter model 
(Rutter et al., 1971, 1975) in their analysis. In his model, Gash (1979) incorporated the 
Penman-Monteith equation which was found by Herbst et al. (2008) to give estimates of wet 
canopy evaporation equivalent to those estimates from the eddy covariance energy balance 
approach. In the 1971 Rutter model the authors (Rutter et al., 1971) incorporated the Penman 
(1956) equation to estimate potential evaporation. 

Teklehaimanot and Jarvis (1991) concluded from their experiments that evaporation 
rates from a wet canopy could be satisfactorily modelled by the Penman (1948) equation. 
Moreover, they further showed that the actual evaporation from a partially wet canopy could 
be modelled by multiplying the Penman evaporation by 𝐶𝑟𝑒𝑡/𝑆𝑐𝑎𝑛 , where 𝐶𝑟𝑒𝑡 is the amount 
of water retained on the canopy (mm) and 𝑆𝑐𝑎𝑛 is the storage capacity of the canopy (mm). 

Readers are referred to a recent and comprehensive review by Muzylo et al. (2009), 
who addressed the theoretical basis of 15 interception models including their evaporation 
components, who identified inadequacies and research questions, and who noted there were 
few comparative studies and little information about uncertainty in measured and modelled 
parameters.  

Modelling evapotranspiration-interception in an urban area 
Grimmond and Oke (1991) developed a hydrologic model of an urban area at an hourly 

time-step to estimate evaporation over a range of meteorological conditions. The model 
includes the Penman (1948) equation modified by Monteith (1965) for vegetation surface and 
the Rutter et al. (1971) interception model modified by Shuttleworth (1978) to provide a 
smooth transition between wet and dry vegetation canopies. In addition, anthropogenic heat 
flux and stored heat flux were also modelled. The model was tested for a small urban area in 
Vancouver, Canada and according to the authors the model showed promise. 
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Supplementary Material 
Appendix S15 Estimating bare soil evaporation 

Following Philip (1957), Ritchie (1972, page 1205) proposed a two-stage model to 
estimate bare soil evaporation. Salvucci (1997) developed further the Ritchie approach 
defining the evaporation loss for stage-1 by: 

𝐸𝑠𝑡𝑎𝑔𝑒 1 = 𝐸�𝑃𝑒𝑛𝑚𝑎𝑛× 𝑡1 (S15.1) 

where 𝐸𝑠𝑡𝑎𝑔𝑒 1 is the cumulative  stage-1 bare soil evaporation (mm) which, according to 
Allen et al. (1998, page 145), should not exceed the readily evaporable water (REW) which 
they define as the maximum depth of water that can be evaporated from the top-soil without 
restriction. Typical REW values are: sand 2 – 7 mm, loam 8 – 10 mm and clay 8 – 12 mm. 𝑡1 
is the length of the stage-1 atmosphere-controlled evaporation period (day) which is defined 
as: 

𝑡1 = 𝑅𝐸𝑊
𝐸�𝑃𝑒𝑛𝑚𝑎𝑛

 (S15.2) 

𝐸�𝑃𝑒𝑛𝑚𝑎𝑛 is the daily average stage-1 actual evaporation (mm day-1) and is assumed to be at or 
near the rate of Penman evaporation. McVicar et al. (2012, page 183) prefers to use the term 
energy-limited rather than stage-1. Alternatively, a more rigorous procedure to estimate 𝑡1 is 
recommended by Dingman (1992, page 293) who suggests the end of stage-1 is readily 
observed from ground or satellite observations of albedo.  

Discussing evaporation from bare soil, Monteith (1981, pages 10 and 11) observes that 
“When bare soil is thoroughly wetted, the soil surface behaves like water in so far as the 
relative humidity of the air in contact with the surface is 100%”. Monteith (1981, page 11) 
further adds that as a matter of observation the rate of evaporation “…is usually very close to 
the rate for adjacent short vegetation, despite differences in radiative and aerodynamic 
properties”. 

Stage-2 evaporation (the water-limited stage, McVicar et al. (2012, page 183)), is 
dependent on stage-1 and two limiting cases need to be considered.  

1. Where the unsaturated hydraulic conductivity (mm day-1), 𝐾𝑢𝑠 <<  𝐸�𝑃𝑒𝑛𝑚𝑎𝑛. This would 
occur with relatively low permeability soils. 

2. Where 𝐾𝑢𝑠 >>  𝐸�𝑃𝑒𝑛𝑚𝑎𝑛 and, therefore, the cumulative drainage is much greater than the 
cumulative actual evaporation.  

Salvucci (1997, Equations 18 and 19 respectively) developed the following empirical 
equations for the two cases: 

For 𝐾𝑢𝑠 <<  𝐸�𝑃𝑒𝑛𝑚𝑎𝑛 

𝐸𝑏𝑠𝑜𝑖𝑙(𝑡) = 𝐸𝑠𝑡𝑎𝑔𝑒 1 �−0.621 + 1.621 � 𝑡
𝑡1
��
0.5

, 𝑡 ≥ 𝑡1 (S15.3) 

For 𝐾𝑢𝑠 >>  𝐸�𝑃𝑒𝑛𝑚𝑎𝑛 

𝐸𝑏𝑠𝑜𝑖𝑙(𝑡) = 𝐸𝑠𝑡𝑎𝑔𝑒 1 �1 + 0.811𝑙𝑛 � 𝑡
𝑡1
��, 𝑡 ≥ 𝑡1 (S15.4) 

where 𝐸𝑏𝑠𝑜𝑖𝑙(𝑡) is the cumulative bare soil evaporation up to time t. 
As a check on the total evaporable water (TEW), typical values for a range of soils are 

provided by Allen et al. (1998, Table 19). For example, sand = 6 – 12 mm, loam = 16 – 22 
mm and clay = 22 – 29 mm. TEW is defined by Allen et al. (1998, Equation 73) as: 
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 𝑇𝐸𝑊 = 10(𝜃𝐹𝐶 − 0.5𝜃𝑊𝑃)𝑧𝑒 (S15.5) 

where 𝜃𝐹𝐶  is the soil moisture content (%) at field capacity, 𝜃𝑊𝑃 is the soil moisture content 
(%) at wilting point, 𝑧𝑒 is the depth of the surface soil layer that is subject to drying from 
evaporation. If this is unknown, Allen et al. (1998, page 144) recommend 𝑧𝑒 = 0.10 – 0.15 m. 

It is interesting to note that Penman (1948, page 137) observed from his experiments 
that freshly wetted bare soil evaporated at about 90% of the rate observed for open surface 
water for the same weather conditions. 

Based on FAO56 methodology (Allen et al., 1998), Allen et al. (2005) developed a two-
stage strategy (energy limited and water limited stages) to estimate bare soil evaporation. 
Mutziger et al (2005) applied the methodology to seven data sets and concluded that model 
accuracy was about ±15%.   
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Supplementary Material 
Appendix S16 Class-A pan evaporation equations and pan coefficients 
Although some researchers, e.g., Watts and Hancock (1984, page 295), are critical of an 

evaporative pan as a reliable climatic instrument (they list 10 potential problems), it should be 
noted that Roderick et al. (2009b, Section 4) comment “…that the pan evaporation record 
provides the only direct measurement of changing evaporative demand…” which is crucial in 
climate change studies.  In Australia, 60 stations have been identified as high quality Class-A 
pan evaporation stations (Jovanovic et al., 2008).  

Equations: Kohler et al. (1955) 
Kohler et al. (1955) (see Dingman (1992, Equation 7.41)) developed the following 

empirical equations to estimate daily open-water evaporation, 𝐸𝑓𝑤 (mm day-1) from Class-A 
pan evaporation data: 

𝐸𝑓𝑤 = 0.7[𝐸𝑃𝑎𝑛 + 0.064𝑝𝛼𝑃𝑎𝑛(0.37 + 0.00255𝑢𝑃𝑎𝑛)|𝑇𝑃𝑎𝑛 − 𝑇𝑎|0.88] for 𝑇𝑃𝑎𝑛 > 𝑇𝑎 

 (S16.1) 

𝐸𝑓𝑤 = 0.7[𝐸𝑃𝑎𝑛 − 0.064𝑝𝛼𝑃𝑎𝑛(0.37 + 0.00255𝑢𝑃𝑎𝑛)|𝑇𝑃𝑎𝑛 − 𝑇𝑎|0.88] for 𝑇𝑃𝑎𝑛 < 𝑇𝑎  

    (S16.2) 

where 𝐸𝑃𝑎𝑛 is the daily evaporation measured by an unguarded Class-A pan (mm day-1), p is 
the atmospheric pressure (kPa), 𝛼𝑃𝑎𝑛 is the proportion of energy exchanged through the sides 
of the pan and is specified in Equation (S16.3), 𝑢𝑃𝑎𝑛 is the average daily wind speed at a 
height of 150 mm above the pan (km day-1), and 𝑇𝑝𝑎𝑛 and 𝑇𝑎 are respectively the mean daily 
pan water and air temperature (°C). 

𝛼𝑃𝑎𝑛 = 0.34 + 0.0117𝑇𝑃𝑎𝑛 − 3.5×10−7(𝑇𝑃𝑎𝑛 + 17.8)3 + 0.00135𝑢𝑃𝑎𝑛0.36  (S16.3) 

Wind run for anemometers not at 150 mm above the pan should be adjusted using Equation 
(S4.4). Based on an intercontinental comparison, Burman (1976) concluded that the Kohler et 
al. (1955) equations were superior to empirical methods proposed by Christiansen (1968) and 
Oliver (1961) which are not included here. 

Equations: Chiew & McMahon (1992) 
Chiew and McMahon (1992, Appendix) developed daily, 3-day, weekly and monthly 

pan coefficients as simple linear regressions of the form: 

𝐸𝑃𝑒𝑛,𝑗 = 𝐼𝑗 + 𝐺𝑗𝐸𝑃𝑎𝑛,𝑗   (S16.4) 

where for month j, 𝐸𝑃𝑒𝑛,𝑗 is the Penman(1948) estimate of evaporation for a land environment 
rather than open water, 𝐸𝑃𝑎𝑛,𝑗 is the evaporation from a Class-A pan, and 𝐼𝑗 and 𝐺𝑗 are 
respectively the intercepts and the gradients of daily, 3-day, weekly and monthly totals. 
Values of 𝐼𝑗 and 𝐺𝑗 for 26 climate stations in Australia are given in Chiew and McMahon 
(1992). 

Equations: Allen et al (1998) 

Equations for estimating Reference Crop evapotranspiration, 𝐸𝑅𝐶, are presented by 
Allen et al. (1998, page 55, Table 7) taking into account the site of the pan in terms of the 
upwind fetch as follows: 

𝐸𝑇𝑅𝐶 = 𝐾𝑃𝑎𝑛𝐸𝑃𝑎𝑛 (S16.5) 
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where 𝐾𝑃𝑎𝑛 is the pan coefficient given by: 
for a green vegetated fetch (1 to 1000 m) within a dry area at least 50 m wide  

𝐾𝑃𝑎𝑛 = 0.108 − 0.0286𝑢2 + 0.0422𝑙𝑛(𝐹𝐸𝑇) + 0.1434𝑙𝑛(𝑅𝐻𝑚𝑒𝑎𝑛)
− 0.000631[𝑙𝑛(𝐹𝐸𝑇)]2𝑙𝑛(𝑅𝐻𝑚𝑒𝑎𝑛) 

 (S16.6) 

for a dry fetch (1 to 1000 m) within a green vegetated area at least 50 m wide  

𝐾𝑃𝑎𝑛 = 0.61 + 0.00341𝑅𝐻𝑚𝑒𝑎𝑛 − 0.000162𝑢2𝑅𝐻𝑚𝑒𝑎𝑛 − 0.00000050𝑢2𝐹𝐸𝑇
+ 0.00327𝑢2𝑙𝑛(𝐹𝐸𝑇) − 0.00289𝑢2𝑙𝑛(86.4𝑢2)
− 0.0106𝑙𝑛(86.4𝑢2)𝑙𝑛(𝐹𝐸𝑇) + 0′00063[𝑙𝑛(𝐹𝐸𝑇)]2𝑙𝑛(86.4𝑢2) 

 (S16.7) 

where 𝐹𝐸𝑇 is the fetch or length of the identified surface (m), 𝑢2 is the daily wind speed at 2 
m height, and 𝑅𝐻𝑚𝑒𝑎𝑛 is the mean daily relative humidity (%). According to Allen et al. 
(1998, Table 7), Equations (S16.6) and (S16.7) should not be used outside the following 
ranges 1 m ≤ FET ≤ 1000 m, 30% ≤ 𝑅𝐻𝑚𝑒𝑎𝑛 ≤ 84%, and 1 ms-1 ≤ 𝑢2 ≤ 8 m s-1. 

A range of pan coefficients based on Equations (S16.6) and (S16.7) are displayed in 
Table S9 which illustrates the importance of appropriately specifying the microclimate 
around a pan in order to have a representative estimate of Reference Crop evapotranspiration. 
Because 𝐸𝑃𝑎𝑛 = 𝐸𝑇𝑅𝐶

𝑓𝑃𝑎𝑛
, we are able to use the table to explore how the evaporating power (in 

this case being represented by pan evaporation 𝐸𝑃𝑎𝑛) is affected quantitatively by the 
characteristics of a site. For example, the pan evaporation under a light wind, low humidity 
and a green vegetated fetch will be reduced by ~14% for a 10 m fetch compared with a 1000 
m one; for a dry fetch under the same conditions, the pan evaporation will increase by ~20%. 

Equations: Snyder et al. (2005) 
Based on pan data in California, Snyder et al. (2005, Equations 6, 8 and 9) proposed the 

following set of empirical equations to estimate reference crop evaporation. 

𝐸𝑇𝑅𝐶 = 10𝑠𝑖𝑛 ��𝐸𝑝𝑎
19.2

� 𝜋
2
�  (S16.8) 

𝐸𝑝𝑎 = 𝐸𝑝𝑎𝑛𝐹100  (S16.9) 

𝐹100 = −0.0035[𝑙𝑛(𝐹)]2 + 0.0622[𝑙𝑛(𝐹)] + 0.79   (S16.10) 

where 𝐸𝑇𝑅𝐶 is the reference crop evapotranspiration (mm day-1), 𝐸𝑝𝑎𝑛 is the Class-A pan 
evaporation (unscreened) (mm day-1) and 𝐹 is the upwind grass fetch (m). The method is 
suitable for semi-arid conditions but would require calibration for humid or windier climates 
(Snyder et al., 2005, page 252). 

Ghare et al. (2006) introduced modifications to the Snyder equations but field testing in 
Italy and Serbia by Trajkovic and Kolakovic (2010) showed that the original Snyder model 
performed better. 

Computed monthly and annual Class-A pan coefficients 
Although it is not possible to check independently that pan coefficients are correct, one 

can compare computed values with those found in the literature. Published results of 
estimating the pan coefficients for the two Penman wind functions (Equations S4.5 and S4.6) 
are presented in Table S10 along with pan coefficients for Reference Crop evapotranspiration 
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and the Priestley-Taylor potential evaporation. The exceptionally low pan coefficients for 
Priestley-Taylor are based on 16 climate stations in Jordon. The coefficients are plotted 
against mean annual unscreened Class-A pan evaporation in Figure S2 which illustrates, at 
least for this arid environment, that adopting a spatially constant pan coefficient may be 
unwise. This observation is consistent with McVicar et al. (2007, Figure 10) who observed 
for the Coarse Sandy Hill catchments in north-central China both spatial and seasonal 
variations in pan coefficients. 

Published monthly and annual open-water pan coefficients are often extrapolated to 
other locations.  Care needs to be taken as several local factors will impact pan coefficients 
including relative humidity (Alvarez et al., 2007; Hoy and Stephens, 1979; Kohler et al., 
1955), reservoir dimensions (Alvarez et al., 2007), degree of stratification (Hoy and Stephens, 
1979), presence of aquatic plants (Winter, 1981), and lake turbidity and salinity (Grayson et 
al., 1996). Locally calibrated coefficients are preferred.   

Australian pan coefficients 
In Australia, in order to prevent the consumption of water by birds and animals, bird 

guards (wire screens) were installed progressively on the Class-A evaporation pans during the 
late 1960s and early 1970s, and by 1975 most pans were operating with screens which reduce 
the evaporation.  van Dijk (1985) compared the evaporation recorded from evaporation pans 
with and without bird guards at four Australian locations between 1967 to 1971. The average 
monthly effect at the four locations ranged from 4.1% to 8.2% reduction in measured 
evaporation, with an average of 6.6%. These reductions are less than the values of 13% for 
humid areas and 10% for semi-arid regions noted in a review by Lincare (1994).  Based on 
the findings of van Dijk (1985), the Australian Bureau of Meteorology (2007) recommends 
an annual conversion factor of +7%. Jovanovic et al. (2008) have developed a high-quality 
monthly pan evaporation data set that includes 60 locations across Australia covering the 
period from about 1970 to present for monitoring evaporation trends.  

In Australia, the associated climate data required to estimate open-water evaporation 
(𝐸𝑓𝑤) (mm/unit time) using Equation (S16.1) or (S16.2) are not available at many pan 
evaporation sites and, as a consequence, monthly (or annual) pan coefficients are developed 
using: 

𝐸𝑓𝑤,𝑗 = 𝐾𝑗𝐸𝑃𝑎𝑛,𝑗 (S16.11) 

where j is the specific month and 𝐾𝑗 is the average monthly pan coefficient. Traditionally, 𝐾𝑗 
is assumed constant, although Linacre (1994, Figure 1) using Stanhill’s (1976) data for 12 
sites world-wide found that for very high evaporation rates 𝐾𝑗 decreased from the nominal 0.7 
value.  

Hoy and Stephens (1977; 1979) calculated the monthly pan coefficients of seven 
Australian reservoirs by comparing the evaporation of a Class-A pan with the heat budget 
method over several years.  The average monthly pan estimates are listed in Table S11.  
Annual pan coefficients were estimated for a greater number of Australian reservoirs by Hoy 
and Stephens (1977; 1979) and these results are listed in Table S12.  

We have computed monthly pan coefficients for 68 sites across Australia by correlating 
monthly evaporation values from Class-A evaporation pans with corresponding Penman 
evaporation estimates using his 1956 wind function, based on measured daily climate data at 
the same or a nearby location, thus yielding open-water evaporation. Thirty-nine of the 68 
sites are part of the high quality evaporation pan network (Jovanovic et al., 2008, Table 1); 
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another 29 stations with monthly pan coefficients have been included in the analysis for 
spatial completeness. Pan coefficients are presented in Table S6. At least 10 monthly values 
are used in calculating 79.4% of the computed monthly pan coefficients. The analysis of the 
results in the table shows that mean monthly pan coefficients (weighted for length of record) 
across the 68 Australian stations is 0.80. This average value compares with 0.76 (based on 
published data in Table S10 for Penman (1956) and Penman (1948) the latter adjusted by 
Equation (S4.8) to be equivalent to Penman (1956)). It should be noted that in computing the 
monthly solar radiation term in the Penman model, the coefficients 𝑎𝑠 and 𝑏𝑠 in Equation 
(S3.9) were optimised to 0.05 and 0.65 respectively (Appendix S6). 

For many practical problems, annual evaporation estimates need to be disaggregated 
into monthly values or monthly evaporation values into daily values. This process is not 
straightforward, when there is no concurrent at-site climate data which could be used to 
provide guidance as to how the annual or monthly values should be partitioned. 

For annual evaporation, a standard approach is to use monthly pan coefficients if 
available. Another approach, that is available to Australian analysts, is to apply the average 
monthly values of point potential evapotranspiration for the given location and pro rata the 
values to sum to the annual evaporation. Maps for each calendar month are available in Wang 
et al. (2001). This approach is based on the recent analysis by Kirono et al. (2009, Figure 3) 
who found that, for 28 locations around Australia, Morton’s potential evapotranspiration 
𝐸𝑇𝑃𝑜𝑡 correlated satisfactorily (R2 = 0.81) with monthly Class-A pan evaporation although 
over-estimating pan evaporation by 8%.  

For monthly disaggregation to daily data in Australia one could utilize the analysis of 
Rayner (2005) who reports on synthetic gridded daily Class-A pan evaporation data based on 
solar radiation and vapour pressure deficit (Jeffrey et al., 2001). The grids are at a spatial 
resolution of 0.05°(~5 km) and cover the period 1919 to present. McVicar et al. (2007, page 
211) note, however, that if pan coefficients are spatially averaged across a range of climates 
the averaged value will tend to be damped. 

Modifying pan data for estimating evaporation from a deep lake 
To estimate deep lake evaporation from pan data, Webb (1966, Equation 3) proposed an 

alternative approach based on vapour pressure to estimate monthly lake evaporation by 
summing daily values as follows: 

𝐸𝐿,𝑑 = 1.50 𝑣𝐿
∗−𝑣4

𝑣𝑃
∗−𝑣4

𝐸′𝑝𝑎𝑛  (S16.12) 

where 𝐸𝐿,𝑑 is the daily estimate of lake evaporation (mm day-1), 𝐸′𝑝𝑎𝑛 is the daily pan 
evaporation (mm day-1), 𝑣𝐿∗ is the afternoon average lake saturation vapour pressure (mbar), 
𝑣𝑃∗  is the afternoon maximum pan saturation vapour pressure (mbar), and 𝑣4 is the afternoon 
average vapour pressure 4 m above the ground surface (mbar). The monthly evaporation 
value is the sum of the daily values. The empirical coefficient of 1.50 was established from 
Lake Hefner data. 
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Supplementary Material 
Appendix S17 Comparing published evaporation estimates 

A detailed review of the literature identified 27 papers in which comparisons were 
made between model estimates of potential or actual evaporation or evapotranspiration and   
field measurements (water balance studies, Bowen Ratio or eddy correlation), lysimeter 
observation or comparisons between evaporation equations. Detailed discussion of field 
measurements of evaporation are outside the scope of this paper. We refer readers to Harbeck 
(1958), Grant (1975), Myrup et al. (1979), Brutsaert (1982), Dingman (1992, Sections 7.8.2 
and 7.8.3), Lenters et al. (2005), and Ali et al. (2008) for applications of the techniques. 
Details for each of the 27 studies are listed Table 5. For each study two items of information 
are generally provided in the table – the ratio of the average model values (daily, monthly or 
annual) to a base value, and a measure of error generally as a root mean square error or 
standard error of estimate. For four studies, multiple sets of results are available. 

The bias results (ratios in Table 5) are consolidated in Table 6 under six headings. 
Under the first two headings each model result is compared with measured observations. For 
the six lake studies a water balance, eddy correlation or Bowen Ratio estimate were the basis 
of the comparison. For the seven non-lake studies, the base estimates were from eddy 
correlation or Bowen Ratio experiments. The third comparison of four studies is based on 
lysimeter observations. The remaining three sets of comparisons are between various models 
and Penman-Monteith, Priestley-Taylor or Hargreaves-Samani estimates. The results are 
summarised in Figure 3 where each model ratio value includes at least two studies. 

In interpreting these results, readers should note the comment of Winter and Rosenberry 
(1995, page 983) who stated that “Regardless of their intended use, it is not uncommon for 
equations developed for determination of potential evapotranspiration from vegetation to be 
used for determination of evaporation from open water”.  

The information in Figure 3 requires some interpretation. Firstly, the ratios in column 
(1) “Lakes”, column (2) “Lysimeter” and column (3) “Land” may be regarded as absolute 
estimates in the sense that the modelled estimates are compared against measured 
evaporation. Secondly, ratios in columns (4) “Relative to PM” and (5) “Relative to PT” are 
relative to Penman-Monteith and Priestley-Taylor set to a ratio value of 1.00. Thirdly, the 
values in columns (1) and (2) are for open-water (“Lakes”) or “Lysimeter” measurements, in 
which water is not limiting in either comparison. On the other hand, values in column (3) will 
have been influenced by the availability of soil moisture to the plants and by the vegetation 
type and, therefore, will not be evaporating or transpiring at a potential rate. This would 
explain why Turc (Tu) and the Priestley-Taylor (PT) values differ markedly between columns 
(2) and (3). 

Table 5 also contains error information mainly as a root mean square error (RMSE) or 
as a standard error of estimate (SEE). We have summarised the relevant results in Table 7 
which lists the root mean square error (mm day-1) or the standard error of estimate (mm day-

1). Because the values of RMSE or SEE were available for Priestley-Taylor in all 
comparisons, relative errors (as the ratio of RMSE or SEE for the particular model to that for 
PT) have been computed. These results are summarised as the median for each method. As a 
guide, the median RMSE for the six Priestley-Taylor analyses is 0.97 mm day-1 and 0.66 mm 
day-1 for the eight SEE values.  
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Supplementary Material 
Appendix S18 Comparing evaporation estimates based on measured 

climate data for six Australian automatic weather stations 
Table S13 shows the results of estimating annual evaporation for 14 daily and monthly 

evaporation/evapotranspiration models based separately on daily and monthly climate data 
recorded at six widely distributed Australian automatic weather stations over the period 
January 1979 to March 2010. The latitude and longitude of each station are listed in the table 
along with the mean annual rainfall estimated for the concurrent period used in the 
computation of evaporation estimates. Annual values are the sum of 12 monthly means. The 
number of days and complete months of data available at each station is as follows: Perth 
Airport (6238 days, 192 months), Darwin Airport (11307 days, 334 months), Alice Springs 
Airport (11288 days, 320 months), Brisbane Airport (3674 days, 111 months), Melbourne 
Airport (3842 days, 116 months), and Grove (Companion) (9622 days, 241 months). The 
authors advise that care needs to be exercised in extending more widely any conclusions 
arising from this analysis of only six stations. 

