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Abstract

With the advancement in modern telemetry and communication technologies, hydro-
logical data can be collected with an increasingly higher sampling rate. An important
issue deserving attention from the hydrological community is what suitable time interval
of the model input data should be chosen in hydrological forecasting. Such a problem5

has long been recognised in the control engineering community but is a largely ig-
nored topic in operational applications of hydrological forecasting. In this study, the
intrinsic properties of rainfall-runoff data with different time intervals are first investi-
gated from the perspectives of the sampling theorem and the information loss using
the discrete wavelet decomposition tool. It is found that rainfall signals with very high10

sampling rates may not always improve the accuracy of rainfall-runoff modelling due
to the catchment low-pass filtering effect. To further investigate the impact of data time
interval in real-time forecasting, a real-time forecasting system is constructed by in-
corporating the Probability Distributed Model (PDM) with a real-time updating scheme,
the autoregressive-moving average (ARMA) model. Case studies are then carried out15

on four UK catchments with different concentration times for real-time flow forecasting
using data with different time intervals of 15 min, 30 min, 45 min, 60 min, 90 min and
120 min. A positive relation is found between the forecast lead time and the optimal
choice of the data time interval, which is also highly dependent on the catchment con-
centration time. Finally, based on the conclusions from the case studies, a hypothetical20

pattern is proposed in three-dimensional coordinates to describe the general impact
of the data time interval and to provide implications on the selection of the optimal
time interval in real-time hydrological forecasting. Although nowadays most operational
hydrological systems still have low data sampling rates (daily or hourly), the trend in
the future is that higher sampling rates will become widespread and there is an urgent25

need for both academic and practising hydrologists to realise the significance of the
data time interval issue. It is important that more case studies in different catchments
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with various hydrological forecasting models should be explored in the future to further
verify and improve the proposed hypothetical pattern.

1 Introduction

Hydrological forecasting has always been a dominant and challenging field in oper-
ational hydrology. Owing to the spatial and temporal variability of catchment charac-5

teristics and rainfall patterns, together with a number of associated hydrological com-
ponents which are highly nonlinear, time-dependent and spatially varying (Cluckie and
Han, 2000; Tokar and Markus, 2000), the rainfall-runoff transformation is always a com-
plex hydrological process for modelling and there still exist inevitably various uncertain-
ties in the hydrological forecasting (Mantovan and Todini, 2006; Han et al., 2007). In10

the last decade, increased scientific interests have been shown in the topics of the
real-time updating schemes and data assimilation methods (Refsgaard, 1997; Madsen
and Skotner, 2005; Moradkhani et al., 2005; Weerts and El Serafy, 2006; Komma et al.,
2007; Clark et al., 2008), the probabilistic forecasting with either physical or data-driven
models (Freer et al., 1996; Krzysztofowicz, 1999, 2002; Tamea et al., 2005; Mantovan15

and Todini, 2006; Chen and Yu, 2007), as well as the numerical weather prediction
(NWP) which provides precipitation forecasts as the input of the forecasting model and
allows for an extension of the forecast lead time (Cloke and Pappenberger, 2009; Wood
and Schaake, 2008; Lin et al., 2002, 2006, 2010). However, no matter how advanced
these methods are and how much they can improve the forecasting results, they all20

depend on a reliable hydrological forecasting model, which normally consists of a hy-
drological model (either lumped, distributed or semi-distributed) together with a real-
time updating scheme. When constructing the forecasting model, there is an important
issue that cannot be avoided, i.e. the selection of the time interval of the model input
data (e.g. the rainfall, streamflow and evaporation, etc.) used to drive the model, which25

is, however, mostly ignored by the hydrological community in operational applications.
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First of all, a distinction should be made between the sampling interval of the hy-
drological measurements and the time interval of the input data for the hydrological
forecasting model. A sampling interval is determined by the instruments (e.g. the rain
gauge and the flow gauge) and could be as frequent as the instrument can afford;
while the time interval of the model input data mentioned in this study refers to the5

time interval of the hydrological data (e.g. rainfall and streamflow) used to construct
the forecasting model, or in other words, it can be comprehended as the time step at
which the model is operating. For an easier quotation, we use term “data time interval”
thereafter to refer to the interval of the model input data and use “sampling interval” to
describe the raw hydrological measurements.10