The results in the table are listed under four main groups: those that estimate actual 
open-water evaporation (i) Penman 1956 (P56), Priestley-Taylor (PT), Makkink (Ma); (ii) 
those that estimate reference crop evaporation – FAO-56 Reference Crop (FAO-56 RC), 
Blaney-Criddle (BC), Hargreaves-Samani (HS), modified Hargreaves (mod H), Turc (Tu); 
(iii) models that estimate actual evapotranspiration – Morton (Mo), Brutsaert-Strickler (BS), 
Granger-Gray (GG),  Szilagyi-Jozsa SJ); and (iv) three additional methods that include 
Thornthwaite’s monthly potential estimates (Th), PenPan modelled estimates of actual Class-
A pan evaporation (PP), and actual evaporation measured by a Class-A evaporation pan. In 
interpreting these results readers should note that we have applied each method as set out in 
the relevant reference except we adopted a time-step of both one day and one month. For 
some models the recommended time-step for analysis is longer than one day. This 
information is provided where the model is discussed in the paper.  

For the daily data in each group, the ratio of the annual evaporation to the value for a 
key method is calculated and listed as the “Daily ratio”. Also for each station, the ratio of 
annual estimates based on monthly and daily data (M to D ratio) are compared. Several 
observations follow: 

1. Relative to the key procedure in each group, the evaporation estimates in Table S13 are 
reasonably consistent, excepted for Blaney-Criddle, across the six sites which have very 
different climates. As noted in Appendix S9 the Blaney-Criddle procedure was 
developed for application in the dry western United States and, therefore, may not 
perform successfully in regions subject to a different climate (like Melbourne or Grove) 
where the procedure appears to perform inadequately. See also item 9 below. 

2. On averaging the daily ratios for the open water group, the actual evaporation estimates 
for Priestley-Taylor and Makkink are 0.88× and 0.59× the Penman 1956 estimate. This 
is consistent with our summary of published data presented in Table 6 and Figure 3.  

3. For the reference crop group, Hargreaves-Samani and Turc are 1.10× and 0.90× the 
FAO-56 Reference Crop average, again consistent with the lysimeter data listed in 
Table 6 and Figure 3. 

4. The PenPan estimates for the six stations are consistent with the values plotted in 
Figure S3 which are based on 68 Australian stations. 

5. The results in Table S13 show that for Penman 1956, Priestley-Taylor, Makkink, FAO-
56 Reference Crop, Turc, Granger-Gray and PenPan there is less than ~2% difference in 
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annual evaporation estimates using a daily or a monthly time-step. However, for 
Szilagyi-Jozsa and Brutsaert-Strickler, the monthly values are respectively 7% and 10% 
higher than the daily values whereas for Hargreaves-Samani and Blaney-Criddle the 
monthly values are 14% and 22% lower than the daily estimates. 

6. In the analysis we observed that Brusaert-Strickler and Szilagyi-Jozsa generated 
negative daily evapotranspiration (12.7% and 15.9% of days respectively). This 
inadequacy was noted by Brutsaert and Strickler (1979, page 448) in the analysis of 
their model results. In our analysis the negative evaporations occurred mainly in winter 
(May through to August). 

7. It was also observed that for Grove using Szilagyi-Jozsa model, unrealistically high 
equilibrium temperatures (say > 100°C) were computed for 2.8% of days. These 
unrealistic temperatures appeared to occur mainly on days when the difference between 
maximum and minimum humidity is around zero. 

8. On average, mean annual actual evaporation estimates at a site should be less than mean 
annual rainfall at the site.  Brusaert-Strickler, Granger-Gray and Szilagyi-Jozsa meet 
this criterion for four, three and three of the six sites respectively. On the other hand, all 
Morton’s estimates were less than the mean annual rainfalls for all sites.  

9. Blaney and Criddle also generated many negative daily evapotranspiration estimates, 
even for Alice Springs which climate-wise is semi-arid and not too dissimilar to the dry 
western United States. 
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Supplementary Material 
Appendix S19 Worked examples 

This set of worked examples is based on data from the Automatic Weather Station 
015590 Alice Springs Airport (Australia). The daily data and other relevant information for 
the worked examples are for the 20 July 1980 as follows:  

Station: Alice Springs Airport 
Station reference number: 015590 
Latitude: 23.7951 °S 
Elevation: 546 m 
Maximum daily air temperature: 21.0 °C 
Minimum daily air temperature: 2.0 °C 
Maximum relative humidity: 71% 
Minimum relative humidity: 25% 
Daily sunshine hours: 10.7 hours 
Wind run at 2 m height: 51 km day-1 (=51×1000/(24×60×60) = 0.5903 m s-1) 

 
General constants used in worked examples: 
Solar constant (𝐺𝑠𝑐) = 0.0820 MJ m-2 min-1 
Stefan-Boltzmann (𝜎) = 4.903×10-9 MJ m-2 day-1 °K-4  
von Kármán constant (𝑘) = 0.41 
Latent heat of vaporization (λ) = 2.45 MJ kg-1 
Mean density of air (𝜌𝑎) = 1.20 kg m-3 at 20°C    
Specific heat of air (𝑐𝑎) = 0.001013 MJ kg-1 K-1  
Mean density of water (𝜌𝑤) = 997.9 kg m-3 at 20°C    
Specific heat of water (𝑐𝑤) =0.00419 MJ kg-1 K-1  
 
Specific constants used in worked examples: 
Albedo for water = 0.08 (adopted from Table S3) 
Albedo for reference crop α = 0.23 (adopted from Table S3) 
Priestley-Taylor 𝛼𝑃𝑇 = 1.26 for PT equation 
Priestley-Taylor 𝛼𝑃𝑇 = 1.28 for BS equation 
 
Worked example 1: Intermediate calculations for daily analysis 
Estimate the values of the intermediate variables associated with computing daily 

evaporation. 

Mean daily temperature ( 𝑻𝒎𝒆𝒂𝒏) 

𝑇𝑚𝑒𝑎𝑛 = 𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛
2

 (see Equation (S2.1)) (S19.1) 

𝑇𝑚𝑒𝑎𝑛 = 21.0+2.0
2

 = 11.5°C (S19.2) 

Saturation vapour pressure at 𝑻𝒎𝒂𝒙 (𝒗𝑻𝒎𝒂𝒙∗ ) 

𝑣𝑇𝑚𝑎𝑥∗ = 0.6108𝑒𝑥𝑝 � 17.27𝑇𝑚𝑎𝑥
𝑇𝑚𝑎𝑥+237.3

� (see Equation (S2.5)) (S19.3) 

𝑣𝑇𝑚𝑎𝑥∗ = 0.6108𝑒𝑥𝑝 �17.27×21.0
21.0+237.3

� = 2.4870 kPa (S19.4) 
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Saturation vapour pressure at 𝑻𝒎𝒊𝒏 (𝒗𝑻𝒎𝒊𝒏∗ ) 

𝑣𝑇𝑚𝑖𝑛∗ = 0.6108𝑒𝑥𝑝 � 17.27𝑇𝑚𝑖𝑛
𝑇𝑚𝑖𝑛+237.3

� (see Equation (S2.5)) (S19.5) 

𝑣𝑇𝑚𝑖𝑛∗ = 0.6108𝑒𝑥𝑝 �17.27×2.0
2.0+237.3

� = 0.7056 kPa (S19.6) 

Daily saturation vapour pressure (𝒗𝒂∗ ) 

𝑣𝑎∗ = 𝑣𝑇𝑚𝑎𝑥
∗ +𝑣𝑇𝑚𝑖𝑛

∗

2
 (see Equation (S2.6)) (S19.7) 

𝑣𝑎∗ = 2.4870 +0.7056
2

  = 1.5963 kPa 

Mean daily actual vapour pressure (𝑣𝑎) 

𝑣𝑎 =
𝑣𝑇𝑚𝑖𝑛
∗ 𝑅𝐻𝑚𝑎𝑥

100 +𝑣𝑇𝑚𝑎𝑥
∗ 𝑅𝐻𝑚𝑖𝑛

100
2

 (see Equation (S2.7)) (S19.8) 

𝑣𝑎 =
0.7056 71

100+2.4870 25
100

2
 = 0.5614 kPa (S19.9)  

Slope of saturation vapour pressure at 𝑻𝒎𝒆𝒂𝒏 (∆) 

∆ = 4098 �0.6108𝐸𝑥𝑝 � 17.27𝑇𝑚𝑒𝑎𝑛
𝑇𝑚𝑒𝑎𝑛+237.3

�� (𝑇𝑚𝑒𝑎𝑛 + 237.3)2�  (see Equation (S2.4))(S19.10) 

∆ = 4098 �0.6108𝐸𝑥𝑝 �17.27×11.5
11.5+237.3

�� (11.5 + 237.3)2�  = 0.0898 kPa °C-1 (S19.11) 

Atmospheric pressure 

𝑝 = 101.3 �293−0.0065𝐸𝑙𝑒𝑣
293

�
5.26

 (see Equation (S2.10)) (S19.12) 

𝑝 = 101.3 �293−0.0065×546
293

�
5.26

 = 95.01027 kPa (S19.13) 

Psychrometric constant 

𝛾 = 0.00163 𝑝
𝜆
 (see Equation (S2.9)) (S19.14) 

𝛾 = 0.00163 95.01027
2.45

  = 0.0632 kPa °C-1 (S19.15) 

Day of Year 
1980 is a leap year, therefore 

𝐷𝑜𝑌 = 31 + 28+ 31 +30 + 31 +30 + 20 +1 = 202 (see Equations (S3.21 to S3.23)) (S19.16) 

Inverse relative distance Earth to Sun (𝒅𝒓) 

𝑑𝑟2 = 1 + 0.033𝑐𝑜𝑠 � 2𝜋
365

𝐷𝑜𝑌� (see Equation (S3.6)) (S19.17) 

𝑑𝑟2 = 1 + 0.033𝑐𝑜𝑠 � 2𝜋
365

202� = 0.9688 (S19.18) 

Solar declination (𝜹) 

𝛿 = 0.409𝑠𝑖𝑛 � 2𝜋
365

𝐷𝑜𝑌 − 1.39� (see Equation (S3.7)) (S19.19) 

𝛿 = 0.409𝑠𝑖𝑛 � 2𝜋
365

202 − 1.39�  = 0.3557 (S19.20) 
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Sunset hour angle (𝝎𝒔) 
𝜔𝑠 = 𝑎𝑟𝑐𝑜𝑠[− tan(𝑙𝑎𝑡) tan(δ)] (see Equation (S3.8)) (S19.21) 

Latitude (𝑙𝑎𝑡) is in radians, hence 𝑙𝑎𝑡 = 𝜋 −23.7951
180

 = -0.4153 radians  (S19.22) 

noting the negative value as Alice Springs is in the southern hemisphere. 

𝜔𝑠 = 𝑎𝑟𝑐𝑜𝑠[− tan(−0.4153) tan(0.3557)]  = 1.4063 (S19.23) 

Maximum daylight hours (N) 

𝑁 = 24
𝜋
𝜔𝑠 (see Equation (S3.11)) (S19.24) 

𝑁 = 24
𝜋

1.4063  = 10.7431 hours (S19.24) 

 

Worked example 2: Estimate 𝑹𝒏 for daily analysis 

Extraterrestrial radiation (𝑹𝒂) 

𝑅𝑎 = 1440
𝜋
𝐺𝑠𝑐𝑑𝑟2[𝜔𝑠𝑠𝑖𝑛(𝑙𝑎𝑡)𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝑙𝑎𝑡)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝜔𝑠)] (see Equation (S3.5))(S19.26) 

where 𝐺𝑠𝑐 is the solar constant 

𝑅𝑎 = 24𝑥60
𝜋

0.082×0.9688 � 1.4063𝑠𝑖𝑛(−0.4153)𝑠𝑖𝑛(0.3557)
+𝑐𝑜𝑠(−0.4153)𝑐𝑜𝑠(0.3557)𝑠𝑖𝑛(1.4063)� (S19.27) 

= 23.6182 MJ m-2 day-1 

Clear sky radiation (𝑹𝒔𝒐) 

𝑅𝑠𝑜 = (0.75 + 2×10−5𝐸𝑙𝑒𝑣)𝑅𝑎 (see Equation (S3.4)) (S19.28) 

𝑅𝑠𝑜 = (0.75 + 2×10−5×546)23.6182  = 17.9716 MJ m-2 day-1 (S19.29) 

 Incoming solar radiation (𝑹𝒔) 

𝑅𝑠 = �𝑎𝑠 + 𝑏𝑠
𝑛
𝑁
�𝑅𝑎 (see Equation (S3.9)) (S19.30) 

Adopting 𝑎𝑠 = 0.23 and 𝑏𝑠 = 0.50 (see Appendix S3) and noting there were 10.7 hours 
of sunshine for the day being analysed 

𝑅𝑠 = �0.23 + 0.5 10.7
10.7431

�23.6182 = 17.1940 MJ m-2 day-1 (S19.31) 

Note: If measured values of solar radiation (𝑅𝑠) were available, the daily analysis would 
begin here. 

Net longwave radiation (𝑹𝒏𝒍) 

𝑅𝑛𝑙 = 𝜎(0.34 − 0.14�̅�𝑎0.5) �(𝑇𝑚𝑎𝑥+273.2)4+(𝑇𝑚𝑖𝑛+273.2)4

2
� �1.35 𝑅𝑠

𝑅𝑠𝑜
− 0.35� (see 

Equation (S3.3))  (S19.32) 

where 𝜎 is the Stefan-Boltzmann constant 

𝑅𝑛𝑙 = 4.903×10−9(0.34 − 0.14×0.56140.5) �(21+273.2)4+(2+273.2)4

2
� �1.35 17.194

17.9716
−

0.35  (S19.33) 
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𝑅𝑛𝑙 = 7.1784 MJ m-2 day-1 

Net incoming shortwave radiation (𝑹𝒏𝒔)   

𝑅𝑛𝑠 = (1 − α)𝑅𝑠 (see Equation (S3.2)) (S19.34) 

where α  is the albedo for the evaporating surface, which will depend on the evaporating 
surface. In the worked examples that follow, water and reference crop surfaces are 
considered: 

water α = 0.08  

𝑅𝑛𝑠 = (1 − α)𝑅𝑠 = (1 − 0.08)17.1940  = 15.8184 MJ m-2 day-1 (S19.35) 

reference crop α = 0.23  

𝑅𝑛𝑠 = (1 − α)𝑅𝑠 = (1 − 0.23)17.1940 = 13.2393 MJ m-2 day-1 (S19.36) 

Net radiation (𝑹𝒏) 

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙 (see Equation (S3.1)) (S19.37) 

Thus for water 𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙= 15.8184 - 7.1784 = 8.6401 MJ m-2 day-1 (S19.38) 

For reference crop 𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙= 13.2393 - 7.1784 = 6.0610 MJ m-2 day-1 

 (S19.39) 

Worked example 3: Estimate daily open-water evaporation using Penman 
equation 

𝐸𝑃𝑒𝑛𝑂𝑊 = ∆
∆+𝛾

𝑅𝑛𝑤
𝜆

+ 𝛾
∆+𝛾

𝐸𝑎 (see Equation (S4.1)) (S19.40) 

∆
∆+𝛾

 = 0.0898  
0.0898  + 0.0632

 = 0.5870 (S19.41) 

𝛾
∆+𝛾

 =  0.0632
0.0898  + 0.06325

 = 0.4130 (S19.42) 

Adopting the Penman 1956 wind function gives: 

𝐸𝑎 = 𝑓(𝑢)(𝑣𝑎∗ − 𝑣𝑎) (see Equations (S4.2) and (S4.3)) (S19.43) 

𝐸𝑎 = (1.313 + 1.381× 0.5903 )(1.5963 − 0.5614) = 2.2025 mm day-1 (S19.44) 

𝐸𝑃𝑒𝑛𝑂𝑊 = 0.5870 8.6401 
2.45

+ 0.4130×2.2025 = 2.9797 mm day-1 (S19.45) 

 

Worked example 4: Estimate daily reference crop evapotranspiration for short 
grass using the FAO-56 Reference Crop procedure 

𝐸𝑇𝑅𝐶𝑠ℎ =
0.408Δ(Rn−G)+γ 900

T+273u2(𝑣𝑎∗−𝑣𝑎)

Δ+γ(1+0.34u2)  (see Equation (S5.18)) (S19.46) 

In this example we assume the soil flux, G, is zero which according to Allen et al., 
(1998, page 54; Shuttleworth, 1992, page 4.10) is a reasonable assumption for daily analysis. 

  𝐸𝑇𝑅𝐶𝑠ℎ =
0.408×0.0898 (6.0610−0)+0.0632 900

11.5 +2730.5903(1.5963 −0.5614)

0.0898+0.0632(1+0.34×0.5903)  (S19.47) 

𝐸𝑇𝑅𝐶𝑠ℎ = 0.22206+0.10538
0.16578

 = 2.0775 mm day-1 (S19.48) 
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Worked example 5: Estimate daily reference crop evapotranspiration for rye grass 
at Alice Springs using the Matt-Shuttleworth model 

There are five steps in the procedure which includes Equations (S5.34) – (S5.37). The 
first step is to estimate the average height and surface resistance ((𝑟𝑠)𝑐) for rye grass, which 
from Shuttleworth and Wallace (2009) Table 3, is 0.30 m and 66 s m-1 respectively.  Next, the 
climatological resistance is computed. 

𝑟𝑐𝑙𝑖𝑚 = 86400 𝜌𝑎𝑐𝑎(𝑉𝑃𝐷)
∆𝑅𝑛

  (see Equation (S5.34)) (S19.49) 

𝑟𝑐𝑙𝑖𝑚 = 86400 1.20×0.001013(1.5963−0.5614)
0.0898×6.0610

  = 199.9 s m-1  (S19.50) 

The third step is to estimate 𝑉𝑃𝐷50
𝑉𝑃𝐷2

 from Equation (S5.35) 

 𝑉𝑃𝐷50
𝑉𝑃𝐷2

= �302(∆+𝛾)+70𝛾𝑢2
208(∆+𝛾)+70𝛾𝑢2

� + 1
𝑟𝑐𝑙𝑖𝑚

��302(∆+𝛾)+70𝛾𝑢2
208(∆+𝛾)+70𝛾𝑢2

� �208
𝑢2
� − �302

𝑢2
��    (S19.51) 

where �302(∆+𝛾)+70𝛾𝑢2
208(∆+𝛾)+70𝛾𝑢2

� = �302(0.0898+0.0632)+70×0.0632×0.5903
208(0.0898+0.0632)+70×0.0632×0.5903

� = 1.4177 (S19.52) 

𝑉𝑃𝐷50
𝑉𝑃𝐷2

= 1.4177 + 1
199.9

�1.4177 � 208
0.5903

� − � 302
0.5903

�� = 1.3574  (S19.53) 

Next, 𝑟𝑐50 is estimated from Equation (S5.36) 

𝑟𝑐50 = 1
(0.41)2 𝑙𝑛 �

(50−0.67ℎ𝑐)
(0.123ℎ𝑐) � 𝑙𝑛 �

(50−0.67ℎ𝑐)
(0.0123ℎ𝑐) �

𝑙𝑛�(2−0.08)
0.0148 �

𝑙𝑛�(50−0.08)
0.0148 �

   (S19.54) 

for ℎ𝑐 = 0.3 m 

𝑟𝑐50 = 1
(0.41)2 𝑙𝑛 �

(50−0.67×0.3)
(0.123×0.3) � 𝑙𝑛 �

(50−0.67×0.3)
(0.0123×0.3) �

𝑙𝑛�(2−0.08)
0.0148 �

𝑙𝑛�(50−0.08)
0.0148 �

  = 244.2 s m-1 (S19.55) 

The final step is to calculate 𝐸𝑇𝑐  from Equation (S5.37) 

𝐸𝑇𝑐 = 1
𝜆

∆𝑅𝑛+
𝜌𝑎𝑐𝑝𝑢2(𝑉𝑃𝐷2)

𝑟𝑐
50 � 𝑉𝑃𝐷50𝑉𝑃𝐷2

�

∆+𝛾�1+(𝑟𝑠)𝑐𝑢2
𝑟𝑐
50 �

   (S19.56) 

𝐸𝑇𝑐 = 1
2.45

0.0898×6.6061+1.20×0.001013×0.5903(1.5963−0.5614)
244.2

( 1.3574)

0.0898+0.0632�1+66×0.5903
244.2 �

  = 1.4847 mm day-1  (S19.57) 

 
Worked example 6: Estimate daily actual evapotranspiration using the Advection-

Aridity (Bruitsaert-Strickler) model 

𝐸𝑇𝐴𝑐𝑡𝐵𝑆 = (2𝛼𝑃𝑇 − 1) Δ
Δ+𝛾

𝑅𝑛
𝜆
− 𝛾

Δ+𝛾
𝑓(𝑢2)(𝑣𝑎∗ − 𝑣𝑎)  (see Equation (S8.2)) (S19.58) 

Note for BS equation, 𝛼𝑃𝑇 = 1.28 for rural catchments, and for this example 𝑅𝑛 is based 
on an albedo value of 0.23 (Equation (S19.36)). The 1948 Penman wind function is adopted 
(Equation S4.11). 
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𝐸𝑇𝐴𝑐𝑡𝐵𝑆 =
 (2×1.28 − 1) 0.0898 

0.0898 +0.0632
6.0610  
2.45

− 0.0632
0.0898 +0.0632

(2.626 + 1.381×0.5903)(1.5963 −
0.5614 (S19.59) 

𝐸𝑇𝐴𝑐𝑡𝐵𝑆 = 2.2651 − 1.4711 = 0.7940 mm day-1 (S19.60) 

 
Worked example 7: Estimate daily actual evapotranspiration using the Granger-

Gray model 

𝐸𝑇𝐴𝑐𝑡𝐺𝐺 = ∆𝐺𝑔
∆𝐺𝑔+𝛾

𝑅𝑛−G
𝜆

+ 𝛾𝐺𝑔
∆𝐺𝑔+𝛾

𝐸𝑎 (see Equation (S8.4)) (S19.61) 

For this worked example we set G = 0, and note that Granger and Gray (1989, page 26) 
adopted the Penman (1948) wind function. Granger-Gray procedure estimates 
evapotranspiration rates for non-saturated lands. To illustrate the procedure, 𝑅𝑛 is based on an 
albedo value of 0.23 (Equation S19.36)). 

𝐸𝑎 is estimated from: 

𝐸𝑎 = 𝑓(𝑢)(𝑣𝑎∗ − 𝑣𝑎) (see Equation (S4.2)) (S19.62) 

𝐸𝑎 = (2.626 + 1.381×0.5903)(1.5963 − 0.5614) = 3.5614 mm day-1 (S19.63) 

𝐷𝑝 = 𝐸𝑎
𝐸𝑎+

𝑅𝑛−G
𝜆

 (see Equation (S8.6)) (S19.64) 

𝐷𝑝 = 3.5614
3.5614+6.0610−0 

2.45
 = 0.5901 (S19.65) 

𝐺𝑔 = 1
0.793+0.20𝑒4.902𝐷𝑝 + 0.006𝐷𝑝 (see Equation (S8.5)) (S19.66) 

𝐺𝑔 = 1
0.793+0.20𝑒4.902×0.5901 + 0.006×0.5901 = 0.2307 (S19.67) 

𝐸𝑇𝐴𝑐𝑡𝐺𝐺 = 0.0898×0.2307
0.0898×0.2307+0.0632

6.0610 −0
2.45

+ 0.0632×0.2307
0.0898×0.2307+0.0632

3.5614  (S19.68) 

𝐸𝑇𝐴𝑐𝑡𝐺𝐺  = 0.6107 + 0.6188 = 1.2295 mm day-1 (S19.69) 
 

Worked example 8: Estimate daily actual evapotranspiration using the Szilagyi-
Jozsa model 

𝐸𝑇𝐴𝑐𝑡
𝑆𝐽 = 2𝐸𝑃𝑇(𝑇𝑒) − 𝐸𝑃𝑒𝑛 (see Equation (S8.7)) (S19.70) 

 𝑅𝑛
𝜆𝐸𝑃𝑒𝑛

= 1 + 𝛾 𝑇𝑒−𝑇𝑎
𝜈𝑒∗− 𝜈𝑎

 (see Equation (S8.8)) (S19.71) 

For this example procedure 𝑅𝑛 is based on an albedo value of 0.23 (Equation S19.34)) 
and, therefore, 𝐸𝑃𝑒𝑛 needs to be recomputed incorporating 𝑅𝑛 = 6.0610 MJ m-2 day-1 and 
Penman’s 1948 wind function resulting in 𝐸𝑃𝑒𝑛 = 2.9221 mm day-1. 