Traditionally, hydrological measurements have been manually carried out with very
low sampling rates (e.g. monthly, weekly and daily). However, modern telemetry sys-
tems have been developed to increase the hydrological sampling rate to hourly,
minutely or even in seconds (e.g. weather radar is able to measure rainfall once ev-
ery one minute and optical rain gauge can do it in seconds). One burning question15

for hydrologists would be how to select the optimal time interval in the hydrological
forecasting. If the modern telemetry system keeps advancing in its current pace, will
our hydrological forecasting model be able to cope with this “data rich” environment?
It is interesting to note such a problem has already concerned modern control engi-
neers. Unlike the “slow” sampling rate in hydrology, control engineers need to deal with20

very fast sampling, e.g. hundreds or even thousands of samples per second in rocket
trajectory control. In the work of Åström (1969), a simple Gauss-Markov process was
analysed using a parametric model, with the parameters completely describing the
stochastic process. It was found that there was an optimal choice of the time interval
and that the variance of parameter estimates would increase rapidly when the time in-25

terval increased or decreased from the optimal value. This is the first time the “optimal
time interval” has been proposed with regard to the data used for model construction.
Later on, Ljung (1987, 1999) pointed out that data with too large intervals would bear lit-
tle information about the dynamics of the sampled signal; while too fast sampling would
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involve more measurement noise and lead to numerical problems in a model, as the
model could only fit in high-frequency bands with poor performances for extra work. It
was further proposed by Ljung that the optimal choices of the time interval would lie in
the range of the time constant of the system, which measures how quickly the system
responses. However, the system time constant is not exactly known for highly nonlinear5

systems, but overestimating it might lead to a dramatic increase in the variance of the
model parameter estimates.

In the past decade, this issue begins to gain attention from the academic hydrolo-
gists. A general consensus has been reached that the parameters, simulation results
and process representations of the hydrological models are inherently and strongly10

time-step dependent (e.g. Duan et al., 2006; Merz et al., 2009, 2010). More than
a decade ago, Schaake et al. (1996) developed a simple water balance model and
tested its sensibility for operating at time steps different from what it was calibrated at.
It was recommended that to obtain the best performance, the model should be cali-
brated at the same time step as the one used for operation. Following this, a number of15

studies have been carried out on the time-step dependency of the hydrological model
parameters (Finnerty et al., 1997; Tang et al., 2007; Littlewood and Croke, 2008; Wang
et al., 2009; Cho et al., 2009; Kavetski et al., 2011), for its implications in regionalisa-
tion at ungauged catchments or climate impact analysis, etc. However, the impact of the
model time step, or using the equivalent expression in this study, the time interval of the20

model input data, on the inference of the catchment structure, model parameters, and
more generally the catchment behaviour remains poorly understood (Kavetski et al.,
2011). Further, in operational applications, people care more about the improvement
of the model accuracy and the appropriate use of the observational data, rather than
reducing the time dependency of the model parameters. Albeit the utilisation of hydro-25

logical observations at appropriately fine resolutions is advocated by Wagener et al.
(2010), there still remains a lack of general guidance for hydrologists to easily cope
with this time interval issue in operational applications. Moreover, most of the previous
studies are focused on using the hydrological models for simulation. With respect to
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the hydrological forecasting, this issue becomes more complicated by the involvement
of another temporal concept, the forecast lead time. In such cases, a suitable choice
of the time interval of the model input data is more important and deserves further
considerations.

In the area of hydrological forecasting, it has been firstly addressed in the work of5

Remesan et al. (2010), when the artificial neural network (ANN) is used for real-time
flood forecasting, that there is an optimal time interval for the input data. It is found
that the 30 min interval can produce more accurate forecast results than the 15 min,
60 min and 120 min intervals in the Brue catchment of the UK, and the significance
of the time interval impact on the forecasting accuracy is more prominent to longer10

lead times than shorter ones. The results are quite meaningful to data-driven models,
the performances of which are highly time dependent and improper data inputs could
easily lead to overfitting (a serious weakness associated with such models). However,
a question might arise: will this “optimal time interval” still exist for forecasting made
by using the more widely applied conceptual rainfall-runoff models? The conceptual15