To estimate 𝑇𝑒 (the equilibrium temperature) from Equation (S19.69), a numerical 
solution is required as 𝜈𝑒∗ is a function of 𝑇𝑒. Equation (S19.69) is rearranged as follows:  

𝑇𝑒 = 𝑇𝑎 −
1
𝛾
�1 − 𝑅𝑛

𝜆𝐸𝑃𝑒𝑛
� (𝜈𝑒∗ −  𝜈𝑎)  (S19.72) 

noting from Equation (S2.5) that 𝑣𝑒∗ = 0.6108𝑒𝑥𝑝 � 17.27𝑇𝑒
𝑇𝑒+237.3

�  (S19.73) 
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Using Microsoft Excel Goal Seek, 𝑇𝑒 = 9.900 °C (for 𝑇𝑎 = 11.5 °C, 𝑅𝑛 = 6.0610 MJ m-2 
day-1, 𝐸𝑃𝑒𝑛 = 2.923 mm day-1, and 𝑣𝑒∗ = 1.2197 kPa). To compute 𝐸𝐴𝑐𝑡

𝑆𝐽 , we need 𝐸𝑃𝑇(𝑇𝑒). 
From Equation (6) and setting 𝐺 = 0, and ∆ for 𝑇𝑒 = 9.900 °C is equal to 0.0818, and  𝛼𝑃𝑇 = 
1.31 (see penultimate paragraph in Appendix S8 under heading Szilagyi-Jozsa model), we 
obtain; 

𝐸𝑃𝑇(𝑇𝑒) = 𝛼𝑃𝑇 �
∆

∆+𝛾
𝑅𝑛
𝜆
�  (S19.74) 

𝐸𝑃𝑇(9.900 °C) = 1.31 � 0.0818
0.0818+0.0632 

× 6.0610
2.45

� = 1.8285 mm day-1 (S19.75) 

𝐸𝐴𝑐𝑡
𝑆𝐽 = 2×1.8285 − 2.923 = 0.7340 mm day-1    (S19.76) 

 

Worked example 9: Estimate daily Class-A pan evaporation using the PenPan 
model 

𝐸𝑃𝑒𝑛𝑃𝑎𝑛 = ∆
∆+𝑎𝑝𝛾

𝑅𝑁𝑃𝑎𝑛
𝜆

+ 𝑎𝑝𝛾
∆+𝑎𝑝𝛾

𝑓𝑃𝑎𝑛(𝑢)(𝑣𝑎∗ − 𝑣𝑎) (see Equation (S6.1)) (S19.77) 

where 𝑎𝑝 is an empirical constant = 2.4 

𝑃𝑟𝑎𝑑 = 1.32 + 4 × 10−4𝑙𝑎𝑡 + 8 × 10−5𝑙𝑎𝑡2 (see Equation (S6.6)) (S19.78) 

Noting ϕ is in absolute value of latitude in degrees 

𝑃𝑟𝑎𝑑 = 1.32 + 4 × 10−4×23.7951 + 8 × 10−5×(23.7951)2 = 1.3748 (S19.79) 

 𝑓𝑑𝑖𝑟 = −0.11 + 1.31 𝑅𝑆
𝑅𝑎

 (see Equation (S6.5)) (S19.80) 

 𝑓𝑑𝑖𝑟 = −0.11 + 1.31 17.1940 
23.6182

 = 0.8437 (S19.81) 

𝑅𝑆𝑃𝑎𝑛 = [𝑓𝑑𝑖𝑟𝑃𝑟𝑎𝑑 + 1.42(1 − 𝑓𝑑𝑖𝑟) + 0.42𝛼𝑠𝑠]𝑅𝑆 (see Equation (S6.4)) (S19.82) 

where 𝛼𝑆𝑆 = 0.26 (assuming short grass Table S3) 

𝑅𝑆𝑃𝑎𝑛 = [0.8437×1.3748 + 1.42(1 − 0.8437) + 0.42×0.26]17.1940  (S18.83) 

𝑅𝑆𝑃𝑎𝑛 = 25.6375 MJ m-2 day-1 (S19.84) 

𝑅𝑁𝑃𝑎𝑛 = (1 − 𝛼𝐴)𝑅𝑆𝑃𝑎𝑛 − 𝑅𝑛𝑙 (see Equation (S6.3)) (S19.85) 

where 𝛼𝐴 = 0.14 (Appendix S6) 

𝑅𝑁𝑃𝑎𝑛 = (1 − 0.14)25.6375 − 7.1784 = 14.8699 MJ m-2 day-1 (S19.86) 

𝑓𝑃𝑎𝑛(𝑢) = 1.201 + 1.621 𝑢2 (see Equation (S6.2)) (S19.87) 

𝑓𝑃𝑎𝑛(𝑢) = 1.201 + 1.621×0.5903 = 2.1578 (S19.88) 

𝐸𝑃𝑒𝑛𝑃𝑎𝑛 = 0.0898
0.0898+2.4×0.0632

14.8699
2.45

+ 2.4×0.0632
0.0898+2.4×0.0632

2.1578(1.5963 − 0.5614) (S19.89) 

𝐸𝑃𝑒𝑛𝑃𝑎𝑛 = 2.2570 + 1.4027 = 3.6587 mm day-1 (S19.90) 

For a screened Class-A pan, 𝐸𝑃𝑒𝑛𝑃𝑎𝑛 = 0.93* 3.6597 = 3.4035 mm day-1.  
A discussion regarding the screen factor of 0.93 can be found in Appendix S16. 
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Worked example 10: Estimate daily potential evaporation using the Makkink 
model 

𝐸𝑀𝑎𝑘 = 0.61 � ∆
∆+𝛾

𝑅𝑠
2.45

� − 0.12 (see Equation (S9.6)) (S19.91) 

𝐸𝑀𝑎𝑘 = 0.61 � 0.0898
0.0898+0.0632

17.1940
2.45

� − 0.12 = 2.3928 mm day-1 (S19.92) 

 
Worked example 11: Estimate daily reference crop evapotranspiration using the 

Blaney-Criddle model 

𝐸𝑇𝐵𝐶 = �0.0043𝑅𝐻𝑚𝑖𝑛 −
𝑛
𝑁
− 1.41� + 𝑏𝑣𝑎𝑟𝑝𝑦(0.46𝑇𝑎 + 8.13)    (S19.93) 

(see Equation (S9.7)) 

𝑏𝑣𝑎𝑟 = 𝑒0 + 𝑒1𝑅𝐻𝑚𝑖𝑛 + 𝑒2
𝑛
𝑁

+ 𝑒3𝑢2 + 𝑒4𝑅𝐻𝑚𝑖𝑛
𝑛
𝑁

+ 𝑒5𝑅𝐻𝑚𝑖𝑛𝑢2 (S19.94) 

(see Equation (S9.8)) 

𝑏𝑣𝑎𝑟 = 0.81917 − 0.0040922×25 + 1.0705× 10.7
10.7431

+ 0.065649×0.5903 −

0.0059684×25 10.7
10.7431

− 0.0005967×25×0.5903 = 1.6644 (S19.95) 

𝑝𝑦 is the percentage of actual day-light hours for the day compared to the number of 
day-light hour during the entire year (𝑁𝑦𝑒𝑎𝑟). The latter can be computed from Equation 
(S3.11) as follows: 

𝑁𝑦𝑒𝑎𝑟 = ∑ �24
𝜋
𝜔𝑠�

365,366
𝐽=1  (see Equation (S3.11)) (S19.96) 

For non-leap years and leap years 𝑁𝑦𝑒𝑎𝑟 = 4380 and 4393 respectively. 

Thus 𝑝𝑦 = 100 𝑛
𝑁𝑦𝑒𝑎𝑟

 = 100 10.7
4393

 = 0.2436 

𝐸𝑇𝐵𝐶 = �0.0043×25 − 10.7
10.7431

− 1.41� + 1.6644×0.2436(0.46×11.5 + 8.13)  (S19.97) 

𝐸𝑇𝐵𝐶 = -2.2985 + 5.4411 = 3.1426 mm day-1 (S19.98) 
 

Worked example 12: Estimate daily reference crop evapotranspiration using the 
Turc model 

Turc (1961) proposed two equations, one for humid days and another for non-humid 
days (see Appendix S9). As the average humidity for Alice Springs on 7 July 1980 was 48%, 
the equation for non-humid days is adopted. 

𝐸𝑇𝑇𝑢𝑟𝑐 = 0.013(23.88𝑅𝑠 + 50) � 𝑇𝑎
𝑇𝑎+15

� �1 + 50−𝑅𝐻
70

� (S19.99) 

(see Equation (S9.11)) 

𝐸𝑇𝑇𝑢𝑟𝑐 = 0.013(23.88×17.1940 + 50) � 11.5
11.5+15

� �1 + 50−36.5
70

�  = 2.6727 mm day-1(S19.100) 

 
Worked example 13: Estimate daily reference crop evapotranspiration using the 

Hargreaves-Samani model 
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𝐸𝑇𝐻𝑆 = 0.0135𝐶𝐻𝑆
𝑅𝑎
𝜆

(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5(𝑇𝑎 + 17.8) (S19.101) 

(see Equation (S9.12)) 

𝐶𝐻𝑆 = 0.00185(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)2 − 0.0433(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) + 0.4023   (S19.102) 
(see Equation (S9.13)) 

𝐶𝐻𝑆 = 0.00185(21 − 2)2 − 0.0433(21 − 2) + 0.4023 = 0.2475  (S19.103) 

𝐸𝑇𝐻𝑆 = 0.0135×0.2475 23.6182
2.45

(21 − 2)0.5(11.5 + 17.8) = 4.1129 mm day-1  

 

Worked example 14: Estimate monthly reference crop evapotranspiration using 
the modified Hargreaves model 

The modified Hargreaves method operates at a monthly time-step. The appropriate data 
for Alice Springs for July 1980 is as follows: 

Mean maximum daily temperature: 19.500 °C 
Mean minimum daily temperature: 4.119 °C 
Mean monthly temperature: 11.810 °C 
Maximum humidity: 77.968% 
Minimum humidity: 33.032% 
Daily sunshine hours: 8.34 hours 
Wind run at 2 m height: 74.677 km day-1 (=74.677×1000/(24×60×60) = 0.8643 m s-1) 
Rainfall for month: 10.8 mm 
Mean diurnal temperature range for July: (19.500 – 4.119) = 15.381°C  

𝐸𝑇𝐻𝑎𝑟𝑔,𝑗 = 0.0013𝑆𝑂�𝑇𝑗 + 17.0��𝑇𝐷����𝑗 − 0.0123𝑃𝑗�
0.76

 (S19.104) 

(see Equation (S9.14)) 

𝑆0 = 15.392𝑑𝑟2�𝜔𝑠𝑠𝑖𝑛(𝑙𝑎𝑡)𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝑙𝑎𝑡)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝜔𝑠)� (S19.105) 

(see Equation (S9.15)) 

𝑆0 = 15.392×0.9688 � 1.4063𝑠𝑖𝑛(−0.4153)𝑠𝑖𝑛(0.3557)
+𝑐𝑜𝑠(−0.4153)𝑐𝑜𝑠(0.3557)𝑠𝑖𝑛(1.4063)� = 9.6710 

 (S19.106) 

𝐸𝑇𝐻𝑎𝑟𝑔,𝑗 = 0.0013×9.6710(11.810 + 17.0)(15.381 − 0.0123×10.8)0.76 (S19.107) 

𝐸𝑇𝐻𝑎𝑟𝑔,𝑗 = 2.8721 mm day-1 = 2.8721 × 31 = 89.035mm month-1  (S19.108) 

 
Worked example 15: Estimate daily potential evaporation using the Priestley-

Taylor model 

𝐸𝑃𝑇 = 𝛼𝑃𝑇 �
∆

∆+𝛾
𝑅𝑛
𝜆
− 𝐺

𝜆
�    (see Equation (6)) (S19.109) 

Assuming 𝐺 = 0.0, ∆
∆+𝛾

 = 0.5870, 𝑅𝑛 = 8.6401 MJ m-2 day-1 (for water), and adopting 
𝛼𝑃𝑇 = 1.26 (see Section 2.1.3), we obtain 

𝐸𝑃𝑇 = 1.26 �0.5870 8.6401
2.45

− 0.0
2.45

� = 2.6083 mm day-1 
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Worked example 16:  Estimate monthly potential evapotranspiration using the 

Thornthwaite equation 
Use the Thornthwaite equation to estimate the average monthly potential 

evapotranspiration for July at Alice Springs. The Thornthwaite estimates are computed from 
mean daily temperatures and mean daily day-light hours for each month. At Alice Springs, 
the mean daily temperature (°C) for each month, based on the whole record, are: 

Jan 29.11; Feb 28.32; Mar 25.18; Apr 20.85; May 15.70; Jun 12.43 

Jul 11.90; Aug 14.56; Sep 19.86; Oct 23.22; Nov 26.40; Dec 28.07 

The mean daily hours of day-light are estimated from Equation (S19.24) and for July the 
value is 10.68 hours. 

𝐸�𝑇ℎ,𝑗 = 16 �ℎ𝑟𝑑𝑎𝑦
���������

12
� �𝑑𝑎𝑦𝑚𝑜𝑛

30
� �10𝑇

�𝐽
𝐼
�
𝑎𝑇ℎ

 (see Equation (S9.2)) (S19.110) 

Thus the average potential evapotranspiration for the month of July is estimated as:  

𝐼 = ∑ �𝑇
�𝑗
5
�
1.514

12
𝑗=1  = 111.1827 (S19.111) 

 𝑎 = 6.75 × 10−7𝐼3 − 7.71 × 10−5𝐼2 + 0.01792𝐼 + 0.49239 (S19.112) 

 𝑎 =
6.75 × 10−7× (111.1827)3 − 7.71 × 10−5× (111.1827)2 + 0.01792× 111.1827 +
0.49239 = 2.4594 (S19.113) 

ℎ𝑟𝑑𝑎𝑦��������  is the mean daily day-light hours in a given month. From observed data for the 
month of July at Alice Springs ℎ𝑟𝑑𝑎𝑦��������  = 10.68 hours. 

𝐸�𝑇ℎ,𝐽𝑢𝑙 = 16 �ℎ𝑟𝑑𝑎𝑦
���������

12
� �𝑑𝑎𝑦𝑚𝑜𝑛

30
� �10𝑇

�𝐽
𝐼
�
𝑎𝑇ℎ

  (S19.114) 

𝐸�𝑇ℎ,𝐽𝑢𝑙 = 16 �10.68
12

� �31
30
� �10×11.90

111.1827
�
2.4594

 = 17.391 mm month-1  (S19.115) 

 
Worked example 17: Estimating deep lake evaporation using Kohler and Parmele 

model 
Use the Kohler and Parmele (1967) model to estimate the monthly evaporation for 

September 1999 for a hypothetical deep lake near Melbourne. The following data are 
available: 

Lake area at full supply level (FSL) (𝐴𝐿): 1.74 km2 
Lake capacity: 26.8 GL 
Average water depth (ℎ�): 27.0 m 
Catchment area of lake at full supply level: 3.5 km2 (The lake is an off-stream reservoir) 
Contents at beginning of September 1999 (𝑉1): 25.000 GL 
Lake water temperature at beginning of September 1999 (𝑇𝐿1): 10.5 °C 
Contents at end of September 1999 (𝑉2): 24.1194GL 
Lake water temperature at end of September 1999 (𝑇𝐿2): 11.6 °C 
Average lake temperature during September 1999 (𝑇𝑤): 10.8 °C 
Rainfall for September 1999 (𝑃𝑑): 60 mm (2.0 mm day-1) 
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Average temperature of rain falling on reservoir in September 1999 (𝑇𝑝): 10 °C 
Average air temperature for September 1999 (Ta): 13.37 °C 
Atmospheric pressure (𝑝): 1004.22 (hPa) (= 100.422 kPa) 
Wind run for September 1999 (𝑢): 329.1 km day-1  
Surface water inflow for September 1999 (𝑆𝑊𝑖𝑛): assume 0.40 mm day-1 at FSL  
Average temperature of surface water inflow for September 1999 (𝑇𝑠𝑤𝑖𝑛): 11 °C 
Surface water outflow for September 1999 (𝑆𝑊𝑜𝑢𝑡): 1.00 GL (equivalent to 19.16 mm 

at FSL) 
Average temperature of surface water outflow for September 1999 (𝑇𝑠𝑤𝑜𝑢𝑡): 10.8 °C 
Assume no groundwater inflow or outflow 
 
Specific constants for Worked Examples 17 and 18: 
Density of air (𝜌𝑎): 1.2 kg m-3 
Density of water (𝜌𝑤): 997.9 kg m-3 
Effective emissivity of water (𝜀𝑤): 0.95 
Specific heat of water (𝑐𝑤): 4.19 kJ kg-1 °C-1 
Height at which the wind speed and vapour pressure are measured (𝑧𝑚): 2.0 m 
Zero-plane displacement (𝑧𝑑): ~0.000 m 
Roughness height of surface (𝑧0): 0.001 m for water 
Latent heat of vaporization (λ): 2.45 MJ kg-1 
Stefan-Boltzmann constant (𝜎): 4.903×10-9 MJ m-2 day-1 K-4  
Slope of the vapour pressure curve based on an average September 1999 air 

temperature of 13.37°C (∆): 0.10008 kPa °C-1 
Psychrometric constant for Melbourne (𝛾): 0.0665 kPa °C-1 
To estimate the monthly evaporation for the hypothetical deep lake based on Kohler 

and Parmele (1967) we apply the following equations at a daily time-step: 

𝐸𝐷𝐿 = 𝐸𝑃𝑒𝑛𝑂𝑊 + 𝛼𝐾𝑃(𝐴𝑤 −
∆𝑄
∆𝑡

)  (see Equation (S10.1)) (S19.116) 

  𝛼𝐾𝑃 = ∆

∆+𝛾+4𝜀𝑤𝜎(𝑇𝑤+273.2)3
𝜌𝑤λ𝐾𝐸𝑢

 
  (see Equation (S10.2)) (S19.117) 

𝐴𝑤 = 𝑐𝑤𝜌𝑤
 𝜆

(𝑃𝑑𝑇𝑝 + 𝑆𝑊𝑖𝑛𝑇𝑠𝑤𝑖𝑛 − 𝑆𝑊𝑜𝑢𝑡𝑇𝑠𝑤𝑜𝑢𝑡 + 𝐺𝑊𝑖𝑛𝑇𝑔𝑤𝑖𝑛 − 𝐺𝑊𝑜𝑢𝑡𝑇𝑔𝑤𝑜𝑢𝑡)  

(see Equation (S10.3))  (S19.118)  

∆𝑄 = 𝑐𝑤𝜌𝑤
𝐴𝐿𝜆

(𝑉2𝑇𝐿2 − 𝑉1𝑇𝐿1) (see Equation (S10.4))  (S19.119)  

𝐾𝐸 = 0.622 𝜌𝑎
𝑝𝜌𝑤

1

6.25�𝑙𝑛�
𝑧𝑚−𝑧𝑑
𝑧0

��
2   (see Equation (S10.5)) (S19.120) 

𝐾𝐸 = 0.622 1.2

�1004.22
10 �×997.9

× 1

6.25�𝑙𝑛�2.0−0.000
0.001 ��

2 = 2.0627×10-8 (S19.121) 

  𝛼𝐾𝑃 = 0.10008

0.10008+0.0665+ 4×0.95×4.903×10−9(10.8+273.2)3

997.9×2.45×2.0627×10−8×(329.1×1000) 
  = 0.52045 (S19.122) 

𝐴𝑤 = � 4.19
1000

� 997.9
2.45

�( 2.0
1000

)×10 + ( 0.4
1000

)×11 − (19.16
1000

)×10.8 + 0 − 0� = -0.3115 mm day-1 

 (S19.123) 
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∆𝑄 = � 4.19
1000

� 997.9
(1.74×106)2.45

(24.1194×106×11.6 − 25.000×106×10.5) 1
30

 (S19.124) 

      = 0.5651 mm day-1  

𝐸𝑃𝑒𝑛 for September 1999 at the lake near Melbourne has been computed (separately 
from this worked example) as 117.2 mm (3.91 mm day-1) 

𝐸𝐷𝐿 = 3.91 + 0.5204 (−0.3115 − 0.5651
1

)  (S19.125) 

       = 3.91 – 0.4562 = 3.45 mm day-1 = 103.5 mm evaporation for September 1999. 
 

Worked example 18: Estimating deep lake evaporation using Vardavas and 
Fountoulakis model 

This worked example is for the same hypothetical deep lake described in Worked 
Example 17. The exercise is to estimate lake evaporation for September 1999. Vardavas and 
Fountoulakis (1996, Section 1) adopted a monthly time-step. 

𝐸𝐷𝐿 = � ∆
∆+𝛾

�𝐸𝑠 + � 𝛾
∆+𝛾

�𝐸𝑎  (see Equation (S10.7)) (S19.126) 

𝐸𝑠 = 1
𝜆
�𝑅𝑛 + ∆𝐻𝑗,𝑗−1�  (see Equations (S10.8) and (S10.9)) (S19.127) 

∆𝐻𝑗,𝑗−1 = −48.6ℎ� ∆𝑇𝑤𝑙
𝑡𝑚

 (see Equation (S10.9)) (S19.128) 

From the data in worked example 16:  

∆𝐻𝑗,𝑗−1 = − 48.6× 27.0 11.6−10.5
30

 = − 48.114W m-2 (S19.129) 

Convert this from W m-2 to MJ m-2 day-1 (1 W = 1 J sec-1) 

∆𝐻𝑗,𝑗−1 =  − 48.114× 0.0864 = − 4.1570 MJ m-2 day-1 (S19.130) 

Assume for September 1999 𝑅𝑛 = 9.3469 MJ m-2 day-1 

𝐸𝑠 = 1
2.45

(9.3469 + (−4.1570)) = 2.1183 mm day-1 (S19.131) 

𝐸𝑎 = 𝐶𝑢𝑢�[𝑣𝑎∗(𝑇𝑎) − 𝑣𝑎(𝑇𝑎)]  (see Equations (S10.10) and (S10.11)) (S19.132) 

noting that the vapour pressure deficit 𝑣𝑎∗(𝑇𝑎) − 𝑣𝑎(𝑇𝑎) is in units of mbar (Vardavas, 1987, 
page 249). 

First we need to estimate 𝑢∗ from  

𝑢� =  𝑢∗
𝑘
𝑙𝑛 � 𝑧2𝑢∗

0.135υ
� (see Equation (S10.16)) (S19.133) 

where k is the von Kármán constant of 0.41 

υ = 2.964×10−7 𝑇𝑎
3/2

𝑝
  (see Equation (S10.15)) (S19.134) 

υ = 2.964×10−7 (13.37+273.2)3/2

1004.22
10

 = 1.4318×10-5 m2s-1 (S19.135) 

Thus for a wind speed of 3.809 m s-1, Equation (S19.133) is 

3.809 = 𝑢∗
0.41

ln( 2.0𝑢∗
0.135×1.4318×10−5

)  (S19.136) 
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Using Microsoft Excel Goal Seek, 𝑢∗ = 0.132 m s-1   (S19.137) 

𝐶𝑢 = 3966

𝑇𝑎𝑙𝑛�
𝑧2
𝑧𝑜𝑣

�𝑙𝑛� 𝑧1
𝑧𝑜𝑚

�
  (see Equation (S10.12)) (S19.138) 

𝑧𝑜𝑚 = 0.135 υ
𝑢∗

 = 0.135 1.4318×10−5

0.132
 = 1.4643×10-5 (S19.139) 

𝑧𝑜𝑣 = 0.624 υ
𝑢∗

 = 0.624 1.4318×10−5

0.132
 = 6.7685×10-5  (S19.140)  

𝐶𝑢 = 3966
(13.37+273.2)𝑙𝑛� 2.0

6.7685×10−5
�𝑙𝑛� 2.0

1.4643×10−5
�
  (S19.141) 

      = 0.1137 mm day-1/(m s-1 mbar)   

which is within the range 0.11 to 0.13 mm day-1/(m s-1 mbar) estimated for Australian 
reservoirs as noted by Vardavas (1987, page 264).   

Assume for this hypothetical example the vapour pressure deficit = 0.6152 kPa 

𝐸𝑎 = 𝐶𝑢𝑢�[𝑣𝑎∗(𝑇𝑎) − 𝑣𝑎(𝑇𝑎)]  = 0.1137×3.809×(0.6152×10)  (S19.142) 

where the factor 10 in the last set of brackets converts kPa to mbar 

      = 2.664 mm day-1  

𝐸𝐷𝐿 = � 0.10008
0.10008+0.0665

�2.1183 + � 0.0665
0.10008+0.0665

�2.664  (S19.143) 

                 = 2.336 mm day-1 = 70.1 mm evaporation for September 1999. 

 
Worked example 19: Estimating lake evaporation based on the equilibrium 

temperature by McJannet et al. (2008) 
Estimate for a hypothetical lake near Alice Springs, the evaporation for 20 July 1980. 

The following details are available: 

Average lake area: 5 km2 
Average lake depth: 10 m 
Latitude: 23.7951 °S 
Elevation: 546 m 
Lake water temperature for 19 July was 10.8734 °C. 
The meteorological data for 20 July 1980 are listed at the beginning of this appendix. 

For the purposes of this example, the fraction of cloud cover (𝐶𝑓) is based on Equation 
(S3.18) where 𝐾𝑟𝑎𝑡𝑖𝑜 =  𝑅𝑠

𝑅𝑠𝑜
= 17.1940

17.9716
 = 0.9567 and hence 𝐶𝑓 =  2(1 − 𝐾𝑟𝑎𝑡𝑖𝑜)  = 0.08654. 

Adjust wind speed to equivalent of 10 m height. 

𝑢10 = 𝑢2
ln (10𝑧0

)

ln ( 2𝑧0
)
  (S19.144) 

where 𝑧0 = 0.0002 m (adopted from Table S2 for open sea) 

 𝑢10 = 0.5903
ln ( 10

0.0002)

ln ( 2
0.0002)

  = 0.6934 (S19.145) 
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Estimate the values of the intermediate variables associated with computing daily 
evaporation in addition to those in Worked Example 1. 