rainfall-runoff models encompass a broad spectrum of plausible descriptions of the
physical rainfall-runoff processes, which are found to be both reliable and effective in
various situations, especially for real-time hydrological forecasting (Bell et al., 2001).
The purpose of this study is to explore the general impact of the data time interval
on hydrological forecasting using the conceptual rainfall-runoff model and a real-time20

updating scheme.
The rest of the paper is organised as followed. In Sect. 2, the intrinsic properties of

observed rainfall-runoff data with different sampling intervals are investigated from the
perspective of the sampling theorem and the information loss using the wavelet tool.
Section 3 examines the impact of data time interval on the forecast accuracy through25

case studies. A real-time forecasting system is built up by incorporating the Probability
Distributed Model (PDM) with a real-time updating scheme, the autoregressive-moving
average (ARMA) model. Rainfall-runoff data from four UK catchments of different sizes
with time intervals of 15 min, 30 min, 45 min, 60 min, 90 min and 120 min are used to
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drive the forecasting system. Forecasts are then made using different time-interval data
for the four catchments with the forecast lead time ranging from 1 to 12 h. Finally, based
on the forecasting results from the case studies, a hypothetical pattern is proposed
in Sect. 4 to describe the general pattern of the time interval effect and to provide
some implications on the selection of the optimal time interval in real-time hydrological5

forecasting.

2 Observed rainfall-runoff data with different time intervals

2.1 Sampling methods for observed rainfall-runoff data

Sampling refers to the process of converting a signal (e.g. a function of continuous time
or space) into a numerical sequence (a function of discrete time or space) (Shannon,10

1949, 1998). The hydrological processes are continuous in the time domain. However,
most of the observed hydrological measurements are only available at discrete time
intervals. There are two methods by which a continuous time function can be repre-
sented in a discrete time domain. One is to use a sampling data function where the
value of the continuous function Q(t) in the j th time interval Qj is given simply by the15

instantaneous value of Q(t) at time j∆t:

Qj =Q(tj ) =Q(j∆t) (1)

The other way is to adopt a pulse data function, in which the value of the discrete time
function Qj is given by the area under the continuous function Q(t):

Qj =

j∆t∫
(j−1)∆t

Q(t)dt (2)20

The two principal variables of interest in hydrology, streamflow and rainfall, are mea-
sured as sampled data series and pulse data series, respectively (Chow et al., 1988).
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When the values of streamflow and rainfall are recorded by gauges at a given in-
stant, the flow gauge value represents the flow rate at that instant (in dimension of
(L3/T)), while the rainfall gauge value is the accumulated depth of rainfall (in dimen-
sion of (L) standing for the volume of rainfall (L3)) which has occurred up to that instant.
For example, if a rain gauge measures rainfall every 30 min then at an instantaneous5

time of 08:00 a.m. LT its value of 15 mm represents the total rainfall accumulated from
07:30 a.m. to 08:00 a.m. On the other hand, 15 m3 s−1 at 08:00 a.m. from a river gauge
represents the instantaneous stream flow at 08:00 a.m. (neither the average flow from
07:30 a.m. to 08:00 a.m., nor the accumulated flow volume during that period). It should
be clarified that here we are only talking about how the rainfall and flow data are col-10

lected at site. When forcing the rainfall into the rainfall-runoff model to produce the flow,
the model output can be either sampled or pulse data series.

By representing a continuous signal using discrete measurements, the sampling pro-
cess always results in some kind of information loss. Figure 1 shows the rainfall-runoff
measurements with sampling intervals of 15 min, 30 min, 60 min and 120 min. It can be15

seen that as the sampling interval increases from 15 min to 120 min, the flow curve is
less smooth and the shape of the columns representing the rainfall volume becomes
more approximate. Slower sampling leads to subsets of the data sets produced by
fast sampling, and hence is less informative (Ljung, 1991). However, from the theoreti-
cal aspect of the signal reconstruction, downsampled data can also result in a perfect20

reconstruction of the original signal by choosing an appropriate interpolation method
and more importantly, complying with the sufficient condition of the Nyquist-Shannon
sampling theorem (Nyquist, 1928, 2002). The theorem, often known as the sampling
theorem, provides a lower boundary of the sampling frequency thus an upper bound-
ary of the sampling interval as a sufficient condition for a perfect reconstruction of the25

original signal:

fs > 2B (3)

or equivalently:
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B < fs/2 (4)