Dew point temperature (𝑻𝒅) 

𝑇𝑑 = 116.9+237.3 ln (𝑣𝑎)
16.78−ln (𝑣𝑎)

  (see Equation (S2.3)) (S19.146) 

From Equation S19.9 𝑣𝑎 = 0.5614 kPa 

𝑇𝑑 = 116.9+237.3 ln (0.5614)
16.78−ln (0.5614)

  = -1.1579 °C (S19.147) 

Wet-bulb temperature (𝑻𝒘𝒃) 

𝑇𝑤𝑏 =
0.00066×100𝑇𝑎+

4098𝑣𝑎
�𝑇𝑑+237.3�

2𝑇𝑑

0.00066×100+ 4098𝑣𝑎
�𝑇𝑑+237.3�

2
 (see Equation (S2.2)) (S19.148) 

𝑇𝑤𝑏 =
0.00066×100×11.5+ 4098×0.5614

(−1.1579+237.3)2
(−1.1579)

0.00066×100+ 4098×0.5614
(−1.1579+237.3)2

 = 6.6311 °C (S19.149) 

Slope of saturation vapour pressure curve at wet-bulb temperature (∆𝒘𝒃) 

∆𝑤𝑏=
4098�0.6108𝑒𝑥𝑝�

17.27𝑇𝑤𝑏
𝑇𝑤𝑏+237.3��

(𝑇𝑤𝑏+237.3)2  (see Equation (S2.4))  (S19.150) 

where ∆𝑤𝑏 is the slope of the saturation vapour pressure curve at wet-bulb temperature 

∆𝑤𝑏=
4098�0.6108𝑒𝑥𝑝�17.27×6.6311

6.6311+237.3��

(6.6311+237.3)2  = 0.06727 kPa °C-1 (S19.151) 

Wind function (𝒇(𝒖)) 

𝑓(𝑢) = �5
𝐴
�
0.05

(3.80 + 1.57𝑢10) (see Equation (S11.24)) (S19.152) 

𝑓(𝑢) = �5
5
�
0.05

(3.80 + 1.57×0.6934 ) = 4.8887 (S19.153) 

Aerodynamic resistance (𝒓𝒂) 

𝑟𝑎 = 𝜌𝑎𝑐𝑎
𝛾� 𝑓(𝑢)

86400�
  (see Equation (S11.23)) (S19.154) 

𝑟𝑎 = 1.20× 0.001013 

0.0632 �4.8887
86400�

 = 339.9 s m-1 (S19.155) 

The next step is to compute the net radiation. For 20 July 1980, 𝑅𝑠 and 𝑅𝑛𝑠 were 
estimated respectively as 17.1940 MJ m-2 day-1 (Equation (S19.31)) and 15.8184 MJ m-2 
day-1 (Equation (S19.35)) noting that albedo for water is 0.08. Incoming longwave radiation 
is estimated from: 

𝑅𝑖𝑙 = �𝐶𝑓 + �1 − 𝐶𝑓� �1 − �0.261 𝑒𝑥𝑝(−7.77 × 10−4𝑇𝑎2)���𝜎(𝑇𝑎 + 273.15)4 (see 
Equation (S11.26)) (S19.156) 

 𝑅𝑖𝑙 = �0.08654 + (1 − 0.08654) �1 − �0.261 𝑒𝑥𝑝(−7.77 × 10−411.52)��� 

× 4.903×10−9(11.5 + 273.15)4 = 25.2641 MJ m-2 day-1 (S19.157) 
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Outgoing longwave radiation as a function of wet-bulb temperature is estimated from: 

𝑅𝑜𝑙𝑤𝑏 = 𝜎(𝑇𝑎 + 273.15)4 + 4𝜎(𝑇𝑎 + 273.15)3(𝑇𝑤𝑏 − 𝑇𝑎) (see Equation (S11.32))  

 (S19.158) 

𝑅𝑜𝑙𝑤𝑏 = 4.903×10−9(11.5 + 273.15)4 + 4×4.903×10−9(11.5 + 273.15)3  

(6.6311 − 11.5) = 29.9866 MJ m-2 day-1 (S19.157) 

𝑄𝑤𝑏∗ = 𝑅𝑠(1 − 𝛼) + �𝑅𝑖𝑙 − 𝑅𝑜𝑙𝑤𝑏�  (see Equation (S11.31)) (S19.160) 

𝑄𝑤𝑏∗ = 15.8184 + 25.2641 −29.9866 = 11.0959 MJ m-2 day-1 (S19.161) 

We now need to calculate the time constant (𝜏) and the equilibrium temperature (𝑇𝑒). 

𝜏 = 𝜌𝑤𝑐𝑤ℎ𝑤
4𝜎(𝑇𝑤𝑏+273.15)3+𝑓(𝑢)(Δwb+𝛾)  (see Equation (S11.29))  (S19.162) 

𝜏 = 997.9 ×0.00419×10
4×4.903×10−9(6.6311+273.15)3+4.8887(0.06727+0.0632 )

 = 39.1739 days (S19.163) 

𝑇𝑒 = 𝑇𝑤𝑏 + 𝑄𝑤𝑏
∗

4𝜎(𝑇𝑤𝑏+273.15)3+𝑓(𝑢)(Δwb+𝛾)  (see Equation (S11.30)) (S19.164) 

𝑇𝑒 =  6.6311 + 11.0959
4×4.903×10−9(6.6311+273.15)3+4.8887(0.06727+0.0632 )

 = 17.0269 °C (S19.165) 

The next step is to estimate today’s water temperature given yesterday’s water 
temperature (assume 𝑇𝑤0 = 10.8734) 

𝑇𝑤 = 𝑇𝑒 + (𝑇𝑤0 − 𝑇𝑒)exp �− 1
𝜏
�  (see Equation (S11.28)) (S19.166) 

 𝑇𝑤 = 17.0269 + (10.8734 − 17.0269)exp �− 1
39.1739

� = 11.0285 °C (S19.167) 

As we have an estimate of the water temperature, we can now estimate the change in 
heat storage (Gw), the slope of the saturation vapour pressure curve at water temperature 
(∆𝑤), the saturation vapour pressure at water temperature (𝑣𝑤∗ ), and the lake evaporation 
(𝐸𝑀𝑐𝐽). 

Gw = 𝜌𝑤𝑐𝑤ℎ𝑤(𝑇𝑤 − 𝑇𝑤0)  (see Equation (S11.33)) (S19.168) 

Gw = 997.9 × 0.00419 × 10(11.0285 − 10.8734) = 6.4850 MJ m-2 day-1 (S19.169) 

∆𝑤=
4098�0.6108𝑒𝑥𝑝� 17.27𝑇𝑤

𝑇𝑤+237.3��

(𝑇𝑤+237.3)2  (see Equation (S2.4)) (S19.170) 

∆𝑤=
4098�0.6108𝑒𝑥𝑝�17.27×11.0285 

11.0285 +237.3��

(11.0285 +237.3)2  = 0.08740 kPa °C-1 (S19.171) 

𝑣𝑤∗ = 0.6108𝑒𝑥𝑝 � 17.27𝑇𝑤
𝑇𝑤+237.3

�  (see Equation (S2.5)) (S19.170) 

𝑣𝑤∗ = 0.6108𝑒𝑥𝑝 �17.27×11.0285 
11.0285 +237.3

� = 1.3152 kPa (S19.173) 

The penultimate step is to recompute the net radiation given the water temperature. 

 𝑅𝑛𝑠 and 𝑅𝑖𝑙 will not change as they are essentially unaffected by the surface 
temperature. However, the outgoing longwave radiation (𝑅𝑜𝑙) is a function of water 
temperature which is now known. 

𝑅𝑜𝑙 = 0.97 𝜎(𝑇𝑤 + 273.15)4 (see Equation (S11.27))  (S19.174) 
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𝑅𝑜𝑙 = 0.97×4.903×10−9(11.0285 + 273.15)4 = 31.0169 MJ m-2 day-1 (S19.175) 
Thus, 

Q∗ = 𝑅𝑠(1 − 𝛼) + (𝑅𝑖𝑙 −  𝑅𝑜𝑙) (see Equation (S11.25))    (S19.176) 

Q∗ = 15.8184 + (25.2641 −  31.0169) = 10.0656 MJ m-2 day-1 

𝐸𝑀𝑐𝐽 = 1
𝜆
�
Δw(Q∗−Gw)+86400𝜌𝑎𝑐𝑎�𝑣𝑤

∗ −𝑣𝑎�
𝑟𝑎

Δw+𝛾
�  (see Equation (S11.22)) (S19.177) 

          𝐸𝑀𝑐𝐽 = 1
2.45

�
0.087340(10.0656−6.4850)+86400×1.2×0.001013(1.3152−0.5614)

339.9
0.08732 +0.0632

� (S19.178) 

𝐸𝑀𝑐𝐽 = 1.4796 mm day-1 (S19.179) 
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Supplementary Material 
Appendix S20 Listing of Fortran 90 version of Morton’s WREVAP 

program 
The following program listing called Program WREVAP, which is a slightly modified 

version of Morton’s WREVAP model, is written in Fortran 90 and follows closely the steps 
set out in Appendix C of Morton (1983a). The deep lake sub-routine is based on Morton 
(1986, Section 3). 

The program uses a monthly time-step and requires the following input data: for each 
month, average daily temperature (°C), average daily relative humidity (%), and average daily 
sunshine hours. Other data required as input are mean annual precipitation (mm), latitude 
(decimal degree and negative for the southern hemisphere), and elevation of the station (m). 
For deep lake evaporation, lake salinity (ppm) and average lake depth (m) are also required. 
The outputs from the CRAE sub-model are monthly net solar radiation (mm), monthly 
potential evapotranspiration (mm), monthly wet areal evapotranspiration (mm) and monthly 
actual areal evapotranspiration (mm); from the CRWE sub-model are net radiation at the 
water surface, potential evaporation and actual shallow lake evaporation; and from CWLE 
sub-model are net radiation at the water surface, potential evaporation and actual deep lake 
evaporation.  

Structure of Program WREVAP 
Program WREVAP calculates the actual evapotranspiration from a landscape 

(catchment) environment, evaporation from a shallow lake and evaporation from a deep lake 
based on Morton’s (1983a,b; 1986) WREVAP program. The program WREVAP is a slightly 
modified version of  Morton’s WREVAP and consists of one module (WREVAP data) and 
five subroutines (crae, crwe, crle1, crle2 and sub1). crae, crwe and crle represent Morton’s 
three program CRAE, CRWE and CRLE. Two versions of CRLE are include: crle1 calculates 
lake evaporation assuming the water depth in the lake is constant, and crle2 calculates lake 
evaporation assuming the water depth in the lake varies on a monthly basis. 

The structure of Program WREVAP is shown in the figure below where: 
WREVAP data Variable declarations and constants 
crae Calculates the actual evapotranspiration from landscape 
crwe Calculates evaporation from shallow lake 
crle1 Calculates evaporation from deep lake (constant depth) 
crle2 Calculates evaporation from deep lake (variable depth) 
sub1 Calculates the solar radiation 
 
 

 
 

WREVAP

WREVAP
data crae crwe crle 1 crle 2

sub 1 sub 1 sub 1 sub 1
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Input data: latitude (degrees), station height (m), mean annual precipitation (mm year-1), 
number of months, monthly temperature (°C), relative humidity (%), sunshine hours (h), lake 
depth (m), salinity (ppm). 
 
The input data is supplied to the program via two files: a parameter file and a data file. 
Parameter file: WREVAP.par 
Example: 
Melbourne.dat    File containing the climate and other data 
Melbourne.out    Output file 
 1     Flag 1 – evapotranspiration from landscape 
      2 – evaporation from shallow lake 
      3 – evaporation from deep lake (constant depth) 
      4 – evaporation from deep lake (variable depth) 
Data file: 
Record 

1 Station header 
2 Latitude, station height, mean annual rainfall and number of months 
3 Data header 
4 year, month, number of days, temperature, relative humidity and sunshine 

hours 
 .   “   “   “ 
 .    “   “   “ 
 
Example: Melbourne.dat (for crae and crwe) 
86282 86 MELBOURNE AIRPORT 
-37.666  113.4  660 201 
Year Month Day Temperature RH SH  
1993 5 31     12.54         72.58     8.88 
1993 6 30     10.12         76.73     7.08 
1993 7 31      9.90          75.74     10.03 
1993 8 31     11.62         69.44 -9999 
1993 9 30     12.12         75.97 9.63 
1993 10 31     13.16         70.58 11.20 
1993 11 30     15.15         71.00 10.95 
1993 12 31     16.80         68.94 9.53 
   . 
   . 
 
Example: ThomsonReservoir.dat (for crle1) 
Thomson Reservoir 
-37.752  415.0  1090   36  22.95  23 
Year Month Day Temperature RH SH 
2007    3 31            16.59         69.96     8.02 
2007    4 30            13.45         74.71     7.31 
2007    5 31            12.56         73.88     5.20 
2007    6 30             6.94          85.04     3.91 
2007    7 31             6.98          79.93     4.45 
2007    8 31             9.33          72.12     6.58 
2007    9 30             9.77          69.64     7.03 
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2007   10 31            12.77         64.85     7.86 
2007   11 30            15.43         75.45     8.42 
2007   12 31            17.28         69.95     8.43 
   . 
   . 
 
Example: ThomsonReservoirVD.dat (for crle2) 
Thomson Reservoir 
-37.752  415.0  1090  36  23 
Year Month Day Temperature RH SH       Depth 
2007    3 31            16.59         69.96    8.02      22.52 
2007    4 30            13.45         74.71    7.31      21.99 
2007    5 31            12.56         73.88    5.20      21.69 
2007     6 30             6.94          85.04    3.91      21.79 
2007    7 31             6.98          79.93    4.45      23.39 
2007    8 31             9.33          72.12    6.58      24.26 
2007    9 30             9.77          69.64    7.03      24.86 
2007  10 31           12.77          64.85    7.86      25.26 
2007     11 30           15.43          75.45    8.42      25.52 
2007  12 31           17.28          69.95    8.43      25.62 
   . 
   . 
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Program WREVAP (Fortran 90)  
 Lines designated as !C-1 to !C-39 identify the equivalent equations in Morton (1983a, 

Appendix C) and those designated as ! (3) to ! (8) are from Morton (1986). A list of variables 
is provided at the end of the program. 

 
Module WREVAPdata 
   implicit none 
   save 
   character(len=80) :: fn 
   integer :: year, month, nd, ios, j, im, nm, nn(12) 
   real :: phid, h, p, pa, pps, azd, td, t, s, v, vd, delta, & 

theta, tc, c0, c1, c2, w, phi, rh 
     real :: alpha(2) = (/17.27, 21.88/), beta(2) = (/237.3, 265.5/),& 

pi = 3.14159254, gamma(2), ftz(2), fz(2), az, azz, cz, & 
  cosz, comega, eta, ge, z, tmp, a0, g0, b, rt, rtc, & 
  zeta, ft, lambda, et, etp, tau, rho, delp, delt, vp, & 

tp, es, d, salt, omega, taua, g, a, b0, rtp, etw, b1, & 
b2, ltheat, xm(4,12), gdew, rw, ep, ew 

end Module WREVAPdata 
 
program WREVAP 
!  Calculates Morton's ET 
!  05 April 2012 
   use WREVAPdata 
   implicit none 
   integer :: flag 
   open (10, file = 'WREVAP.par', status = 'old') 
   read (10, 100) fn; 100 format(a) 
   open (11, file = fn, status = 'old')     

      
!  Input data file 
   read (10, 100) fn 
   open (21, file = fn)         
!  Output file 
   read (11, 100) fn 
   write (21, 100) fn 
   read (10, *) flag 
   if (flag == 1) then 
!  b0 = 1.; b1 = 14.; b2 = 1.20; fz(1) = 28.     !Morton's values 
  b0 = 1.; b1 = 13.4; b2 = 1.13; fz(1) = 29.2 ! QJ's values 
  es = 5.22e-8 
  write (21, '("fz, b1, and b2", 3f8.2)'), fz(1), b1, b2 
  read (11, *) phid, h, pa, nm 
  write (21, 200) phid, h, pa, nm 
  200 format('Latitude =', f7.2, '  Station height =', f8.2, & 
      ' m  Mean annual precipitation =', f8.1, ' mm'/  & 
      '#  of months =', i5 ) 
  write (21, 201) 
  201 format(' Year Month  Temp     Rel Hum  Sunshine’  & 

‘Net Rad     PET        WET        AET     ft'/ & 
  '             (oC)       (%)    (Ratio)   (mm)’ & 

‘       (mm)       (mm)       (mm)') 
   else 
  b0 = 1.12 
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  b1 = 13. 
  b2 = 1.12 
  es = 5.5e-8 
  fz(1) = 25. 
  if (flag == 2) then 
     read (11, *) phid, h, pa, nm 
     write (21, 200) phid, h, pa, nm 
  else if (flag == 3 ) then 
     read (11, *) phid, h, pa, nm, d, salt 
     write (21, 202) phid, h, pa, d, salt, nm 
     202 format('Latitude =', f7.2, '  Station height =', & 

f8.2, ' m', '  Mean annual precipitation =', & 
     f8.1, ' mm'/ ' Lake depth =', f7.2, ' m',    & 

'  Salt =', f8.1, ' ppm', ' #  of months =', i5 ) 
  else if (flag == 4 ) then 
     read (11, *) phid, h, pa, nm, salt 
     write (21, 203) phid, h, pa, salt, nm 
     203 format('Latitude =', f7.2, '  Station height =', & 

f8.2, ' m', '  Mean annual precipitation =', & 
     f8.1, ' mm'/ '  Salt =', f8.1, ' ppm',       & 

' #  of months =', i5 ) 
  end if 
   end if 
   read (11, *)             
!  Skip a line 
   phi = phid*pi/180. 
!  Compute the ratio of atmospheric pressure at the station to that 
!  at sea level 
   pps = ((288. - 0.0065*h)/288)**5.256      !C-1 
   p = pps*1013. 
!  Estimate the zenith value of the dry season snow free clear sky 
!  albedo 
   azd = 0.26 - 0.00012*pa*(1 + abs(phid/42) +       & 

 (phid/42)**2)*pps**0.5       !C-2 
   if (azd < 0.11) azd = 0.11 
   if (azd > 0.17) azd = 0.17 
   gamma(1) = 0.66*pps 
   gamma(2) = gamma(1)/1.15 
   fz(2) = fz(1)*1.15 
   ftz(1) = fz(1)*sqrt(1./pps) 
   ftz(2) = ftz(1)*1.15 
   nn = 0 ; xm =0. 
   if (flag == 1) then 
  call crae(1) 
   else if (flag == 2) then 
  write (21, 204) 
  204 format(' Year Month  Temp     Rel Hum  Sunshine  ‘,  & 

 ‘Net Rad     PET        AET'/ & 
 ‘             (oC)       (%)    (Ratio)   (mm)’,  & 

       ’       (mm)       (mm)’) 
  call crwe(2) 
   else if (flag == 3) then 
  write (21, 204) 
  call crle1(3) 
   else if (flag == 4) then 
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  write (21, 205) 
  205 format(‘ Year Month  Temp     Rel Hum  Sunshine’,  & 

 ’    Depth   Net Rad     PET        AET’/ & 
    ‘             (oC)       (%)    (Ratio)’, & 

‘      (m)     (mm)       (mm)       (mm)') 
  call crle2(4) 
   end if 
end program WREVAP 
 
subroutine crae(flag) 
!   Calculates the actual evapotranspiration from landscape 
    use WREVAPdata 
    implicit none 
 integer :: flag 
 do im = 1, nm 
    read (11, *, iostat = ios) year, month, nd, t, rh, s 
    if (ios < 0) exit 
    if (s < 0. .OR. rh < 0. .OR. t < -999.) cycle 
    call sub1(flag) 
!    Estimate the net radiation for soil-plant surfaces at air 
!    temperature (rt), the stability factor (sf), the vapour 
!    pressure coefficient (ft) and the heat transfer  
!    coefficient (lambda) 
    rt = (1. - a)*g - b        !C-27 
    rtc = rt          !C-28 
    if (rtc < 0.) rtc = 0.        !C-28a 
    zeta = 1./(0.28*(1. + vd/v) + delta*rtc*pps**0.5/ & 

 (gamma(j)*b0*fz(j)*(v - vd)))     !C-29 
    if (zeta < 1.) zeta = 1.        !C-29a 
    ft = fz(j)/zeta/pps**0.5        !C-30 
    lambda = gamma(j) + 4.*es*(t + 273)**3/ft    !C-31 
!    Estimate the final values from the following quickly 
!    converging iterative solution of the vapour transfer 
!    and energy balance equations 
    tp = t             

   vp = v 
    delp = delta 
    do 
   delt = (rt/ft + vd - vp +lambda*(t - tp))/  & 

    (delp + lambda)        !C-32 
   tp = tp + delt         !C-33 
   vp = 6.11*exp(alpha(j)*tp/(tp + beta(j)))    !C-34 
   delp = alpha(j)*beta(j)*vp/(tp + beta(j))**2   !C-35 
   if (abs(delt) < 0.01) exit 
    end do 
   
!    Estimate the potential evapotranspiration (etp), the net 
!    radiation for soil-plant surfaces at equilibrium temperature 
!    (rtp) and the wet-environment areal evapotranspiration (etw) 
    etp = rt - lambda*ft*(tp - t)       !C-36 
    rtp = etp + gamma(j)*ft*(tp - t)      !C-37 
    etw = b1 + b2*rtp/(1. + gamma(j)/delp)     !C-38 
    if (etw < etp/2.) etw = etp/2.      !C-38a 
    if (etw > etp) etw = etp        !C-38a 
!    Estimate the areal evapotranspiration (et) from the 
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!    complementary relationship 
    et = 2.*etw - etp         !C-39 
    ltheat = 28.5 
    if (t < 0.) ltheat = 28.5*1.15 
    et = nd*et/ltheat 
    rt = nd*rt/ltheat 
    etp = nd*etp/ltheat 
    etw = nd*etw/ltheat 
    write (21, 201) year, month, t, rh, s, rt, etp, etw, et, ft 
    201 format(i5, i3, 8f10.2) 
    xm(1,month) = xm(1,month) + rt 
    xm(2,month) = xm(2,month) + etp 
    xm(3,month) = xm(3,month) + etw 
    xm(4,month) = xm(4,month) + et 
    nn(month) = nn(month) + 1 
 end do 
 write (21, 202) 
 202 format(/10x,'Mean Values'/'Month   Net Rad      PET’  &  

‘       WET       AET  # of months') 
 do month = 1, 12 
    xm(:,month) = xm(:,month)/nn(month) 
    write (21, 203) month, (xm(j,month), j = 1, 4), nn(month) 
    203 format(i5, 4f10.2, i5) 
 end do 
 write (21, 204) (sum(xm(j,:)), j = 1, 4) 
 204 format('Annual', f9.1, 3f10.2) 
end subroutine crae 
 
subroutine sub1(flag) 
   use WREVAPdata 
   implicit none 
   integer :: flag 
   if (t < 0.) then 
  j = 2 
   else 
  j = 1 
   end if 
!  Compute the saturation vapour pressure at td (vd), at t (v) and 
!  the slope of the saturation vapour pressure at t (delta) 
   v = 6.11*exp(alpha(j)*t/(t + beta(j)))      !C-4 
!  Calculate dew point temperature from relative humidity  
!  (Lawrence 2005) 
   gdew = 17.625*t/(243.04 + t) + log(rh/100.) 
   td = 243.04*gdew/(17.625 - gdew) 
   vd = 6.11*exp(17.27*td/(td + 237.3)) 
   delta = alpha(j)*beta(j)*v/(t + beta(j))**2     !C-5 
!  Compute various angles and functions leading up to an estimate  
!  of the extra-atmospheric global radiation (ge) 
   theta = 23.2*sin((29.5*month - 94.)*pi/180.)*pi/180.   !C-6 
   z = phi - theta 
   cosz = cos(z)           !C-7 
   if (cosz < 0.001) cosz = 0.001       !C-7a 
   if (cosz > 1.) cosz = 1. 
   z = acos(cosz) 
   comega = 1. - cosz/cos(phi)/cos(theta)       !C-8 
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   if (comega < -1.) comega = -1.       !C-8a 
   omega = acos(comega) 
   cz = cosz + (sin(omega)/omega - 1.)*cos(phi)*cos(theta)   !C-9 
   eta = 1. + sin((29.5*month - 106)*pi/180.)/60.     !C-10 
   ge = 1354*omega*cz/pi/eta/eta        !C-11 
!  Estimate the zenith value of snow-free clear-sky albedo (azz), 
!  zenith value of clear-sky albedo (az) and the clear sky  
!  albedo (a0) 
   if (flag > 1) then 

 azz = 0.05 
   else 
  azz = azd           !C-12 
  if (azz > 0.5*(0.91 - vd/v)) azz = 0.5*(0.91 - vd/v)   !C-12a 
   end if      
   c0 = v - vd           !C-13 
   if (c0 < 0.) c0 = 0.         !C-13a 
   if (c0 > 1.) c0 = 1.         !C-13a 
   az = azz + (1. - c0*c0)*(0.34 - azz)      !C-14 
   a0 = az*(exp(1.08) - (2.16*cosz/pi +   & 
   sin(z))*exp(0.012*z*180./pi))/1.473/(1. - sin(z))    !C-15 
!  Estimate precipitable water (w) and a turbidity coefficient (tc) 
   w = vd/(0.49 + t/129.)         !C-16 
   c1 = 21 - t           !C-17 
   if (c1 < 0.) c1 = 0.         !C-17a 
   if (c1 > 5.) c1 = 5.         !C-17a 
   tc  = (0.5 + 2.5*cz*cz)*exp(c1*(pps - 1.))     !C-18 
!  Compute the transmittancy of clear skies to direct beam  
!  solar radiation (tau) 
   tau = exp(-0.089*(pps/cz)**0.75 - 0.083*(tc/cz)**0.90 - & 