where fs is the sampling frequency and B is the one-sided baseband bandwidth of the
band-limited original signal. fs/2 is defined as the Nyquist frequency, which is a prop-
erty of the sampled system. If the condition is not satisfied, the part of information of
the original signal with frequencies beyond the Nyquist interval [−fs/2, fs/2] will be lost5

during sampling, and the spectral density inside the interval can be distorted in the pro-
cess of signal reconstruction, which will lead to the phenomenon of aliasing (Mitchell
et al., 1988). On the other hand, if the frequency of the downsampled data is higher
than twice of the bandwidth of the original signal, the information loss can be neglected
and the original signal can also be successfully reconstructed. This has, at least from10

the theoretical aspect of the signal reconstruction, refuted the intuition of many mod-
ellers and demonstrated that choosing a relatively larger time interval will not always
deteriorate the modelling results.

2.2 Spectral analysis for observed data with different time intervals

In order to further investigate the information content of the observed rainfall-runoff15

data with different sampling intervals, the discrete wavelet transform (DWT) is applied
to investigate the energy distribution of the observed rainfall-runoff data in different
frequency domains. DWT is a powerful mathematical tool for the spectral analysis of
discrete signals, which is more efficient than the Fourier transform in studying non-
stationary time series (Meyer, 1993; Polikar, 1999). A most popular and efficient way20

to implement DWT is the Mallat decomposition algorithm (Mallat, 1989), the process of
which is illustrated in Fig. 2.

The decomposition level j is associated with a frequency band ∆F calculated based
on the sampling frequency fs:

2−j−1fs ≤∆F ≤ 2−j fs (5)25
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The original signal is first decomposed into an approximation and an accompanying
detail. The detail contains the high-frequency components of the signal within the fre-
quency band ∆F while the approximation represents the low-frequency components
below the band. Table 1 gives the corresponding frequency bands of the six wavelet
decomposition levels for a 15 min data series, obtained by using Eq. (5). The decom-5

position process is iterated, with successive approximations being decomposed in turn
so that the original signal is broken down into many lower-resolution components. In
this study, the decomposition is carried out by decomposing one-year observed rainfall-
runoff data into six decomposition levels using the Daubechies wavelet of order 10, 12
and 20 (Daubechies, 1990; Labat et al., 2000, 2004). Since we are only interested in the10

general frequency profile instead of the frequency distribution details, the six wavelet
decomposition levels are sufficient for this purpose. The observed rainfall-runoff data
are first obtained with a sampling interval of 15 min, and then downsampled to 30 min,
45 min, 60 min, 90 min and 120 min data series according to different sampling methods
of rainfall and streamflow. The decomposition results are shown in Table 2. Since the15

results from the Daubechies wavelet of order 10, 12 and 20 have very similar patterns,
only those from the Daubechies wavelet of order 20 are presented.

The energies shown in Table 2 can be interpreted as the magnitudes of information
content of the one-year data in different frequency bands. For the flow, the majority
of energy is distributed in the lower bands, with little energy in the higher bands of20

level 1 to level 4. As for the rainfall, the energy distribution is relatively balanced, with
considerable amounts in all frequency bands. It has been pointed out by some stud-
ies (Bras, 1979; Bras and Rodriguez-Iturbe, 1976; Storm, 1989) that the catchment
behaves like a low-pass filter to the climatic input data, e.g. rainfall and evapotran-
spiration, by absorbing their subtle time variability. To further investigate the energy25

variance in a certain frequency band caused by the flow and rainfall data with different
time intervals, it can be noticed that the variances for the flow series are not obvi-
ous, considering the relatively large amounts of the total energies; while with respect
to the rainfall, the variances are more outstanding, which are on an increasing trend
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from the approximation to lower decomposition levels. In the low frequency band of
(0.35×10−6) Hz (approximation+ level 6+ level 5), where most energy of the flow data
is distributed, the energy variance of the rainfall series is less obvious compared to
that in higher frequency bands. Moreover, the energies of approximations are exactly
the same for all the rainfall series. The difference of energy distribution for the flow and5

rainfall data with different intervals might be caused by the intrinsic characteristics of
the two different hydrological processes, and also the different sampling methods.