0.029*(w/cz)**0.60)             !C-19 
!  Estimate the part of tau that is the result of absorption (taua) 
   taua = exp(-0.0415*(tc/cz)**0.90 - (0.0029**0.5)*  & 

(w/cz)**0.3)         !C-20 
   tmp = exp(-0.0415*(tc/cz)**0.90 - 0.029*(w/cz)**0.6) 
   if (taua < tmp) taua = tmp        !C-20a 
!  Compute the clear-sky global radiation (g0) and the incident 
!  global radiation (g) 
   g0 = ge*tau*(1. + (1. - tau/taua)*(1. + a0*tau))     !C-21 
   s = s*pi/24./omega    
   if (s > 1.) s = 0.999 
   g = s*g0 + (0.08 + 0.30*s)*(1. - s)*ge      !C-22 
!  Estimate the average albedo (a) 
   a = a0*(s + (1. - s)*(1. - z*180/pi/330))     !C-23 
!  Estimate the proportional increase in atmospheric radiation 
!  due to clouds (rho) 
   c2 = 10.*(vd/v - s - 0.42)        !C-24 
   if (c2 < 0.) c2 = 0.         !C-24a 
   if (c2 > 1.) c2 = 1.         !C-24a 
   rho = 0.18*((1. - c2)*(1. - s)**2 + c2*(1. - s)**0.5)/pps  !C-25 
!  Calculate the net long-wave radiation loss for soil-plant 
!  surface at air temperature (b) 
   b = es*(t + 273)**4*(1. - (0.71 + 0.007*vd*pps)*(1. + rho))!C-26 
   tmp = 0.05*es*(t + 273)**4 
   if ( b < tmp) b = tmp         !C-26a 
end subroutine sub1 
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subroutine crwe(flag) 
!  Calculates Morton's ET - Shallow lake evaporation 
!  05 April 2012 
   use WREVAPdata 
   implicit none 
   integer :: flag 
   do im = 1, nm 
  read (11, *, iostat = ios) year, month, nd, t, rh, s 
  if (ios < 0) exit 
  if (s < 0. .OR. rh < 0. .OR. t < -999.) cycle 
  call sub1(flag) 
!  Estimate the net radiation for water surface at air 
!  temperature (rw), 
!  the stability factor (sf), the vapour pressure  
!  coefficient (ft) and the heat transfer coefficient (lambda) 
  rw = (1. - a)*g - b 
  rtc = rw 
  if (rtc < 0.) rtc = 0. 
  zeta = 1./(0.28*(1. + vd/v) + delta*rtc*pps**0.5/  & 

(gamma(j)*b0*fz(j)*(v - vd))) 
  if (zeta < 1.) zeta = 1. 
  ft = fz(j)/zeta/pps**0.5 
  lambda = gamma(j) + 4.*es*(t + 273)**3/ft 
!  Estimate the final values from the following quickly  
!  converging iterative solution of the vapour transfer 
!  and energy balance equations 
  tp = t 
  vp = v 
  delp = delta 
  do 
     delt = (rw/ft + vd - vp +lambda*(t - tp))/(delp + lambda) 
     tp = tp + delt 

    vp = 6.11*exp(alpha(j)*tp/(tp + beta(j))) 
     delp = alpha(j)*beta(j)*vp/(tp + beta(j))**2 
     if (abs(delt) < 0.01) exit 

 end do 
   
!  Estimate the potential evaporation (ep), the net radiation 
!  for soil-plant surfaces at equilibrium temperature (rtp) 
!  and the shallow lake evaporation (ew) 
  ep = rw - lambda*ft*(tp - t) 
  rtp = ep + gamma(j)*ft*(tp - t) 
  ew = b1 + b2*rtp/(1. + gamma(j)/delp) 
  if (ew < ep/2.) ew = ep/2. 
  if (ew > ep) ew = ep 
  ltheat = 28.5 
  if (t < 0.) ltheat = 28.5*1.15 
  ep = nd*ep/ltheat 
  rw = nd*rw/ltheat 
  ew = nd*ew/ltheat 
  write (21, 201) year, month, t, rh, s, rw, ep, ew 
  201 format(i5, i3, 6f10.2) 
  xm(1,month) = xm(1,month) + rw 
  xm(2,month) = xm(2,month) + ep 
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  xm(3,month) = xm(3,month) + ew 
  nn(month) = nn(month) + 1 
   end do 
   write (21, *) ' Mean values' 
   write (21, *) 'Month  Net Rad     PET        AET' 
   do month = 1, 12 
  xm(:,month) = xm(:,month)/nn(month) 
  write (21, 203) month, (xm(j,month), j = 1, 3) 
  203 format(i5, 4f10.2) 
   end do 
   write (21, 204) (sum(xm(j,:)), j = 1, 3) 
   204 format('Annual', f9.1, 3f10.2) 
end subroutine crwe 
 
subroutine crle1(flag) 
!  Calculates Morton's ET - Deep lake evaporation 
!  05 April 2012 
   use WREVAPdata 
   implicit none 
   integer, parameter :: nmx = 360 
   integer :: ic, iy(nmx), mon(nmx), tnd(nmx), flag 
   real ::  tgw(nmx), tv(nmx), tvd(nmx), ts(nmx), gl(nmx), & 

tt(nmx), trh(nmx), tdelta(nmx) 
   do im = 1, nm 

 read (11, *, iostat = ios) year, month, nd, t, rh, s 
  if (ios < 0) exit 
  if (s < 0. .OR. rh < 0. .OR. t < -999.) cycle 
  call sub1(flag) 
  tgw(im+12) = (1. - a)*g - b 
  tt(im) = t 
  trh(im) = rh 
  ts(im) = s 
  tv(im) = v 
  tvd(im) = vd 
  tdelta(im) = delta 
  iy(im) = year 
  tnd(im) = nd 
  mon(im) = month 
   end do 
   call deepLake(nmx, nm, tgw, gl, d, salt) 
   do im = 1, nm 
  t = tt(im) 
  rh = trh(im) 
  s = ts(im) 
  v = tv(im) 
  vd = tvd(im) 
  delta = tdelta(im) 
!   Estimate the net radiation for water surface at air 
!  temperature (rw), 
!  the stability factor (sf), the vapour pressure coefficient 
!  (ft) and the heat transfer coefficient (lambda) 
  rw = gl(im) 
  rtc = rw 
  if (rtc < 0.) rtc = 0. 
  zeta = 1./(0.28*(1. + vd/v) + delta*rtc*pps**0.5/   & 
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(gamma(j)*b0*fz(j)*(v - vd)))      !C-29 
  if (zeta < 1.) zeta = 1.        !C-29a 
  ft = fz(j)/zeta/pps**0.5        !C-30 
  lambda = gamma(j) + 4.*es*(t + 273)**3/ft     !C-31 
!  Estimate the final values from the following quickly 
!  converging iterative solution of the vapour transfer 
!  and energy balance equations 
  tp = t 
  vp = v 
  delp = delta 
  ic = 0 
  do 
     delt = (rw/ft + vd - vp +lambda*(t - tp))/   &  

(delp + lambda)        !C-32 
     tp = tp + delt         !C-33 
     vp = 6.11*exp(alpha(j)*tp/(tp + beta(j)))    !C-34 
     delp = alpha(j)*beta(j)*vp/(tp + beta(j))**2    !C-35 
     if (abs(delt) < 0.01) exit 
     ic = ic + 1 
     if (ic > 100) then 
    print *, 'Did not converge for month', im 
    exit 
     end if 
  end do 
!  Estimate the potential evaporation (ep), the net radiation  
!  for soil-plant surfaces at equilibrium temperature (rtp) and 
!  the deep lake evaporation (ew) 
  ep = rw - lambda*ft*(tp - t) 
  rtp = ep + gamma(j)*ft*(tp - t) 
  ew = b1 + b2*rtp/(1. + gamma(j)/delp) 
  if (ew < ep/2.) ew = ep/2. 
  if (ew > ep) ew = ep 
  ltheat = 28.5 
  if (t < 0.) ltheat = 28.5*1.15 
  nd = tnd(im) 
  ep = nd*ep/ltheat 
  rw = nd*rw/ltheat 
  ew = nd*ew/ltheat 
  write (21, 201) iy(im), mon(im), t, rh, s, rw, ep, ew 
  201 format(i5, i3, 6f10.2) 
  xm(1,mon(im)) = xm(1,mon(im)) + rw 
  xm(2,mon(im)) = xm(2,mon(im)) + ep 
  xm(3,mon(im)) = xm(3,mon(im)) + ew 
  nn(mon(im)) = nn(mon(im)) + 1 
   end do 
   write (21, *) ' Mean values' 
   write (21, *) 'Month  Net Rad     PET        AET' 
   do month = 1, 12 
  xm(:,month) = xm(:,month)/nn(month) 
  write (21, 203) month, (xm(j,month), j = 1, 3) 
  203 format(i5, 4f10.2) 
   end do 
   write (21, 204) (sum(xm(j,:)), j = 1, 3) 
   204 format('Annual', f9.1, 3f10.2) 
end subroutine crle1 
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subroutine deepLake(nmx, nm, tgw, gl, d, salt) 
!  Calculates the available solar and waterborne heat(gl) using 
!  Morton 1986 
   implicit none 
   integer :: im, nmx, nm, ti, t1, i, i1, ii 
   real :: gw(nmx), tgw(nmx), gl(nmx), t0, t, glb, gle, & 
   salt, d, f, k 
   t0 = 0.96 + 0.013*d          !(6) 
   if (t0 < 0.039*d) t0 = 0.039*d 
   if (t0 > 0.13*d) t0 = 0.13*d 
   t = t0/(1. + salt/27000)**2         !(7) 
   if (t > 6.) t = 6. 
   k = t0/(1. + (d/93)**7)          !(8) 
!  Calculates the delayed solar and waterborne energy (gw) 
   ti = int(t) 
   t1 = ti + 1 
   f = t - ti 
   i = 12 
   tgw(1:12) = tgw(13:24) 
   do im = 1, nm 
  i = i + 1 
  i1 = i - t1 
  ii = i - ti 
  gw(im) = tgw(ii) + f*(tgw(i1) - tgw(ii))      !(3) 
   end do 
!  Calculates the available solar and waterborne heat(gl) 
   glb = 50. 
   do i = 1, 2  
  do im = 1, 12 
          gle = glb + (gw(im) - glb)/(k + 0.5)      !(4) 
          gl(im) = (glb + gle)/2.        !(5) 
          glb = gle 
  end do 
   end do 
   do im = 1, nm 
  gle = glb + (gw(im) - glb)/(k + 0.5)       !(4) 
  gl(im) = (glb + gle)/2.         !(5) 
  glb = gle 
   end do 
end subroutine deepLake 
 
subroutine crle2(flag) 
!  Calculates Morton's ET - Deep lake evaporation 
!  05 April 2012 
   use WREVAPdata 
   implicit none 
   integer, parameter :: nmx = 360 
   integer :: ic, iy(nmx), mon(nmx), tnd(nmx), flag 
   real ::  tgw(nmx), tv(nmx), tvd(nmx), ts(nmx), gl(nmx), & 

tt(nmx), trh(nmx), tdelta(nmx), da(nmx) 
   do im = 1, nm 
  read (11, *, iostat = ios) year, month, nd, t, rh, s, da(im) 
  if (ios < 0) exit 
  if (s < 0. .OR. td < 0. .OR. t < -999.) cycle 
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  call sub1(flag) 
  tgw(im+12) = (1. - a)*g - b 
  tt(im) = t 
  trh(im) = rh 
  ts(im) = s 
  tv(im) = v 
  tvd(im) = vd 
  tdelta(im) = delta 
  iy(im) = year 
  mon(im) = month 
  tnd(im) = nd 
   end do 
   call deepLakeVD(nmx, nm, tgw, gl, da, salt) 
   do im = 1, nm 
  t = tt(im) 
  rh = trh(im) 
  s = ts(im) 
  v = tv(im) 
  vd = tvd(im) 
  delta = tdelta(im) 
!   Estimate the net radiation for water surface at air 
!  temperature (rw), 
!  the stability factor (sf), the vapour pressure coefficient  
!  (ft) and the heat transfer coefficient (lambda) 
  rw = gl(im) 
  rtc = rw 
  if (rtc < 0.) rtc = 0. 
  zeta = 1./(0.28*(1. + vd/v) + delta*rtc*pps**0.5/  & 

 (gamma(j)*b0*fz(j)*(v - vd)))     !C-29 
  if (zeta < 1.) zeta = 1.        !C-29a 
  ft = fz(j)/zeta/pps**0.5        !C-30 
  lambda = gamma(j) + 4.*es*(t + 273)**3/ft     !C-31 
!  Estimate the final values from the following quickly 
!   converging iterative solution of the vapour transfer and  
!  energy balance equations 
  tp = t 
  vp = v 
  delp = delta 
  ic = 0 
  do 
     delt = (rw/ft + vd - vp +lambda*(t - tp))/(delp + lambda)

            !C-32 
     tp = tp + delt         !C-33 
     vp = 6.11*exp(alpha(j)*tp/(tp + beta(j)))    !C-34 
     delp = alpha(j)*beta(j)*vp/(tp + beta(j))**2    !C-35 
     if (abs(delt) < 0.01) exit 
     ic = ic + 1 
     if (ic > 100) then 
    print *, 'Did not converge for month', im 
    exit 
     end if 

 end do 
   
!  Estimate the potential evaporation (ep), the net radiation 
!  for soil-plant 
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!  surfaces at equilibrium temperature (rtp) and the deep lake 
!  evaporation (ew) 
! 
  ep = rw - lambda*ft*(tp - t) 
  rtp = ep + gamma(j)*ft*(tp - t) 
  ew = b1 + b2*rtp/(1. + gamma(j)/delp) 
  if (ew < ep/2.) ew = ep/2. 
  if (ew > ep) ew = ep 
  ltheat = 28.5 
  if (t < 0.) ltheat = 28.5*1.15 
  nd = tnd(im) 
  ep = nd*ep/ltheat 
  rw = nd*rw/ltheat 
  ew = nd*ew/ltheat 
  write (21, 201) iy(im), mon(im), t, rh, s, da(im), rw, ep, ew 
  201 format(i5, i3, 7f10.2) 
  xm(1,mon(im)) = xm(1,mon(im)) + rw 
  xm(2,mon(im)) = xm(2,mon(im)) + ep 
  xm(3,mon(im)) = xm(3,mon(im)) + ew 
  nn(mon(im)) = nn(mon(im)) + 1 
   end do 
   write (21, *) ' Mean values' 
   write (21, *) 'Month  Net Rad     PET        AET' 
   do month = 1, 12 
  xm(:,month) = xm(:,month)/nn(month) 
  write (21, 203) month, (xm(j,month), j = 1, 3) 
  203 format(i5, 4f10.2) 
   end do 
   write (21, 204) (sum(xm(j,:)), j = 1, 3) 
   204 format('Annual', f9.1, 3f10.2) 
end subroutine crle2 
   
subroutine deepLakeVD(nmx, nm, tgw, gl, da, salt) 
!  Calculates the available solar and waterborne heat(gl) using 
!  Morton 1986 
   implicit none 
   integer :: im, nmx, nm, ti, t1, i, i1, ii 
   real :: gw(nmx), tgw(nmx), gl(nmx), t0, t, glb, gle, salt, & 

d, f, da(nmx), k 
   tgw(1:12) = tgw(13:24) 
   i = 12 
   do im = 1, nm 
  d = da(im) 
  t0 = 0.96 + 0.013*d          !(6) 
  if (t0 < 0.039*d) t0 = 0.039*d 
  if (t0 > 0.13*d) t0 = 0.13*d 
  t = t0/(1. + salt/27000)**2        !(7) 
  if (t > 6.) t = 6. 
  k = t0/(1. + (d/93)**7)         !(8) 
!  Calculates the delayed solar and waterborne energy (gw) 
  ti = int(t) 
  t1 = ti + 1 
  f = t - ti 
  i = i + 1 
  i1 = i - t1 
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  ii = i - ti 
  gw(im) = tgw(ii) + f*(tgw(i1) - tgw(ii))      !(3) 
   end do 
!  Calculates the available solar and waterborne heat(gl) 
   glb = 50. 
   do i = 1, 2  
  do im = 1, 12 
     gle = glb + (gw(im) - glb)/(k + 0.5)      !(4) 
     gl(im) = (glb + gle)/2.         !(5) 
     glb = gle 
     end do 
   end do 
   do im = 1, nm 
  gle = glb + (gw(im) - glb)/(k + 0.5)       !(4) 
  gl(im) = (glb + gle)/2.         !(5) 
  glb = gle 
   end do 
end subroutine deepLakeVD 
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Key variables used in Program WREVAP  
 

Variable Description 
a average albedo  
a0 clear-sky albedo 
alpha constant used in estimating vapour pressure - changes at 0o C 
az zenith value of clear-sky albedo 
azd zenith value of the dry season snow free clear sky albedo 
azz zenith value of snow-free clear-sky albedo 
b net longwave radiation loss for soil-plant surface at air temperature 
beta constant used in estimating vapour pressure - changes at 0o C 
cosz cosine of the noon angular zenith distance of the sun 
cz cosine of the average angular zenith distance of the sun 
delt correction to tp in iteration process 
delta slope of the saturation vapour pressure at t 
es surface emissivity times the Stefan-Boltzmann constant 
et areal evapotranspiration  
eta radius vector of the sun 
etp potential evapotranspiration  
etw wet-environment areal evapotranspiration 
ft vapour pressure coefficient 
g incident global radiation 
g0 clear-sky global radiation 
gamma psychrometric constant - changes at 0o C 
ge extra-atmospheric global radiation in Wm-2 
gl available solar and waterborne heat 
glb value of gl at the beginning 
gle value of gl at the end 
gw delayed solar and waterborne heat 
h station height 
iy array to store year 
k storage constant 
lambda heat transfer coefficient 
ltheat latent heat of vaporisation water 
mon array to store month 
nd number of days in a month 
nm number of months 
omega angle in radians the earth rotates between sunrise and noon 
p atmospheric pressure 
pa mean annual rainfall 
phi latitude in radians 
phid latitude in degrees 
pps ratio of atmospheric pressure at the station to that at sea level 
rho proportional increase in atmospheric radiation due to clouds 
rt net radiation for soil-plant surfaces at air temperature 
rtp net radiation for soil-plant surfaces at equilibrium temperature 
rw net radiation for water surface at air temperature 
s ratio of observed to maximum possible sunshine duration 
sf the stability factor  
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t average air temperature 
t lake delay time in months 
tau transmittancy of clear skies to direct beam soar radiation 
taua part of tau that is the result of absorption 
tc turbidity coefficient 
td average dew point temperature 
tdelta array to store delta 
theta declination of sun 
tnd array to store nd 
to soft water delay time in months 
tp potential evapotranspiration equilibrium temperature 
trh array to store rh 
ts array to store s 
tt array to store t 
tv array to store v 
tvd array to store vd 
v saturation vapour pressure at t  
vd saturation vapour pressure at td 
vp saturation vapour pressure at tp 
w precipitable water 
xm variable to calculate mean monthly values 
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Supplementary Material 
Appendix S21 Worked example of Morton’s CRAE, CRWE and 

CRLE models within the WREVAP framework 
List of variables that are used in this appendix are taken from Morton (1983a, Appendix D) 

and from Morton (1986))  

(Note these variables are different to those adopted in Appendix S20 and in the main text and 
other appendices.) 

 

Variable Description Units 

𝑎  Average albedo dimensionless 

𝑎0  Clear-sky albedo dimensionless 

𝑎𝑧  Zenith value of clear-sky albedo dimensionless 

𝑎𝑧𝑑  Zenith value of the dry-season snow-free clear sky albedo dimensionless 

𝑎𝑧𝑧  Zenith value of clear-sky snow-free albedo dimensionless 

𝐵  Net longwave radiation loss for soil-plant surface at air 
temperature W m-2 

𝑏0   Constant undefined 

𝑏1  Constant W m-2 

𝑏2  Constant undefined 

𝑐0  𝜐 − 𝜐𝐷  mbar 

𝑐1  Working variable °C 

𝑐2  Working variable dimensionless 

𝐸𝑃  Potential evaporation W m-2, mm 
month-1 

𝐸𝑇  Actual areal evapotranspiration W m-2, mm 
month-1 

𝐸𝑇𝑃  Potential evapotranspiration W m-2, mm 
month-1 

𝐸𝑇𝑊  Wet-environment areal evapotranspiration W m-2, mm 
month-1 

𝐸𝑊  Shallow lake evaporation W m-2, mm 
month-1 

𝑓𝑇  Vapour transfer coefficient W m-2 mbar-1 

𝑓𝑧  Constant used in estimating 𝑓𝑇 W m-2 mbar-1 

𝐺  Incident global radiation W m-2 

𝐺𝐸  Extra-atmospheric global radiation W m-2 

𝐺𝐿  Available (routed) solar and waterborne energy W m-2 

𝐺𝐿𝐵  Available solar and waterborne heat energy at the beginning W m-2 
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of the month 

𝐺𝐿𝐸  Available solar and waterborne heat energy at the end of the 
month W m-2 

𝐺𝑜   Clear-sky global radiation W m-2 

𝐺𝑊0   Solar plus waterborne heat input W m-2 

𝐺𝑊𝑡   Delayed solar and waterborne energy inputs W m-2 

𝐺𝑊
[𝑡], 

𝐺𝑊
[𝑡+1] 

Value of 𝐺𝑊0  computed [𝑡𝐿] and [𝑡𝐿 + 1] months W m-2 

ℎ�  Average depth of lake m 

𝐻  Site elevation m 

𝑖  Month number dimensionless 

𝑗  Turbidity coefficient undefined 

𝑃𝐴  Mean annual rainfall mm year-1 

𝑝  Atmospheric pressure at station mbar 

𝑝𝑠  Atmospheric pressure at mean sea level mbar 
𝑝
𝑝𝑠

  Ratio of atmospheric pressure at station to atmospheric 
pressure at mean sea level dimensionless 

𝑅𝐻  Mean daily relative humidity % 

𝑅𝑛𝑙 Net longwave radiation W m-2 

𝑅𝑠  Measured incoming solar radiation W m-2 

𝑅𝑇  Net radiation at soil-plant surface at air temperature W m-2 
𝑅𝑇𝐶  𝑅𝑇 with 𝑅𝑇𝐶 ≥ 0 W m-2 
𝑅𝑇𝑃  Net radiation at the soil-plant surface for equilibrium 

temperature W m-2 

𝑅𝑊  Net radiation for water surface at air temperature W m-2 

𝑠  Average lake salinity ppm 

𝑆  Ratio of observed to maximum possible sunshine duration dimensionless 

𝑆𝑐   Storage coefficient months 

𝑡0  Soft water delay time months 

𝑡𝐿  Lake lag or delay time months 

[𝑡𝐿]  Integral component of the lake lag months 

𝑇  Mean daily air temperature for month °C 
𝑇𝐷  Mean daily dew point temperature for month °C 
𝑇𝑃  Equilibrium temperature  °C 

𝑇𝑃′   Trial value of 𝑇𝑃 in iteration process °C 
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𝑊  Precipitable water vapour mm 

𝑍  Noon angular zenith distance of sun radian 

𝑧  Average angular zenith distance of the Sun radian 

𝛼  Constant Equations (S21.12 and S21.78); albedo Equation 
(S21.97) 

°C; 
dimensionless 

𝛽  Constant Equations (S21.12 and S21.78) °C 

γ  Psychrometric constant mbar °C-1 

δℎ  Water borne heat input W m-2 

∆  Saturation vapour pressure curve at 𝑇  mbar °C-1 

∆𝑃  Slope of saturation vapour pressure curve at 𝑇𝑃  mbar °C-1 

∆𝑇′   Slope of saturation vapour pressure curve at 𝑇𝑃′   mbar °C-1 

[𝛿𝑇𝑃]  Adjustment to 𝑇𝑃 in iteration process °C 

𝜀  Surface emissivity dimensionless 

𝜉  Stability factor undefined 

𝜂  Radius vector of sun undefined 

𝜃  Declination of sun radians 

𝜆  Heat transfer coefficient mbar °C-1 

𝜌  Proportional increase in atmospheric radiation due to clouds dimensionless 

𝜎  Stefan-Boltzmann constant W m-2 K-4 

𝜏  Transmittancy of clear sky to direct beam radiation undefined 

𝜏𝑎  Proportion of 𝜏 that is the result of absorption undefined 

𝜐  Mean daily saturation vapour pressure at air temperature for 
month mbar 

𝜐𝐷  Mean daily saturation vapour pressure at dew point 
temperature for month mbar 

𝜐𝑃  Mean daily saturation vapour pressure at equilibrium 
temperature for month mbar 

𝜐𝑃 ′  Trial value of 𝜐𝑃 in iteration process mbar 

Ø  Latitude degree, radians 

𝜔  Angle the earth rotates between sunrise and noon radian 
 

CRAE: Estimate actual evaporation   
Use Morton’s CRAE model to estimate the potential and actual evaporation for July 

1980 at Alice Springs (Bureau of Meteorology, Australia station number 15590). Although 
the general methodology is presented in Appendix S7, the following procedure follows the 
detailed steps in Morton (1983a, Appendix C) and the Fortran program in Appendix S20. 
The symbols adopted here are those used by Morton and are different to those used in the 
Morton Fortran program (Appendix S20) and in the other appendices.  
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The site conditions at Alice Spring automatic weather station are as follows: 

 Latitude (Ø) -23.7951 °S (negative for southern hemisphere) 
 -0.4153 radian 

 Site elevation (𝐻) 546 m 
 Mean annual rainfall (𝑃𝐴) 285.8 mm year-1 

The meteorological data for July 1980 is: 
 Mean daily air temperature (𝑇 ) 11.8 °C day-1 
 Mean daily relative humidity (𝑅𝐻 ) 55.5 % day-1 
 Mean daily sunshine hours 8.35 hour day-1 

  Because Morton assumes dew point temperature is available to estimate saturation 
vapour pressure rather than relative humidity, we carry out the following preliminary 
calculations to estimate dew point temperature (𝑇𝐷) as follows (Lawrence, 2005, Equation 8): 

𝑇𝐷 =
243.04�𝑙𝑛�𝑅𝐻100�+

17.625 𝑇
243.04+𝑇�

17.625−𝑙𝑛�𝑅𝐻100�−
17.625 𝑇
243.04+𝑇

   (S21.1) 

where 𝑇 is air temperature (°C), 𝑅𝐻  is the relative humidity (%). 
For July 1980, Alice Springs 

𝑇𝐷 =
243.04�𝑙𝑛�55.5

100�+
17.625×11.8
243.04+11.8�

17.625−𝑙𝑛�55.5
100�−

17.625×11.8
243.04+11.8

 = 3.1755 °C  (S21.2) 

To maintain consistency with Morton’s (1983a) procedure, we adopt the units he used 
in his Appendix C namely W m-2 for radiation, mbar for vapour pressure and °C for 
temperature.  We also adopt Morton’s nomenclature and record below Morton’s equation 
numbers in italics. 

The following two equations refer to the site conditions. 

Equation C-1: Compute the ratio ( 𝑝
𝑝𝑠

) of atmospheric pressure at Alice Springs station (𝑝) to 
that at sea level (𝑝𝑠): 

𝑝
𝑝𝑠

= [(288 − 0.0065𝐻)/288)]5.256 (S21.3) 

𝑝
𝑝𝑠

= [(288 − 0.0065 × 546)/288)]5.256 = 0.9369                                          (S21.4) 

Equation C-2: Estimate the zenith value of the dry-season snow-free clear sky albedo (𝑎𝑧𝑑): 

𝑎𝑧𝑑 = 0.26 − 0.00012𝑃𝐴 �
𝑝
𝑝𝑠
�
0.5
�1 + � Ø

42
� + � Ø

42
�
2
�  (S21.5) 

where Ø is the latitude in decimal degree (negative for the southern hemisphere). 

𝑎𝑧𝑑 = 0.26 − 0.00012 × 285.8(0.9369)0.5 �1 + �−23.7951
42

�+ �−23.7951
42

�
2
�  (S21.6) 

       = 0.1973 

Equation C-2a: 0.11 ≤ 𝑎𝑧𝑑 ≤ 0.17 (S21.7) 

Hence, given Equation C-2a, adopt 𝑎𝑧𝑑 = 0.17. 
The following sequential operations are carried out for each month. 

http://www.paroscientific.com/dewpoint.htm
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Initially, we need to compute the mean maximum daylight hours for July at Alice 
Springs. The procedure is described earlier in Appendix S19 – see Equation (S3.11). The 
value is 10.68 hours. The mean daily sunshine for July 1980 was recorded as 8.34 hour day-1 
giving a ratio of observed to maximum possible sunshine duration (𝑆) of 0.7818. 

Equation C-3: Compute the saturation vapour pressure (𝜐𝐷) at dew point temperature (°C)  

𝜐𝐷 = 6.11𝑒𝑥𝑝 � 17.27𝑇𝐷
𝑇𝐷+237.3

�  (S21.8) 

𝜐𝐷 = 6.11𝑒𝑥𝑝 �17.27×3.1755
3.1755+237.3

� = 7.6751 mbar (S21.9) 

Equation C-4: Compute the saturation vapour pressure (𝜐) at air temperature (°C)  

𝜐 = 6.11𝑒𝑥𝑝 � 17.27𝑇
𝑇+237.3

�   (S21.10) 

𝜐 = 6.11𝑒𝑥𝑝 �17.27×11.8
11.8+237.3

�  = 13.8463 mbar (S21.11) 

Equation C-5: Compute the slope of the saturation vapour pressure (∆) curve at 𝑇 °C. 

∆= 𝛼𝛽𝜐
(𝑇+𝛽)2  (S21.12) 

𝛼 = 17.27 °C when 𝑇 ≥ 0 °C, otherwise 𝛼 = 21.88 °C (Morton, 1983a, page 60) 

𝛽 = 237.3 °C when 𝑇 ≥ 0 °C, otherwise 𝛽 = 265.5 °C (Morton, 1983a, page 60) 

∆= 17.27×237.3×13.8463
(11.8+237.3)2  = 0.9145 mbar (S21.13) 

Equation C-6: Compute angles and functions for estimating extra-terrestrial global radiation. 

𝜃 = 23.2𝑠𝑖𝑛(29.5𝑖 − 94)   (S21.14) 

where 𝑖 is month of year, for July 𝑖 = 7, and 𝜃 is in degrees (Morton, 1983a, Item (1)). 

𝜃 = �23.2sin �(29.5 × 7 − 94) 𝜋
180
�� 𝜋

180
 = 0.3741 radian  (S21.15) 

As Morton’s equations are based on degrees, the inner 𝜋
180

 converts degrees to radians 
and the outer converts the resulting angle in degrees to radians.   

Equation C-7: 

𝑐𝑜𝑠 𝑍 = cos (Ø − 𝜃)    (S21.16) 

𝑐𝑜𝑠 𝑍 = cos (−0.4153 − 0.3741) = 0.7043 (S21.17) 

𝑍 = 𝑎𝑟𝑐𝑜𝑠(0.7043) = 0.7894 radian  (S21.18) 

Equation C-7a: 𝑐𝑜𝑠 𝑍 ≥ 0.001 (S21.19) 
Hence Equation C-7a is satisfied 

Equation C-8: 

𝑐𝑜𝑠 𝜔 = 1 − 𝑐𝑜𝑠 𝑍
𝑐𝑜𝑠 Ø cos 𝜃

   (S21.20) 

𝑐𝑜𝑠 𝜔 = 1 − 0.7043
𝑐𝑜𝑠 (0.3741) cos ( −0.4153)

 = 0.1731  (S21.21)  

𝜔 = 𝑎𝑟𝑐𝑜𝑠 (0.1731) = 1.3968 radian  (S21.22) 
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Equation C-8a: 𝑐𝑜𝑠 𝜔 ≥ -1 

Hence Equation C-8a is satisfied 

Equation C-9: 

𝑐𝑜𝑠 𝑧 = 𝑐𝑜𝑠 𝑍 + �180
𝜋

𝑠𝑖𝑛 𝜔
𝜔

− 1� 𝑐𝑜𝑠 Ø cos 𝜃  (S21.23) 

𝑐𝑜𝑠 𝑧 = 0.7043 + �𝑠𝑖𝑛 (1.3968)
1.3968

− 1� 𝑐𝑜𝑠 (−0.4153 )cos (0.3741) = 0.4531 (S21.24) 

Note: 180
𝜋

 in Equation (S21.23) (from Morton, 1983a, Equation C-9) is deleted as 𝜔 is in 
radian. 

Equation C-10: Compute the radius vector of the sun (𝜂) 

𝜂 = 1 + 1
60

sin (29.5 𝑖 − 106)  (S21.25) 

𝜂 = 1 + 1
60

sin �(29.5 × 7 − 106) 𝜋
180
� = 1.0164  (S21.26) 

Equation C-11: Compute of extra-terrestrial global radiation (𝐺𝐸) 

𝐺𝐸 = 1354
𝜂2

𝜔
180

𝑐𝑜𝑠 𝑧   (S21.27) 

𝐺𝐸 = 1354
(1.0164)2

1.3968
𝜋

0.4531 = 264.0388 W m-2   (S21.28) 

Note: The division by 𝜋 rather than 180 in Equation S21.28 is because 𝜔 is in radian. 

Equation C-12: Estimate the zenith value of snow-free clear sky albedo (𝑎𝑧𝑧) 

𝑎𝑧𝑧 = 𝑎𝑧𝑑 = 0.17 (S21.29) 

Equation C-12a: 0.11 ≤ 𝑎𝑧𝑧 ≤ 0.5 �0.91 − 𝜐𝐷
𝜐
�  (S21.30) 

0.11 ≤ 𝑎𝑧𝑧 ≤ 0.5 �0.91 − 7.6751 
13.8463

� , 0.11 ≤ 𝑎𝑧𝑧 ≤ 0.1778 (S21.31) 

Hence Equation C-12a is satisfied. 

Equation C-13:  

𝑐0 =  𝜐 − 𝜐𝐷  (S21.32) 

𝑐0 =  13.8463 − 7.6751 = 6.1712 mbar  (S21.33) 

Equation C-13a: 0 ≤ 𝑐0 ≤ 1  (S21.34) 

Equation C-13a not satisfied, adopt 𝑐0 = 1. This constraint will be effective during snow 
cover when the vapour pressure deficit is less than one mbar. 

Equation C-14: Estimate the zenith value of the clear-sky albedo (𝑎𝑧) 

𝑎𝑧 = 𝑎𝑧𝑧 + (1 − 𝑐02)(0.34 − 𝑎𝑧𝑧)   (S21.35) 

𝑎𝑧 = 0.17 + (1 − 1)(0.34 − 0.17) = 0.17   (S21.36) 

Equation C-15: Estimate the clear-sky albedo (𝑎0)  

𝑎0 =
𝑎𝑧�𝑒𝑥𝑝(1.08)−�2.16𝑐𝑜𝑠 𝑍

𝜋 +𝑠𝑖𝑛 𝑍�𝑒𝑥𝑝(0.021 𝑍)�

1.473(1−𝑠𝑖𝑛 𝑍)    (S21.37) 
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𝑎0 =
0.17�𝑒𝑥𝑝(1.08)−�2.16×0.7043

𝜋 +𝑠𝑖𝑛 0.7894�𝑒𝑥𝑝�0.021×0.7894180𝜋 ��

1.473(1−𝑠𝑖𝑛 0.7894)   = 0.3540 (S21.38) 

Note: 180
𝜋

 in Equation (S21.38) is to adjust 𝑍 from radian to degree. 

Equation C-16: Estimate the precipitable water (𝑊) in mm. 

𝑊 = 𝜐𝐷
0.49+ 𝑇

129

  (S21.39) 

𝑊 = 7.6751  
0.49+11.8

129
 = 13.1994 mm  (S21.40) 

Equation C-17: 

𝑐1 =  21 − 𝑇  (S21.41) 

𝑐1 =  21 − 11.8 = 9.2  (S21.42) 

Equation C-17a: 0 ≤ 𝑐1 ≤ 5  (S21.43) 

Equation C-17a is not satisfied, adopt 𝑐1 = 5. 

Equation C-18: Compute the turbidity coefficient (𝑗) 

𝑗 = (0.5 + 2.5 𝑐𝑜𝑠2𝑧)𝑒𝑥𝑝 �𝑐1 �
𝑝
𝑝𝑠
− 1��  (S21.44)  

𝑗 = (0.5 + 2.5 (0.4531)2)𝑒𝑥𝑝[5(0.9369 − 1)]  = 0.7391 (S21.45) 

Equation C-19: Compute the transmittancy of clear sky to direct beam radiation (𝜏) 

𝜏 = 𝑒𝑥𝑝 �−0.089 �𝑝
𝑝𝑠

1
cos 𝑧

�
0.75

− 0.083 � 𝑗
𝑐𝑜𝑠 𝑧

�
0.90

− 0.029 � 𝑊
𝑐𝑜𝑠 𝑧

�
0.60

�  (S21.46) 

𝜏 = 𝑒𝑥𝑝 �−0.089 �0.9369 1
0.4531

�
0.75

− 0.083 �0.7391
0.4531

�
0.90

− 0.029 �13.1994
0.4531

�
0.60

� (S21.47) 

𝜏 = 0.6055 

Equation C-20: Estimate the proportion of 𝜏 that is the result of absorption (𝜏𝑎) 

𝜏𝑎 = 𝑒𝑥𝑝 �−0.0415 � 𝑗
cos𝑧

�
0.90

− (0.0029)0.5 � 𝑊
𝑐𝑜𝑠 𝑧

�
0.3
�  (S21.48) 

𝜏𝑎 = 𝑒𝑥𝑝 �−0.0415 �0.7391
0.4531

�
0.90

− (0.0029)0.5 �13.1994
0.4531

�
0.3
� = 0.8085 (S21.49) 

Equation C-20a: 𝜏𝑎 ≥ 𝑒𝑥𝑝 �−0.0415 � 𝑗
cos𝑧

�
0.90

− 0.029 � 𝑊
𝑐𝑜𝑠 𝑧

�
0.6
�  (S21.50) 

Checking Equation C-20a constraint  

𝜏𝑎 ≥ 𝑒𝑥𝑝 �−0.0415 �0.7391
0.4531

�
0.90

− 0.029 �13.1994
0.4531

�
0.6
� ≥ 0.7530  (S21.51) 

Equation C-20a constraint is satisfied. 

Equation C-21: Compute clear-sky global radiation (𝐺𝑜) 

𝐺𝑜 = 𝐺𝐸𝜏 �1 + �1 − 𝜏
𝜏𝑎
� (1 + 𝑎0𝜏)�  (S21.52) 

𝐺𝑜 = 264.0388 × 0.6055 �1 + �1 − 0.6055
0.8085

� (1 + 0.3540 × 0.6055)�  (S21.53) 
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𝐺𝑜 = 208.6217 W m-2 

Equation C-22: Compute the incident global radiation (𝐺) 

𝐺 = 𝑆𝐺𝑜 + (0.08 + 0.30𝑆)(1 − 𝑆)𝐺𝐸  (S21.54) 

𝐺 = 0.7818 × 208.6217 + (0.08 + 0.30 × 0.7818)(1 − 0.7818)264.0388  (S21.55) 

𝐺 = 181.2221 W m-2 

Equation C-23: Estimate the average albedo (𝑎) 

𝑎 = 𝑎0 �𝑆 + (1 − 𝑆) �1 − 𝑍
330
��  (S21.56) 

𝑎 = 0.3540 �0.7818 + (1 − 0.7818) �1 − 0.7894
330

180
𝜋
�� = 0.3434 (S21.57) 

Equation C-24: 

𝑐2 = 10 �𝜐𝐷
𝜐
− 𝑆 − 0.42�  (S21.58) 

𝑐2 = 10 � 7.6751
13.8463 

− 0.7818 − 0.42� = -6.4749 (S21.59) 

Equation C-24a: 0 ≤ 𝑐2 ≤ 1 

Constraint Equation C-24a is not satisfied, hence set 𝑐2 = 0 

Equation C-25: Estimate the proportional increase in atmospheric radiation due to clouds (𝜌) 

𝜌 = 0.18[(1 − 𝑐2)(1− 𝑆)2 + 𝑐2(1 − 𝑆)0.5] 𝑝𝑠
𝑝

  (S21.60) 

𝜌 = 0.18[(1 − 0)(1 − 0.7818)2 + 0(1 − 0.7818)0.5] 1
0.9369

 = 0.009147 (S21.61) 

Equation C-26: Compute net longwave radiation loss for soil-plant surface at air temperature 
(𝐵) 

𝐵 = 𝜀𝜎(𝑇 + 273)4 �1 − �0.71 + 0.007𝜐𝐷
𝑝
𝑝𝑠
� (1 + 𝜌)�  (S21.62) 

From Morton (1983a, page 64), 𝜀 (emissivity) = 0.92, 𝜎 (Stefan-Boltzmann constant) = 
5.67×10-8 W m-2 K-4. Thus, 

𝐵 = 0.92 × 5.67 × 10−8(11.8 + 273)4 �1 − (0.71 + 0.007 × 7.6751 × 0.9369)
(1 + 0.009147) � (S21.63) 

𝐵 = 79.8629 W m-2 

Equation C-26a: 𝐵 ≥ 0.05𝜀𝜎(𝑇 + 273)4 (S21.64) 

Constraint = 0.05 × 0.92 × 5.67 × 10−8(11.8 + 273)4 = 17.1594 (S21.65) 
and thus Equation C-26a constraint is satisfied. 

Equation C-27: Estimate net radiation at soil-plant surface at air temperature 

𝑅𝑇 = (1 − 𝑎)𝐺 − 𝐵  (S21.66) 

𝑅𝑇 = (1 − 0.3434)181.2221 − 79.8629= 39.1275 W m-2 (S21.67) 

Equation C-28: 𝑅𝑇𝐶 = 𝑅𝑇 = 39.1275 W m-2  (S21.68) 

Equation C-28a: 𝑅𝑇𝐶 ≥ 0, and constraint is satisfied. 

Equation C-29: Compute stability factor (𝜉) 
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1
𝜉

= 0.28 �1 + 𝜐𝐷
𝜐
� + Δ𝑅𝑇𝐶

γp�𝑝𝑠𝑝 �
0.5
𝑏0𝑓𝑧(𝜐−𝜐𝐷)

  (S21.69) 

From Morton (1983a, page 64), 𝑏0 = 1 for the CRAE model, and noting that γp =
γ𝑝𝑠 �

𝑝
𝑝𝑠
�, 𝑓𝑧 and γ𝑝𝑠 are respectively 28.0 W m-2 mbar-1 and 0.66 mbar °C-1 for 𝑇 ≥ 0 °C. For  

𝑇 < 0, 𝑓𝑧 = 28.0×1.15 W m-2 mbar-1 and γ𝑝𝑠 = 0.66/1.15 mbar °C-1. 
1
𝜉

= 0.28 �1 + 7.6751  
13.8463

�+ 0.9145×39.1275 
0.66∗0.9369(1/0.9369)0.51×28.0(13.8463−7.6751 )

 = 0.7594  (S21.70) 

Equation C-29a: 1
𝜉
≤ 1. Constraint is satisfied. 

Equation C-30: Estimate the vapour transfer coefficient (𝑓𝑇) 

𝑓𝑇 =  1
𝜉
�𝑝𝑠
𝑝
�
0.5
𝑓𝑧  (S21.71) 

𝑓𝑇 =  0.7594 � 1
0.9369

�
0.5

28.0  = 21.9676 (S21.72) 

Equation C-31: Estimate the heat transfer coefficient (𝜆) 

𝜆 = γp + 4𝜀𝜎(𝑇+273)3

𝑓𝑇
  (S21.73) 

𝜆 = 0.66 × 0.9369 + 4×0.92×5.67×10−8(11.8+273)3

21.9676
 = 0.8378 (S21.74) 

The penultimate step in estimating Morton CRAE evaporations is to estimate the 
potential evapotranspiration equilibrium temperature. This can be found by using Morton’s 
(1983a, Equations C-32 to C-35) converging iterative process. The four equations are as 
follows: 

Equation C-32: [𝛿𝑇𝑃] =
�𝑅𝑇𝑓𝑇

+𝜐𝐷−𝜐𝑃
′ +𝜆�𝑇−𝑇𝑃

′��

�∆𝑃
′ +𝜆�

  (S21.75) 

Equation C-33: 𝑇𝑃 = 𝑇𝑃′ + [𝛿𝑇𝑃]  (S21.76) 

Equation C-34: 𝜐𝑃 = 6.11 𝑒𝑥𝑝 � 𝛼𝑇𝑃
(𝑇𝑃+𝛽)�  (S21.77) 

Equation C-35: ∆𝑃= 𝛼𝛽𝜐𝑃
(𝑇𝑃+𝛽)2  (S21.78) 

Initial values of  𝑇𝑃′ , 𝜐𝑃′  and ∆𝑃′  are chosen equal to 𝑇, 𝜐 and ∆ and intermediate values 
of  𝑇𝑃, 𝜐𝑃 and ∆𝑃 are calculated from Equations C-33, C-34 and C-35 and [𝛿𝑇𝑃] from 
Equation C-32. The intermediate values then replace the initial values in Equations C-33, C-
34 and C-35, again calculating [𝛿𝑇𝑃]. This process is repeated until [𝛿𝑇𝑃] ≤ 0.01 °C. As the 
table below shows, only two iterations were required to solve for 𝑇𝑃 for our example. 
 

Initial values Initial pass 2nd pass 

𝑇𝑃′  = 11.8 𝑇𝑃 = 9.2947 𝑇𝑃 = 9.1963 

𝜐𝑃′  = 13.8463 𝜐𝑃 =11.7150 𝜐𝑃 =11.6376 

∆𝑃′  = 0.9145 ∆𝑃 = 0.7895 ∆𝑃 = 0.7849 

[𝛿𝑇𝑃] = -2.5053 [𝛿𝑇𝑃] = -0.0982 [𝛿𝑇𝑃] = -0.0001 
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Equation C-36: Estimate potential evapotranspiration (𝐸𝑇𝑃)  

𝐸𝑇𝑃 = 𝑅𝑇 − 𝜆𝑓𝑇(𝑇𝑃 − 𝑇)  (S21.79) 

𝐸𝑇𝑃 = 39.1275 − 0.8378 × 21.9676(9.1963 − 11.8)  (S21.80) 

𝐸𝑇𝑃 = 87.0472 W m-2  

Equation C-37: Estimate net radiation (𝑅𝑇𝑃) at the soil-plant surface for equilibrium 
temperature. 

𝑅𝑇𝑃 = 𝐸𝑇𝑃 +  γp𝑓𝑇(𝑇𝑃 − 𝑇)  (S21.81) 

𝑅𝑇𝑃 = 87.0472 +  0.66 × 0.9369 × 21.9676(9.1963 − 11.8)  (S21.82) 

𝑅𝑇𝑃 = 51.6792 W m-2  (S21.83) 

Equation C-38: Estimate wet-environment areal evapotranspiration (𝐸𝑇𝑊) 

 𝐸𝑇𝑊 = 𝑏1 + 𝑏2
�1+ γp∆𝑃

�
𝑅𝑇𝑃  (S21.84) 

Morton (1983a, page 65) recommended values for 𝑏1 and  𝑏2 as 14 W m-2 and 1.20 
respectively. 

𝐸𝑇𝑊 = 14 + 1.20

�1+ 0.66×0.9369
0.7849 �

51.6792  = 48.6877 W m-2 (S21.85) 

Equation C-38a: Constraint is 1
2
𝐸𝑇𝑃  ≤ 𝐸𝑇𝑊 ≤ 𝐸𝑇𝑃. The constraint is satisfied. 

Equation C-39: Estimate actual areal evapotranspiration (𝐸𝑇) 

𝐸𝑇 = 2𝐸𝑇𝑊 − 𝐸𝑇𝑃  (S21.86) 

𝐸𝑇 = 2 × 48.6877 − 87.0472 = 10.3282 W m-2 (S21.87) 
The final step is to convert evaporation in power unit of W m-2 to evaporation units of 

mm day-1 by dividing by the latent heat of vaporization which for 𝑇 ≥ 0°C is 28.5 W day kg-1 
and for T < 0°C, it is 28.5×1.15 W day kg-1. Hence, 

𝐸𝑇𝑃 = 87.0472 W m-2  =  87.0472 
28.5

 = 3.0543 mm day-1 (S21.88) 

𝐸𝑇𝑊 = 48.6877 W m-2 =  48.6877 
28.5

 = 1.7083 mm day-1 (S21.89) 

𝐸𝑇 = 10.3282W m-2 =  10.3282
28.5

 = 0.3624 mm day-1 (S21.90) 

In conclusion, the July 1980 evaporation rates at Alice Springs are as follows:  

𝐸𝑇𝑃 (potential evapotranspiration) = 3.0543×31 = 94.7 mm month-1 

𝐸𝑇𝑊 (wet-environment areal evapotranspiration) = 1.7083×31 = 53.0 mm month-1 

𝐸𝑇  (actual areal evapotranspiration) = 0.3624×31 = 11.2 mm month-1 

 

CRWE: Estimate shallow lake evaporation 
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To estimate shallow lake evaporation, the CRWE model, which is a slightly modified 
version of CRAE, may be used. The modifications are listed in Morton (1983a, Section 2.6) 
as follows: 

1. The snow-free clear-sky albedo (𝑎𝑧𝑧) is set to a constant value of 0.05. This 
allows Equations C-2, C-12 and their constraints to be deleted. 

2. The emissivity (𝜀) in Equations C-26, C26a and C31 is set to 0.97. Hence, 𝜀𝜎 
becomes 5.5×10-8 W m-2 K-4. 

3. In Equations C-29 and C-30, 𝑓𝑧 is 25.0 W m-2 mbar-1 for 𝑇 ≥ 0, and 28.75 W m-2 
mbar-1 for 𝑇 < 0. 

4. In Equation C-29, 𝑏0 = 1.12. 
5. Values for 𝑏1 and  𝑏2 are 13 W m-2  and 1.12 respectively. 
6. To reflect the change in the type of evaporation that is taking place in Equations 

C-27, C-36 and C-38, 𝑅𝑇 becomes 𝑅𝑊, 𝐸𝑇𝑃 becomes 𝐸𝑃 and 𝐸𝑇𝑊 becomes 𝐸𝑊 
(shallow lake evaporation). 

Applying these modifications to the CRAE model for July 1980 at Alice Springs yields 
the following results: 

Morton 
equation 
number 

Variable Result Morton 
equation 
number 

Variable Result Morton 
equation 
number 

Variable Result 

C-1 𝑝
𝑝𝑠

  0.9369 C16 𝑊  13.199 C-29 1
𝜉
  1.0935 

C-3 𝜐𝐷  7.6751 C-17 𝑐1  9.2 C-30 𝑓𝑇  28.243 

C-4 𝜐  13.8463 C-18 𝑗  0.7391 C-31 𝜆  0.7983 

C-5 ∆   0.9145 C-19 𝜏  0.6055 C-32 [𝛿𝑇𝑃]  0.0000 

C-6 𝜃  0.3741 C-20 𝜏𝑎  0.8085 C-33 𝑇𝑃   9.6680 

C-7 𝑐𝑜𝑠 𝑍  0.7043 C-21 𝐺𝑜  202.55 C-34 𝜐𝑃  12.013 

C-8 𝑐𝑜𝑠 𝜔  0.1731 C-22 𝐺  176.47 C35 ∆𝑃  0.8072 

C-9 𝑐𝑜𝑠 𝑧  0.4531 C-23 𝑎  0.1010 C-36 𝐸𝑃  122.352 

C-10 𝜂  1.0164 C-24 𝑐2  -6.475 C-37 𝑅𝑇𝑃  85.282 

C-11 𝐺𝐸  264.04 C-25 𝜌  0.00913 C-38 𝐸𝑊  71.946 

C-13 𝑐0  6.1712 C-26 𝐵  84.203  𝐸𝑊 
(lake 
evaporat
ion) 

2.52 mm 
day-1or 
78.3 mm 
month-1  

C-14 𝑎𝑧  0.05 C-27 𝑅𝑊  74.446  

C-15 𝑎0  0.1041 C-28 𝑅𝑇𝐶  74.446  

 

CRLE: Incorporating water borne energy input and available solar plus water borne 
energy routing for deep lake evaporation  

Estimate the March 2008 evaporation for the Thomson Reservoir, a deep lake 120 km 
east of Melbourne (latitude 37.75 °S, elevation 415 m, average depth (ℎ�) 22.95 m, and 
average salinity (𝑠) 23 ppm). 



120 

 

The method is based on Morton (1986). The soft water delay time, the lake delay time 
and the storage coefficient are computed first: 

𝑡0 = 0.96 + 0.013ℎ�  with 0.039ℎ� ≤ 𝑡0 ≤ 0.13ℎ�  (see Equation (S7.15)) (S21.91) 

where 𝑡0 is soft water delay time. 

𝑡0 = 0.96 + 0.013×22.95 = 1.2584 months (S21.92) 

𝑡0 is within the range 0.039ℎ� = 0.8950 and 0.13ℎ� = 2.9835 

𝑡𝐿 = 𝑡0

�1+ 𝑠
27000�

2  with 𝑡 ≤ 6.0  (see Equation (S7.16)) (S21.93) 

where 𝑡𝐿 is lake lag or delay time and 𝑠 is lake salinity in ppm 

𝑡𝐿 = 1.2584

�1+ 23
27000�

2 = 1.2563 months (which is less than 6.0) (S21.94) 

𝑆𝑐 = 𝑡0

�1+� ℎ
�
93�

7
�
  (see Equation (S7.14)) (S21.95) 

where 𝑆𝑐 is storage constant (months) 

𝑆𝑐 = 1.2584

�1+�22.95
93 �

7
�
 = 1.2583 months (S21.96) 

The sequential steps in the computation of monthly deep lake evaporation are as 
follows: 

Step 1: Estimate and add together solar and water borne heat input, thus 

𝐺𝑊0 = (1 − 𝛼)𝑅𝑠 − 𝑅𝑛𝑙 + δℎ  (see Equation (S7.10)) (S21.97) 

where 𝐺𝑊0  is the solar input (the superscript refers to the current month) plus waterborne heat 
input (δℎ) and 𝛼 is the albedo for water. 

 In this example, because the Thomson Reservoir is very large and there is no 
waterborne input, δℎ = 0. Values of 𝐺𝑊0  and 𝐺𝐿𝐸 (see step 3 below) for January 2008 and 
February 2008 are: 

 

 January 2008 February 2008 March 2008 

𝐺𝑊0  (W m-2) 187 152 120 

𝐺𝐿𝐸 (W m-2) 160 175 Not required 

 

Step 2: Estimate the delayed solar and waterborne energy inputs (see Appendix S7). 

 𝐺𝑊𝑡 = 𝐺𝑊
[𝑡𝐿] + (𝑡𝐿 − [𝑡𝐿]) �𝐺𝑊

[𝑡𝐿+1] − 𝐺𝑊
[𝑡𝐿]�  (see Equation (S7.11)) (S21.98) 

where [𝑡𝐿] and (𝑡𝐿 − [𝑡𝐿]) are the integral and fractional components of the lake lag or delay 
time, 𝑡𝐿, (months), 𝐺𝑊

[𝑡𝐿] and 𝐺𝑊
[𝑡𝐿+1] are respectively the value (W m-2) of 𝐺𝑊0  computed [𝑡𝐿] 

and [𝑡𝐿 + 1] months previously. In this example, from Equation (S21.94) 𝑡𝐿 = 1.2563 months 
and, therefore, [𝑡𝐿] = 1 month and (𝑡𝐿 − [𝑡𝐿]) = 0. 2563 months. 

Thus to estimate 𝐺𝑊𝑡  for March 2008, Equation (S21.98) becomes 
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𝐺𝑊𝑀𝑎𝑟08 = 𝐺𝑊
[𝐹𝑒𝑏08] + (𝑡𝐿 − [𝑡𝐿]) �𝐺𝑊

[𝐽𝑎𝑛08] − 𝐺𝑊
[𝐹𝑒𝑏08]� (S21.99) 

𝐺𝑊𝑀𝑎𝑟08 = 152 + (0.2563)(187 − 152) = 160.71 W m-2 (S21.100) 

Step 3: Compute the available and water borne energy. 

𝐺𝐿𝐸 = 𝐺𝐿𝐵 + 𝐺𝑊
𝑡 −𝐺𝐿𝐵
0.5+𝑆𝑐

  (see Equation (S7.12)) (S21.101) 

𝐺𝐿 = 0.5(𝐺𝐿𝐸 + 𝐺𝐿𝐵)  (see Equation (S7.13)) (S21.102) 

where 𝐺𝐿𝐵 and 𝐺𝐿𝐸 are respectively the available solar and waterborne heat energy (W m-2) at 
the beginning and end of the month 

𝐺𝐿𝐸𝑀𝑎𝑟08 = 𝐺𝐿𝐸𝐹𝑒𝑏08 + 𝐺𝑊
𝑀𝑎𝑟08−𝐺𝐿𝐸

𝐹𝑒𝑏08

0.5+𝑆𝑐
 (S21.103) 

𝐺𝐿𝐸𝑀𝑎𝑟08 = 175 + 160.71−175
0.5+1.2583

 = 166.87 W m-2 (S21.104) 

𝐺𝐿𝑀𝑎𝑟08 = 0.5�𝐺𝐿𝐸𝑀𝑎𝑟08 + 𝐺𝐿𝐸𝐹𝑒𝑏08� (S21.105) 

𝐺𝐿𝑀𝑎𝑟08 = 0.5(166.87 + 175) = 170.94 W m-2 (S21.106) 

Step 4: Convert the available energy per month to a monthly lake evaporation rate by 
applying the sequence of steps set out in the worked example CRAE: Estimate actual 
evaporation after Equation S21.87 where 

𝑅𝑇𝐶 = 𝐺𝐿𝑀𝑎𝑟08 = 170.94 W m-2 (S21.107) 

These calculations yield the March 2008 lake evaporation for Thomson Reservoir as 
186 mm. 
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Table S1 Values of specific constants 
   

Constant Symbol Value Reference 
Atmospheric pressure  𝑝 101.3 �293−0.0065𝐸𝑙𝑒𝑣

293
�
5.26

kPa* Dingman (1992, p. 224) 

Density of water 𝜌𝑤 997.9 kg m-3 at 20°C Dingman (1992, p. 542) 

Mean air density 𝜌𝑎 1.20 kg m-3  at 20°C    Shaw (1994, p. 6) 
Emissivity of water  𝜀𝑤 0.95 Dingman (1992, p. 583) 
Surface emissivity 𝜀𝑠 0.92 (adopted by Morton) Morton (1983b, p. 64)  
Specific heat of water 𝑐𝑤 4.19  kJ kg-1 °C-1 Maidment (1992, p. 7.23) 

Morton (1979, p.72) 
Specific heat of air 𝑐𝑎 1013 J  kg-1 K-1    Allen et al. (1998, 

Equation 8); McJannet et 
al. (2008, page 43) 

Latent heat of 
vaporization 

𝜆 2.45 MJ kg-1 at 20°C 
 
28.5 W days kg-1 

Dingman (1992, p. 547) 
Allen et al. (1998, p. 31) 
Morton (1983b, p. 65) 

Psychrometric constant 𝛾 𝛾 = 0.00163 𝑝
𝜆
  kPa°C-1 Dingman (1992, p. 225) 

Stefan-Boltzmann 
constant 

𝜎 4.90 × 10−9 MJ m-2 day-1 K-4 
5.67 × 10−8 W m-2 K-4 

Dingman (1992, p. 582) 
Morton (1983a, p.64) 

von Kármán constant 𝑘 0.41 Szeicz et al., 1969) p. 
380) 

* 𝐸𝑙𝑒𝑣 is elevation (m) 
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Table S2 Roughness height, aerodynamic and surface resistance of typical surfaces 
 

Surface Location Height of 
surface 

condition (m) 

Zero-plane 
displacement 

(m) 

Roughness 
length 

(m) 

Aerodynamic 
resistance,  𝑟𝑎, 

(s m-1) 

Average surface  
resistance,  𝑟𝑠, 

(s m-1) 
Open sea, fetch >5 km    0.0002 o see Appendix S4  
Open water  0.01 n  0.001 n 0 n 
Open flat terrain: grass    0.03 o   
Desert  0.001 e 0.1 c 0.05 c  200 e 
Semi-desert   0.5 c 0.1 c   
Arid land      250 j 
Cultivation    0.005 e  91 f 
Hypothetical reference crop  0.12 a   104 a 70 a 
Well watered production crops      50 j 
Short grass   0.2 c 0.02 c   
Tall grass   1 c 0.1 c   
Low crops    0.10 o   
High crops    0.25 o   
Grassland Based on 7 sites in 

northern 
hemisphere 

0.5* e, g 
(0.05 – 0.85) 

0.5e 

  
 

0.01 e, g 

37 e, g 
(14 - 71) 

 

40 e, g 
(5 – 143) 

125 
Uncut lucerne  1.0 n  0.1 n 22 n 60 n 
Evergreen shrub   1 c 0.1 c   
Deciduous shrub   1 c 0.1 c   
Parkland, bushes    0.5 o   
Non-forest wetland  0.3 e    152 e 
Savannah/xeric shrub  8.0 e    189 e 
Coniferous forest Based on 8 

references world-
wide 

8 e, g 
(5 – 20) 

25 

  
 
 

7 e, g 
(5 – 14) 

50 e, g 
(30 - 125) 

189 
Evergreen needleleaf forest   15 c 1.0 c   
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Deciduous needleleaf forest   20 c 1.0 c   
Beech Northern 

Apennines, Italy 
    200 i 

Evergreen broadleaf forest   20 c 2.0 c   
Deciduous broadleaf forest   15 c 0.8 c   
Eucalyptus plantation São Paulo State, 

Brazil 
12-21 b   summer 19±14 b 

winter 9±2 
summer 19±14 b 
winter 167±292 

Eucalyptus maculata Kioloa State 
Forest,NSW, 

Australia 

    60 d 

Eucalyptus forest Collie, Western 
Australia 

   5 l 50 l 

Lower montane rainforest Nth Q’ld, Australia  25 & 32 m    summer 71 & 
163 m 

winter 56 & 119 
Pristine lowland rain forest Nth Q’ld, Australia  27 m    summer 171 m 

winter 115 
Upper montane cloud 
rainforest 

Nth Q’ld, Australia  8 m    summer 317 m 
winter 160  

Mixed woodland   20 c 0.8 c   
Tropical rainforest French Guiana ~28 d    140 – 170 d 
Tropical trees Panama     250 – 500 k 
Lowland mixed dipterocarp 
forest 

Sarawak, Borneo 50 h   10 h 84 h 

Regular large obstacle 
coverage (suburb, forest) 

   1.0 o   

a: Allen et al. (1998, page 23), b: Cabral et al. (2010), c: Douglas et al. (2009), d: Dunin and Greenwood (1986, page 51), e: Federer et al. 
(1996), f: Granier et al. (1996), g: Kelliher et al.(1993), h: Kumagai et al. (2004), i: Magnani et al. (1998, page 870), j: McNaughton and Jarvis 
(1991),  k: Meinzer et al. (1997), l: Sharma (1984, page 49), m : Wallace & McJannet (2010), n: Watt & Hancock (1984), o: Wieringa (1986, 
Table 1) based on Davenport (1960) 
*Value is median of a range shown in parenthesis # clonal Eucalyptus grandis × Eucalyptus urophylla 
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Table S3 Albedo values 

Surface  Albedo, α Reference 
Water* 0.08 Maidment (1992) 
Desert (bare ground) 0.30 McVicar et al. (2007) 
Semi-desert  0.25 Douglas et al. (2009) 
Tundra 0.20 Douglas et al. (2009) 
Short grass 0.26 Watts & Hancock (1984) 
Pasture  (short grass) 0.26 McVicar et al. (2007), Douglas et al. (2009) 
Reference (short) crop  0.23 Allen et al. (1998, page 51) 
Long grass (1 m) 0.16 Watts & Hancock (1984) 
Irrigated crop 0.18 Douglas et al. (2009) 
Crop/mixed farming 0.20 Douglas et al. (2009) 
Evergreen shrub 0.10 Douglas et al. (2009) 
Deciduous shrub 0.20 Douglas et al. (2009) 
Sparse forest 0.18 McVicar et al. (2007) 
Rain forest 0.15 Dingman (1992) 
Eucalypts 0.20 Dingman (1992) 
Evergreen needleleaf forest 0.10 Douglas et al. (2009) 
Deciduous needleleaf forest 0.20 Douglas et al. (2009) 
Evergreen broadleaf forest 0.15 Douglas et al. (2009) 
Deciduous broadleaf forest 0.20 Douglas et al. (2009) 
Forest (mixed woodland) 0.15 McVicar et al. (2007), Douglas et al. (2009) 
Urban area 0.25 McVicar et al. (2007) 
* Based on Cogley (1979), Jensen (2010, Table 1) provides a table of albedo values for water. 
Jensen’s table shows that albedo for water has a seasonal pattern being high in winter and low 
in summer and increases from an average value of 0.065 at the equator to values varying from 
0.11 to 0.36 at 60° – 70°N latitude. 
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Table S4 Median, 10th and 90th percentile monthly evaporation based on data 
recorded at the 68 Australian AWSs for three Penman wind functions, and for FAO-56 

Reference Crop and Priestley-Taylor algorithms expressed as a percentage of the 
Penman (1948) median estimate 

Parameter 
Penman FAO-56 

Reference 
Crop 

Priestley-
Taylor 

Penman 
(1948) wind 

function 

Penman 
(1956) wind 

function 

Linacre 
(1993) 

Median 100% -9.9% -15.8% -26.4% -17.1% 
10th percentile -63.0% -67.5% -72.0% -74.3% -75.7% 
90th percentile 57.4% 45.5% 33.4% 22.3% 29.2% 

 
 

Table S5 Guideline for defining shallow and deep lakes and the methods to 
estimate lake evaporation 

 
Shallow lake Average 

depth (m) 
Deep lake Average 

depth 
(m) 

Morton recommendations 
Morton CRWE Morton CRLE 

Seasonal heat storage changes 
(Morton, 1983b, page 84) and 
water advection are not important 

undefined For depths less than 1.5 m use 
CRWE (Morton, 1986, page 
385) 

1.5 

Deep lakes are considered shallow 
if one is interested only in annual 
or mean annual evaporation 
(Morton, 1983b, page 84) 

undefined Seasonal heat storage changes 
and water advection are 
important 

undefined 

Recommendations of other authors 
Shallow lake without seasonal heat storage 

analysis 
Deep lake 

Sacks et al (1994, Abstract) 3 Vardavas & Fountoulakis 
(1996) 

3 – 23 

Penman equation can be applied 
without adjusting for heat storage 
Monteith (1981, page 9) 

less than  
“…a 

metre or 
so…” 

Kohler & Parmele (1967) undefined 

de Bruin (1978, Section 2) 3  
Shallow lake with seasonal heat storage 

analysis 
 

McJannet et al. (2008b) 1 – 6 McJannet et al. (2008b) 25 - 30 
Finch & Gash (2002) 10 Finch & Gash (2002) 10 
Finch (2001) 10  
Fennessey (2000) 2  
Sacks et al (1994, page 312)    < 5  
Fraedrich et al. (1977, Section 6) 8  
Stewart & Rouse (1976, page 624) 0.6  
Keijman and Koopmans (1973) 3.0  
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Table S6 Mean monthly screened Class-A evaporation pan coefficients for estimating Penman open-water evaporation (1956 wind 
function) at 68 Australian locations 

For each station, the second row of values specifies the number of months used to compute the mean monthly pan coefficients. Asterisk 
denotes high quality Class-A evaporation pan. nd is no data 

BOM 
ref. Station name Lat °S Long 

°E Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

2012 Halls Creek Airport* -18.23 127.66 0.735 0.880 0.753 0.696 0.702 0.711 0.702 0.696 0.671 nd 0.709 0.697 0.723 
3 2 2 3 2 2 2 1 1 0 1 1  

3003 Broome Airport* -17.95 122.24 0.822 0.842 0.866 0.816 0.742 0.743 0.768 0.788 0.859 0.897 0.882 0.837 0.822 
9 12 7 13 16 14 14 14 16 15 16 11  

7178 Paraburdoo -23.20 117.67 0.607 0.571 0.591 0.614 0.564 0.654 0.594 0.644 0.635 0.587 0.608 0.591 0.605 
2 1 2 1 3 3 1 2 3 3 3 2  

9021 Perth Airport* -31.93 115.98 0.825 0.821 0.782 0.818 0.827 0.850 0.915 0.984 0.979 0.960 0.903 0.862 0.877 
16 16 16 16 16 15 15 16 15 15 16 16  

9034 Perth Reg. Office* -31.96 115.87 0.912 0.866 0.837 0.837 0.818 0.807 0.869 0.931 0.942 0.966 0.942 0.945 0.889 
14 11 11 11 13 11 10 11 11 9 12 12  

9538 Dwellingup -32.71 116.06 0.880 0.867 0.864 0.921 0.813 0.789 0.748 0.912 0.933 1.028 0.963 0.923 0.887 
10 11 13 13 9 11 9 6 9 12 14 12  

9592 Permberton -34.45 116.04 0.950 0.941 0.883 0.920 0.981 0.890 nd nd 0.892 0.980 0.983 0.962 0.938 
3 4 2 2 1 1 0 0 1 1 1 2  

9741 Albany Airport* -34.94 117.80 0.827 0.822 0.809 0.856 0.859 0.830 0.882 0.938 0.970 0.987 0.917 0.856 0.879 
16 15 12 15 17 16 15 17 13 15 18 15  

13017 Giles Met. Office* -25.03 128.30 0.650 0.656 0.650 0.686 0.727 0.765 0.755 0.747 0.718 0.694 0.678 0.659 0.699 
28 26 25 27 28 30 29 28 27 28 27 28  

14015 Darwin Airport* -12.42 130.89 0.775 0.771 0.866 0.855 0.779 0.744 0.766 0.812 0.836 0.853 0.838 0.779 0.806 
10 12 13 25 24 29 26 29 30 25 17 16  

14198 Jabiru Airport -12.66 132.89 0.842 0.856 0.827 0.812 0.766 0.709 0.734 0.740 0.732 0.773 0.788 0.848 0.786 
2 3 4 3 6 4 5 5 7 7 4 2  

14508 Gove Airport* -12.27 136.82 0.859 0.831 0.899 0.889 0.888 0.863 0.889 0.921 0.935 0.944 0.922 0.864 0.892 
18 16 17 19 17 19 19 20 21 22 15 18  
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14513 Wallaby Beach -12.19 136.71 nd 0.773 nd 0.846 0.862 0.811 0.751 0.873 0.873 0.920 0.890 0.782 0.838 
0 1 0 3 3 3 3 3 5 5 4 3  

14612 Larrimah -15.57 133.21 0.756 0.878 0.850 0.780 0.792 0.739 0.793 0.798 0.756 0.709 0.697 0.577 0.760 
4 3 4 3 1 3 2 2 6 1 3 3  

14703 Centre Island -15.74 136.82 nd nd 0.825 0.912 0.816 0.872 0.905 1.060 0.923 0.975 0.870 0.950 0.911 
0 0 1 2 1 2 2 1 2 3 2 2  

14704 McArthur River Mine -16.44 136.08 0.700 0.721 0.773 0.734 0.694 0.666 0.671 0.701 0.703 0.688 0.700 0.660 0.701 
4 9 6 4 4 9 5 7 4 4 5 4  

15135 Tennant Creek 
Airport* -19.64 134.18 0.644 0.667 0.632 0.601 0.623 0.648 0.657 0.649 0.627 0.632 0.633 0.646 0.638 

24 21 27 28 30 29 28 27 28 28 29 24  

15590 Alice Springs Airport* -23.80 133.89 0.668 0.669 0.657 0.690 0.737 0.781 0.783 0.756 0.724 0.712 0.684 0.675 0.711 
24 27 25 21 26 24 25 25 28 26 26 24  

15666 Rabbit Flat -20.18 130.01 0.721 0.789 0.765 0.764 0.779 0.797 0.762 0.761 0.731 0.756 0.715 0.808 0.762 
4 8 7 7 7 6 6 8 7 9 7 3  

16001 Woomera Aerodrome* -31.16 136.81 0.695 0.687 0.691 0.715 0.731 0.790 0.788 0.777 0.766 0.759 0.725 0.711 0.736 
24 28 28 28 28 25 27 30 25 28 27 29  

17043 Oodnadatta Airport -27.56 135.45 0.630 0.633 0.652 0.669 0.713 0.754 0.750 0.762 0.739 0.744 0.656 0.636 0.695 
5 5 5 4 5 6 5 4 4 3 5 4  

18012 Ceduna AMO* -32.13 133.70 0.828 0.816 0.793 0.773 0.781 0.834 0.831 0.848 0.841 0.835 0.823 0.821 0.819 
23 27 28 29 29 28 29 28 27 28 28 29  

23034 Adelaide Airport -34.95 138.52 0.827 0.808 0.789 0.786 0.800 0.833 0.858 0.866 0.890 0.886 0.862 0.831 0.836 
27 24 21 25 22 21 20 22 23 23 25 23  

23090 Adelaide (Kent 
Town)* -34.92 138.62 0.905 0.895 0.922 0.890 0.912 0.925 0.937 0.979 0.969 0.995 0.938 0.920 0.932 

10 10 9 8 8 9 9 9 9 9 9 9  

23321 Nuriootpa 
Comparison* -34.48 139.00 0.803 0.791 0.787 0.844 0.887 0.925 0.992 0.971 0.980 0.935 0.857 0.815 0.882 

19 20 18 16 20 19 18 19 18 19 16 20  

23373 Nuriootpa 
Viticultural* -34.48 139.01 0.804 0.783 0.780 0.820 0.814 0.908 0.924 0.944 1.043 0.947 0.880 0.836 0.874 

9 8 4 6 7 5 5 5 5 9 7 6  

24024 Loxton Res. Centre -34.44 140.60 0.785 0.790 0.797 0.849 0.858 0.899 0.940 0.929 0.933 0.892 0.834 0.804 0.859 
18 18 24 21 21 22 21 18 22 16 20 18  
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26021 Mount Gambier Aero* -37.75 140.77 0.920 0.907 0.876 0.918 0.949 1.013 1.031 1.024 1.039 1.044 0.991 0.945 0.972 
31 30 29 30 28 29 28 28 30 30 27 30  

27045 Weipa Aero* -12.68 141.92 0.774 0.838 0.861 0.890 0.844 0.779 0.788 0.794 0.823 0.836 0.856 0.831 0.826 
4 5 3 9 14 15 13 16 10 13 8 8  

29126 Mount Isa Mine -20.74 139.48 0.689 0.720 0.679 0.674 0.662 0.705 0.710 0.705 0.674 0.664 0.674 0.686 0.687 
11 10 10 10 10 11 11 9 11 12 12 3  

29127 Mount Isa Aero* -20.68 139.49 0.745 0.752 0.729 0.706 0.726 0.736 0.749 0.745 0.723 0.709 0.718 0.727 0.730 
23 20 26 26 28 29 27 29 28 27 21 21  

31011 Cairns Aero* -16.87 145.75 0.851 0.835 0.858 0.873 0.838 0.835 0.831 0.857 0.847 0.850 0.835 0.832 0.845 
12 10 11 16 22 24 24 24 25 26 22 19  

32040 Townsville Aero* -19.25 146.77 0.824 0.821 0.812 0.773 0.771 0.762 0.777 0.794 0.809 0.814 0.812 0.827 0.800 
18 11 22 24 24 26 28 27 28 25 22 16  

40223 Brisbane Aero -27.42 153.11 0.848 0.822 0.830 0.836 0.858 0.857 0.860 0.844 0.859 0.848 0.845 0.841 0.846 
11 8 9 11 14 13 14 13 14 12 13 11  

40428 Brian Pastures* -25.66 151.75 0.773 0.794 0.786 0.772 0.752 0.738 0.755 0.787 0.806 0.813 0.806 0.772 0.779 
22 22 18 22 24 21 24 18 22 21 21 19  

40842 Brisbane aero -27.39 153.13 0.857 0.856 0.847 0.858 0.856 0.849 0.856 0.885 0.880 0.863 0.877 0.844 0.861 
8 6 9 9 9 6 10 9 9 10 7 9  

48027 Cobar aero* -31.48 145.83 0.736 0.727 0.725 0.765 0.802 0.863 0.882 0.873 0.843 0.815 0.768 0.732 0.794 
26 28 28 26 23 25 26 25 28 25 28 24  

53048 Moree Comparison* -29.48 149.84 0.809 0.822 0.795 0.813 0.846 0.878 0.915 0.946 0.899 0.866 0.843 0.811 0.854 
16 15 17 16 15 14 14 15 15 16 15 15  

53115 Moree Aero* -29.49 149.85 0.791 0.783 0.786 0.777 0.797 0.862 0.886 0.883 0.867 0.838 0.811 0.788 0.822 
9 10 12 13 14 13 12 15 14 14 12 14  

55024 Gunnedah Res. 
Centre* -31.03 150.27 0.713 0.687 0.708 0.675 0.667 0.649 0.558 nd nd nd 0.763 0.710 0.681 

1 2 3 3 1 3 1 0 0 0 3 3  

55054 Tamworth Airport -31.09 150.85 0.806 0.795 0.809 0.802 0.858 0.904 0.912 0.962 0.896 0.876 0.863 0.830 0.859 
11 10 12 12 12 14 12 9 10 11 9 10  

56018 Inverell Res. Centre -29.78 151.08 0.873 0.857 0.837 0.871 0.810 0.783 0.799 0.888 0.908 0.906 0.921 0.879 0.861 
8 8 6 7 10 9 10 11 11 10 11 8  
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59040 Coffs Harbour MO* -30.31 153.12 0.839 0.850 0.835 0.838 0.842 0.827 0.844 0.865 0.890 0.889 0.869 0.886 0.856 
19 20 15 24 18 21 23 25 27 28 23 21  

61078 Williamtown RAAF* -32.79 151.84 0.810 0.805 0.836 0.819 0.820 0.770 0.808 0.848 0.858 0.839 0.829 0.816 0.821 
25 23 23 22 24 20 25 25 26 26 24 25  

61089 Scone SCS* -32.06 150.93 0.862 0.853 0.841 0.870 0.879 0.895 0.908 0.933 0.953 0.937 0.891 0.851 0.889 
12 13 14 13 14 14 13 15 14 12 13 12  

66037 Sydney Airport  
AMO* -33.95 151.17 0.835 0.835 0.827 0.826 0.846 0.805 0.828 0.847 0.862 0.873 0.857 0.842 0.840 

27 22 28 23 19 26 25 26 24 22 26 26  

67033 Richmond RAAF -33.60 150.78 0.839 0.837 0.846 0.842 0.899 0.880 0.869 0.850 0.849 0.848 0.854 0.825 0.853 
15 12 15 13 16 15 13 14 14 14 15 13  

68076 Nowra RAN Air 
Station -34.94 150.55 0.783 0.774 0.796 0.764 0.735 0.685 0.771 0.786 0.790 0.784 0.789 0.785 0.770 

15 15 19 17 16 17 17 15 13 15 17 13  

70014 Canberra Airport 
Comparison* -35.30 149.20 0.785 0.791 0.770 0.801 0.820 0.849 0.881 0.879 0.873 0.883 0.852 0.811 0.833 

30 28 28 30 29 29 29 27 28 31 28 29  

70015 Canberra Forestry -35.30 149.10 nd nd 0.677 0.812 0.860 0.973 0.943 0.994 0.933 nd nd nd 0.885 
0 0 1 1 1 1 1 1 1 0 0 0  

72060 Khancoban SMHEA -36.23 148.14 0.869 0.867 0.867 0.958 1.022 1.221 1.227 1.164 1.040 1.028 0.949 0.873 1.007 
13 12 14 14 11 14 12 13 12 13 13 12  

72150 Wagga Wagga AMO* -35.16 147.46 0.815 0.813 0.810 0.865 0.944 0.984 1.069 1.097 1.053 0.988 0.893 0.843 0.931 
24 25 23 21 23 22 22 22 24 22 20 23  

76031 Mildura Airport* -34.24 142.09 0.793 0.785 0.785 0.819 0.840 0.882 0.921 0.925 0.889 0.864 0.838 0.811 0.846 
19 21 20 17 19 19 19 20 20 21 20 19  

82039 Rutherglen Research* -36.10 146.51 0.821 0.819 0.806 0.862 0.897 0.904 0.989 0.993 1.025 1.056 0.919 0.804 0.908 
16 16 17 13 15 12 16 11 13 9 14 13  

85072 East Sale Airport* -38.12 147.13 0.887 0.872 0.879 0.911 0.912 0.900 0.913 0.966 0.954 0.987 0.935 0.903 0.918 
25 26 26 26 28 25 29 26 29 23 25 27  

85103 Yallourn SEC -38.19 146.33 0.885 0.820 0.917 0.935 1.070 0.914 0.959 1.007 1.101 1.029 1.033 0.940 0.968 
7 6 7 7 2 4 4 7 2 4 2 2  

86282 Melbourne Airport -37.67 144.83 0.835 0.816 0.799 0.795 0.847 0.868 0.872 0.892 0.859 0.887 0.895 0.838 0.850 
9 9 9 9 9 10 8 8 10 11 11 11  
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87031 Laverton RAAF -37.86 144.76 0.812 0.789 0.765 0.771 0.788 0.846 0.881 0.880 0.907 0.896 0.864 0.825 0.835 
16 20 20 21 20 19 20 17 17 15 19 18  

88023 Lake Eildon* -37.23 145.91 1.015 1.010 1.034 1.139 1.281 1.444 1.546 1.405 1.281 1.229 1.145 1.028 1.213 
26 26 22 19 22 24 20 23 24 22 19 23  

90103 Hamilton Res. Station -37.83 142.06 0.784 0.725 0.692 0.739 0.713 0.681 0.717 0.776 0.862 0.935 0.907 0.841 0.781 
15 14 9 11 7 7 11 9 12 9 9 12  

91104 Launceston Airport 
Companion* -41.54 147.20 0.880 0.882 0.858 0.908 0.967 0.961 1.062 1.110 1.079 1.043 0.979 0.893 0.968 

20 20 20 20 18 15 15 19 18 22 19 19  

91219 Scottsdale -41.17 147.49 1.008 1.024 1.009 1.065 1.007 0.936 0.952 1.062 1.105 1.137 1.101 1.027 1.036 
24 22 17 14 15 15 17 17 16 18 21 24  

92038 Swansea Post Office -42.12 148.07 0.903 0.903 0.916 0.987 1.085 0.982 0.969 1.010 1.036 1.049 0.961 0.941 0.979 
2 2 2 2 2 2 2 2 2 2 2 1  

94008 Hobart Airport -42.83 147.50 0.888 0.897 0.889 0.879 0.863 0.916 0.913 0.970 0.987 0.978 0.950 0.912 0.920 
19 22 20 20 20 21 21 22 21 21 20 19  

94029 Hobart (Ellerslie 
Road) -42.89 147.33 0.972 0.932 0.941 0.936 0.944 0.993 0.991 0.974 1.022 1.079 1.007 0.968 0.980 

15 16 16 15 15 16 13 15 14 15 15 14  

94069 Grove (Comparison)* -42.98 147.08 0.873 0.854 0.864 0.858 0.823 0.855 0.876 0.852 0.926 0.949 0.945 0.920 0.883 
18 20 21 21 16 18 13 14 19 20 18 20  

96033 Liawenee -41.90 146.67 1.057 nd 1.075 nd nd nd nd nd nd nd 1.132 1.068 1.083 
3 0 1 0 0 0 0 0 0 0 2 2  

97053 Strathgordon Village* -42.77 146.05 0.973 0.955 0.947 0.870 0.946 0.765 0.708 0.748 0.890 0.989 1.023 0.947 0.897 
6 7 7 4 4 7 4 8 6 5 8 6  
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Table S7 Comparison of equations to estimate evaporation from a lake covered with vegetation 

(Adv. and Disadv. are abbreviations for advantage and disadvantage, respectively.) 
 

Reference Application Penman 
(Section 2.1.1) 

Penman-Monteith 
(Section 2.1.2) 

Weighted  Penman-
Monteith 

(Equation S5.30) 

Shuttleworth-
Wallace 

(Equation S5.22) 

Priestley-Taylor 
(Section 2.1.3) 

Wessel & 
Rouse 
(1994) 
Table III 

Wetland tundra  Adv: accurate if 𝑟𝑠 is 
available 
Disadv: inadequate for 
complex surfaces 

Adv: handle any 
surfaces 
Weight components 
by surface area 

Disadv: Cannot 
model area with 
no canopy. Not 
recommended 

 

Bowen Ratio 0.75 (1.21)# 1.10 (1.41) 1.35 (1.65) 
Abtew & 
Obeysekera 
(1995) 
Figures 7 to 
9 

South Florida The two coefficients in 
the wind function were 
found by calibration  

Monteith (1965) 
𝑟𝑎 from Equation 
S5.3. 𝑟𝑠 varied from 
25  s m-1  during high 
ET season and 90  s 
m-1  for rest of year. 

  α = 1.18 by 
calibration 

Lysimeter 
within wetland 
complex 

P=0.03+1.01Meas 
(see = 0.57  mm  day-1) 

PM=1.17+0.75Meas 
(see = 0.39 mm day-1) 

PT=1.15 +070Meas 
(see = 0.53 mm day-1) 

Souch et al. 
(1998) 
Table 3 

Indiana, USA 
Undisturbed site 

Penman modified by 
Shuttleworth (1992) 

𝑟𝑎 from Shuttleworth 
(1992, Equation 
4.2.25); 𝑟𝑠 = 0 for 
standing water & 𝑟𝑠 = 
5 s m-1 for vegetation 

  Assumed vapour 
pressure deficits 
depressed, α = 1 

Eddy 
correlation 

1.03 (0.67) 0.98 (0.44) 1.03 (0.67) 

Bidlake 
(2000) 
Table 4 

Wetland in 
Oregon, USA 
(semi-arid) 

 Several calibrations 
were based on 𝑟𝑠. 
Chosen best option 

  Calibrated with  α 
overall <1 
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# Value is ratio of mean model estimate to mean measured estimate. Values in parentheses are root mean square error in mm day-1. * Value is 
based on the slope of the regression between the model and the measured values. 

  

Eddy 
correlation 

0.98* (1.04) 0.92* (1.00) 

Lott & 
Hunt 
(2001) 
Table 2 

Wisconsin, 
USA 
 

 Adopted Dunne & 
Leopold (1978) to 
compute 𝐸𝑎 

    

Lysimeter and 
water table 
fluctuations 

Natural wetland 
0.70 

Constructed wetland 
1.01 

Jacobs et 
al. (2002) 
Table 3 

Highland marsh 
Florida, USA 

Penman (1956) 𝑟𝑎 = Monin-Obukhov 
similarity for neutral 
conditions 

  α = 1.26 

Eddy 
correlation 

1.31 (1.83) 1.14 (1.62) 1.39 (1.59) 

Drexler et 
at. (2004) 

 Adv: Minimal data 
Disadv: does not 
account for 𝑟𝑠 

Adv: Minimal data, 
accounts for  𝑟𝑠  
Disadv: Can’t handle 
mixed vegetation, 
hence 𝑟𝑎 and 𝑟𝑠 
difficult to estimate 

Adv: can handle 𝑟𝑎 
and 𝑟𝑠 for different 
surfaces including 
standing water 

Disadv: Does not 
handle standing 
water 

Disadv: No wind 
component nor  𝑟 

No quantitative comparisons 
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Table S8 Measured values of Priestley-Taylor coefficient (𝜶𝑷𝑻)  

(Partly adapted from Flint and Childs (1991) and Fisher et al. (2005)) 

𝛼𝑃𝑇 Surface Daily (24 hr) or 
day-time (day-

light hour) 

Reference 

1.57 Strongly advective conditions na Jury and Tanner (1975) 
1.29 Grass (soil at field capacity) daily Mukammal and Neumann 

(1977) 
1.27 Irrigated ryegrass daily Davies and Allen (1973) 
1.26 Saturated surface daily Priestley and Taylor (1972) 
1.26 Open-surface water daily Priestley and Taylor (1972) 
1.26 Wet meadow daily Stewart and Rouse (1977) 
1.18 Wet Douglas-fir forest daily McNaughton and Black 

(1973) 
1.12 Short grass day-time De Bruin and Holtslag 

(1982) 
1.09 Boreal broad-leaf deciduous N = 1 daily Komatsu (2005) 
1.05 Douglas-fir forest daily McNaughton and Black 

(1973) 
1.04 Bare soil surface day-time Barton (1979) 
0.90 Mixed reforestation (water limited) daily Flint and Childs (1991) 
0.87 Ponderosa pine (water limited) day-time Fisher et al. (2005) 
0.85 Temperate broad-leaf deciduous N 

= 9 
day-time Komatsu (2005) 

0.84 Douglas-fir forest (unthinned) daily Black (1979) 
0.82 Tropical broad-leaf evergreen N = 

7 
day-time Komatsu (2005) 

0.80 Douglas-fir forest (thinned) daily Black (1979) 
0.76 Temperate broad-leaf evergreen N 

= 5 
day-time Komatsu (2005) 

0.73 Douglas-fir forest day-time Giles et al. (1984) 
0.72 Spruce forest day-time  Shuttleworth and Calder 

(1979) 
0.65 Temperate coniferous evergreen N 

= 35 
day-time Komatsu (2005) 

0.55 
0.53 

Boreal coniferous evergreen N = 8 
Boreal coniferous deciduous N = 2 

day-time 
day-time 

Komatsu (2005) 
Komatsu (2005) 

na: not known; N is the number of experimental sites  
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Table S9 Effect of type and length fetch, wind speed and humidity on Class-A pan 

coefficients without bird-guard* 
 

Wind Fetch length 
(m) 

Green vegetated fetch in a 
dry area 

Dry fetch in a green 
vegetated area 

Low 
humidity 
< 40% 

High 
humidity 
> 70% 

Low 
humidity 
< 40% 

High 
humidity 
> 70% 

Light  
< 2 m s-1 

10 0.65 0.85 0.60 0.80 
1000 0.75 0.85 0.50 0.70 

Strong 
5 - 8 m s-1 

10 0.55 0.65 0.50 0.65 
1000 0.60 0.75 0.40 0.55 

*Results were extracted from Allen et al. (1998, Table 5) 
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Table S10 Published references listing annual Class-A pan coefficients based on the Penman equation with wind functions of 
Penman (1948) and Penman (1956), Reference Crop equation and Priestley-Taylor equation 

 
Reference Location Number of 

sites 
Time-step 

D or M 
Penman 
(1948) 

Penman 
(1956) 

Reference Crop Priestley-
Taylor 

Screened pan 
Weeks (1982) Callide Dam, Queensland 1 M 0.88    

Fleming et al. (1989) South Lake Wyangan, Vic, 
Aus 1 M  0.76   

Chiew et al. (1995) Australia 16 D & M   0.67 (FAO 24)  
Cohen et al. (2002)  1 M  1.03 0.77  

Coefficients adjusted to a screened pan coefficient 
Young (1947)*    0.82    
Penman (1948)* Rothamsted, UK several 6Ds & M 0.83    
Kohler et al. (1955)*    0.64 – 0.88    
Harbeck (1958)*    0.74    
Nordenson & Baker (1962)*    0.79    
Nimmo (1964)*    0.65– 0.85    
Stanhill (1969)*    0.75    
Allen & Crow (1971)*    0.80 – 0.83    
Ficke (1972)*    0.81    
Hounam (1973)*    0.77, 0.86    
Neuwirth (1973)*    0.77    
Hoy (1977)*    0.83    
Duru (1984)*    0.83    
Stanhill (2002) World-wide 18 na Penman ?? 0.68   
Harmsen  et al. (2003) Puerto Rico 7 M   0.84  
Sumner & Jacobs (2005) Florida, USA 1 D   0.75  

Weiβ and Menzel (2008) Jordon      0.43 
(0.24 -0.72) 

D: daily time-step, M: monthly time-step; na: not available * References from Linacre (1994) 
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Table S11 Monthly Class-A evaporation pan coefficients for selected Australian lakes* 

*All pan coefficients are extracted from Hoy and Stephens (1979) 

Station 
name 

Lat °S Long 
°E Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Lake 
Eucumbene 

36.083 148.667 0.82 0.95 0.91 1.03 2.07 2.19 1.65 1.56 0.47 0.47 0.52 0.67 

Cataract 
Reservoir 

34.333 150.833 0.98 1.07 1.11 1.14 1.22 1.25 1.12 0.75 0.76 0.80 0.88 0.93 

Manton 
Reservoir 

12.833 131.083 1.13 1.09 1.06 1.01 0.94 0.85 0.79 0.75 0.83 0.88 0.91 1.10 

Mundaring 
Reservoir 

31.916 116.166 1.02 1.06 1.12 1.18 1.15 1.18 1.01 0.91 0.81 0.78 0.79 0.94 

Blue 
Lagoon 

38.183 146.366 0.92 0.95 0.94 0.91 0.88 0.88 0.7 0.77 0.94 0.94 1.06 0.96 

Lake 
Wyangan 

34.283 146.033 0.86 0.86 0.87 0.82 0.78 0.69 0.66 0.68 0.82 0.97 0.85 0.83 

Rifle Creek 
reservoir 

20.950 139.583 0.76 0.66 0.79 0.82 0.66 0.56 0.52 0.52 0.57 0.65 0.65 0.83 
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Table S12 Annual Class-A evaporation pan coefficients for selected Australian 
lakes* 

 
Station name Lat °S Long °E Annual pan 

coefficient 
Lake Menindee 32.333 142.333 0.76 
Lake Pamamaroo 32.300 142..466 0.71 
Lake Cawdilla 32.466 142.233 0.76 
Stephens Creek Reservoir 31.833 141.500 0.74 
Lake Albacutya 35.750 141.966 0.85 
Lake Hindmarsh 36.083 141.916 0.79 
Lake Eucumbene 36.083 148.667 0.87 
Cataract Reservoir 34.333 150.833 0.98 
Manton Reservoir 12.833 131.083 0.93 
Mundaring Reservoir 31.916 116.166 1.00 
Blue Lagoon  38.183 146.366 0.94 
Lake Wyangan South 34.283 146.033 0.82 
Rifle Creek Reservoir 20.950 139.583 0.68 
Lake Albert 35.633 139.333 0.87 
Callide Dam 24.400 150.617 0.87 
Lake Alexandrina 35.750 139.283 0.66 

*All pan coefficients are extracted from Hoy and Stephens (1979) except for Callide 
Dam and Lake Alexandrina which are taken from Weeks (1982) and Kotwicki (1994, Table 
2)  respectively. 
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Table S13 Comparison of annual estimates of evaporation (mm day-1) at six Australian locations by 13 daily and monthly models plus 
Class-A pan and mean annual rainfall for period January 1979 to March 2010*. (P56: Penman 1956; PT: Priestley-Taylor; Ma: Makkink; 
FAO56 RC: FAO-56 Reference Crop; BC: Blaney-Criddle; HS: Hargreaves-Samani; mod H: modified Hargreaves; Tu: Turc; Mo: Morton 
CRAE; BS: Brutsaert-Strickler; GG: Granger-Gray; SJ: Szilagyi-Jozsa; Th: Thornthwaite; PP; PenPan (adjusted for bird screen) 

  Pen56 PT Ma FAO56 
RC BC HS mod 

H Tu Mo BS GG SJ Th PP Class-
A pan 

9021 
Perth 
Airport 
(31.9275°S, 
115.9764°E)  
rain: 708 
mm 

Daily 
(D) 1908 1609 1123 1567 1182 1629  1385  736 799 701  2398 2090 

Daily 
ratio 

1.00 0.84 0.59 1.00 0.75 1.04   0.85   1.00 1.09 0.95   1.00 0.87 

Monthly 
(M) 1908 1626 1126 1571 1072 1383 1537 1349 600 773 794 738 896 2378  

M to D 
ratio 

1.000 1.011 1.003 1.003 0.907 0.849   0.974   1.050 0.994 1.053   0.992   

14015 
Darwin 
Airport 
(12-4239°S, 
130.8925°E) 
rain: 1723 
mm 

Daily 
(D) 2240 2195 1382 1823 1332 1639  1674  1515 1140 1531  2699 2548 

Daily 
ratio 

1.00 0.98 0.62 1.00 0.73 0.90   0.92   1.00 0.75 1.01   1.00 0.94 

Monthly 
(M) 2238 2200 1381 1821 1238 1620 1259 1664 1247 1529 1136 1545 1966 2690  

M to D 
ratio 

0.999 1.002 0.999 0.999 0.929 0.988   0.994   1.009 0.996 1.009   0.997   

15590 
Alice 
Springs 
Airport 
(23.7951°S, 
133.8890°E) 
rain: 296 
mm 

Daily 
(D) 2299 1785 1321 2012 1703 2396  1854  537 805 360  3085 3210 

Daily 
ratio 

1.00 0.78 0.57 1.00 0.85 1.19   0.92   1.00 1.50 0.67   1.00 1.04 

Monthly 
(M) 2313 1814 1326 2031 1573 2019 2048 1811 90.3 584 801 407 1152 3079  

M to D 
ratio 

1.006 1.016 1.004 1.009 0.924 0.843   0.977   1.088 0.995 1.131   0.998   

40842 Daily 1819 1709 1130 1427 930 1355  1366  1070 912 1107  2157 1937 
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*All annual estimates are based on the sum of the average monthly values for the concurrent period of observation at each station. 
 

 

Brisbane 
Aero 
(27.3917°S, 
153.1292°E) 
rain: 1168 
mm 

(D) 
Daily 
ratio 

1.00 0.94 0.62 1.00 0.65 0.95   0.96   1.00 0.85 1.03   1.00 0.90 

Monthly 
(M) 1821 1720 1132 1433 797 1285 1247 1363 894 1090 910 1125 991 2154  

M to D 
ratio 

1.001 1.006 1.002 1.004 0.857 0.948   0.998   1.019 0.998 1.016   0.999   

86282 
Melbourne 
Airport 
37.6655°S, 
144.8321°E) 
rain: 482 
mm 

Daily 
(D) 1652 1217 826 1361 559 1361  1000  349 624 328  2123 1757 

Daily 
ratio 

1.00 0.74 0.50 1.00 0.41 1.00   0.73   1.00 1.79 0.94   1.00 0.83 

Monthly 
(M) 1611 1231 828 1317 409 1057 1165 993 447 422 609 400 744 2022  

M to D 
ratio 

0.975 1.012 1.002 0.968 0.732 0.777   0.993   1.209 0.976 1.220   0.952   

94069 
Grove 
(42.9831°S, 
147.0772°E) 
rain: 693 
mm 

Daily 
(D) 1014 991 656 770 116 1173  777  630 589 704  1108 987 

Daily 
ratio 

1.00 0.98 0.65 1.00 0.15 1.52   1.01   1.00 0.93 1.12   1.00 0.89 

Monthly 
(M) 1004 996 657 758 34 899 1005 777 391 653 597 744 654 1082  

M to D 
ratio 

0.990 1.005 1.002 0.984 0.293 0.766   1.000   1.037 1.014 1.057   0.977   
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Figure S1 Location of the 68 Automatic Weather Stations and Class-A evaporation 

pans (of which 39 pans are high quality) used in the analyses  
 

 

 
Figure S2 Plot showing Priestley-Taylor pan coefficients against mean annual 

unscreened Class-A pan evaporation based on six years of climate station data in 
Jordon (Weiβ and Menzel, 2008) 
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Figure S3 Comparison of monthly PenPan evaporation and Class-A pan 

evaporation for 68 Australian climate stations 
 

y = 0.970x + 18.4
R² = 0.965

0

100

200

300

400

500

600

0 100 200 300 400 500 600

M
on

th
ly

 P
en

Pa
n 

ev
ap

or
at

io
n 

(m
m

 m
on

th
-1

)

Monthly Class-A pan  evaporation (mm month-1)

1:1


	Thomas A McMahon, Murray C Peel, Lisa Lowe, R Srikanthan, Tim R McVicar
	List of variables and symbols in the paper and supplementary appendices excluding Appendices S20 and S21
	Modified Hargreaves
	Application based on energy balance
	There is an extensive body of literature addressing the question of evaporation from lakes covered by vegetation. Abtew and Obeysekera (1995) summarise the results of 19 experiments which, overall, show that the transpiration of macrophytes is greater...
	Based on theoretical considerations and a literature survey, Idso (1981) offered the following observations. Firstly, reliable experiments assessing the relative rates of evaporation from vegetated water bodies and open surface water must be conducted...