Similar to the low-pass filtering function of the catchment, the high-frequency vari-
ances of the rainfall inputs can be absorbed by the soil moisture reservoirs in the
rainfall-runoff model (Oudin et al., 2004). As a consequence, the information content of10

the rainfall input in the higher frequency bands, which can show large variances with
regard to a different time interval, is not likely to be transformed into the simulated flow
through the rainfall-runoff model. As discussed above, since the energy variances of
the rainfall data in low frequency bands are not obvious, the transformed flow will not
have much difference when using rainfall data with different intervals as the input of15

the rainfall-runoff model. This indicates that the increased sampling rate for the rainfall
data may not necessarily improve the performance of the rainfall-runoff model. This has
been verified by many studies, e.g. Schaake et al. (1996) found that using 6-h, 12-h,
1-day, 2-day and 4-day rainfall data could generate similar simulation results of flow as
long as the model was calibrated and operated at the same time intervals. However,20

this conclusion may be only true for pure simulation using the rainfall-runoff model.
The energy distribution from the wavelet analysis is not enough to provide a general
pattern about the impact of time interval on real-time forecasting, where the existence
of the real-time updating scheme involves the historical flow data as another system
input together with the rainfall. In the following section, the impact of data time interval25

in real-time forecasting is trying to be explored through case studies by constructing
a real-time forecasting system and applying it to four UK catchments of different sizes.
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3 Case studies

3.1 A real-time hydrological forecasting system

The real-time forecasting system in this study consists of a conceptual rainfall-runoff
model, the Probability Distributed Model (PDM) and a commonly used updating
scheme for real-time error correction, the autoregressive-moving average (ARMA)5

model.

3.1.1 Rainfall-runoff model

The PDM (Probability Distributed Model) (Moore, 1985) is a lumped conceptual rainfall-
runoff model which has been widely applied in various catchments in the UK and
abroad. It could be viewed as a representative of the conceptual saturation-excess10

models used for the runoff simulation in humid and semi-humid regions. The PDM
model is developed based on the scheme of the Xinanjiang model with a soil moisture
storage capacity that varies over the catchment and is described by a simple proba-
bility distribution curve. Inputs to the model are the rainfall and the potential evapora-
tion. Actual evaporation depletes the soil moisture storage, the rate of which depends15

on the soil moisture deficit and the potential evaporation. Further loss as recharge to
the groundwater is defined by assuming that the rate of draining depends linearly on
the current soil moisture conditions. The groundwater recharge is then routed through
a “slow response system” which can be best represented by a cubic form of a nonlinear
storage model (Dooge, 1973). The direct flow, defined as the difference between the20

soil moisture storage at the beginning and the end of a time interval, is routed through
“a fast response system” which is often described by a cascade of two linear reser-
voirs (O’Connor, 1982). Further details of the model equations are presented by Moore
(2007). Figure 3 shows the conceptual structure of the PDM model. Table 3 lists the 13
parameters to be calibrated in the model.25
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3.1.2 Real-time updating scheme

Error prediction is now a well established technique for forecast updating in real time
(Box and Jenkins, 1970; Moore, 1982). The real-time updating scheme used in this
study is wholly external to the deterministic model operation thus can be easily ap-
plied in combination with any kind of rainfall-runoff models. A feature of errors from5

a conceptual rainfall-runoff model is that there is a tendency for errors to persist so
that sequences of positive errors (underestimation) or negative errors (overestimation)
are common (Moore, 2007). This dependent structure in the error sequence may be
exploited by developing an error predictor which incorporates the error structure and
allows future errors to be predicted. In this updating scheme, the structure of errors10

is analysed and the predictions of future errors are added to the deterministic model
prediction to obtain the updated and improved forecasts of flow. With qt+l representing
the modelling result of the observed flow Qt+l at some time t+ l , directly obtained from
the PDM model without incorporating the observed flow data, the error ηt+l is defined
as Qt+l −qt+l . Let ηt+l |t denote a prediction of the error ηt+l , made l steps ahead from15

a forecast origin at time t using an error predictor. Then a real-time forecast, qt+l |t, can
be expressed as the sum of the predicted error and the original modelling result:

qt+l |t = qt+l +ηt+l |t (6)

Among various forms of error predictors, the autoregressive-moving average (ARMA)
model is considered to be most appropriate and parsimonious (Moore, 2007). The20

equations of the error predictions ηt+l |t expressed by the ARMA model can be written
as follows:

ηt+l |t =−φ1ηt+l−1|t −φ2ηt+l−2|t − ...−φpηt+l−p|t +θ1at+l−1|t +θ2at+l−2|t

+ ...+θqat+l−q|t, l = 1,2, ... (7)
25
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where φ1,φ2, ...,φp and θ1,θ2, ...,θq are autoregressive and moving average parame-
ters, respectively with

at+l−i |t =
{

0 l − i > 0
at+l−i otherwise

(8)

and at+l−i is the one-step ahead prediction error defined as:

at+l−i ≡ at+l−i |t+l−i−1 = ηt+l−i −ηt+l−i |t+l−i−1 =Qt+l−i −qt+l−i |t+l−i−1 (9)5

and

ηt+l−i |t = ηt+l−i =Qt+l−i −qt+l−i for l − i ≤ 0 (10)

Equation (7) together with the related Eqs. (8)–(10) is used recursively to produce the10

error predictions of ηt+1|t,ηt+2|t, ...,ηt+l |t, from the available values of at,at−1, ... and
ηt,ηt−1, ... Using this error prediction methodology, the PDM model original modelling
results, qt+l , can be updated using the error prediction ηt+l |t, to calculate the required
real-time forecast, qt+l |t, according to Eq. (6).

As for the number of parameters in the ARMA structure, i.e. φ1,φ2, ...,φp and15

θ1,θ2, ...,θp in Eq. (7), a third order autoregressive with dependence on three past
model errors has been proved to be an appropriate choice for UK conditions (Moore,
2007). Thus the ARMA structure containing three autoregressive parameters and one
moving average parameters (with p = 3 and q = 1) is chosen as the updating scheme
in this study. It should be noted that for the forecasts made from an origin t, by calculat-20

ing the error predictor ηt+l |t, the real-time observations of flow are assimilated into the
forecasting results. For instance, with the structure of ARMA (3, 1), the observed flows
at t, t−1 and t−2 are involved in the calculation of the error predictor ηt+l |t, which are
then added to the original model prediction qt+l to derive the updated result of qt+l |t
according to Eq. (6). For the obtaining of qt+l , we assume the perfect knowledge of the25

future rainfall and potential evaporation, i.e. the observed catchment average rainfall
and the MOSES potential evaporation are used as the model inputs after the origin t.
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An automatic calibration procedure utilising an efficient population based evolution-
ary optimisation technique, i.e. the Particle Swarm Optimisation (PSO) algorithm (Eber-
hart and Kennedy, 1995, 2001), is adopted to estimate the 4 error-prediction parame-
ters of the ARMA model and the 13 parameters of the PDM model.

3.2 Study catchments and experiment design5

Four catchments are selected from southwest England, which are Bellever, Halsewa-
ter, Brue and Bishop Hull. They have different sizes of the catchment area, varying
from 20 to 200 km2, as shown in Fig. 4. Except for the Bellever catchment which is
in the Devon area with a maximum altitude of 604 m above the sea level, the other
three catchments are located in the area of North Wessex, with an average altitude of10

119 m. All the catchments are predominantly rural areas with the main land-use types
being the moorland, low grade agriculture or wood land. Catchment descriptors are
obtained from the Flood Estimation Handbook (FEH) (Bayliss, 1999) produced by the
Centre of Ecology and Hydrology (CEH) in the UK. Meanings of the descriptors are
explained in Table 4 and values of the respective descriptors for the four catchments15

are listed in Table 5. It can be seen from Table 5 that the average annual rainfall (SAAR)
is 2095 mm for the Bellever catchment with the percentage runoff (SPRHOST) being
47.5 %, while the other three catchments have less rainfall (about 850 ∼ 1000 mm per
year) and slightly lower percentage runoff, i.e. 30.6 %, 36.4 % and 32.9 %. From the
descriptors of the catchment size and configuration, it can be noticed that the increase20

of the catchment area (AREA) corresponds to an increase of LDP and DPLBAR repre-
senting the longest and average length of the drainage path, which thus suggests an
increasing travel time of the streamflow before it routes to the catchment outlet.

Seven years’ rainfall-runoff data are collected from the four catchments with a sam-
pling interval of 15 min. The period is from October 1998 to September 2005 for25

Bellever, Halsewater, and Bishop Hull. Data from the HYREX (Hydrological Radar Ex-
periment) project funded by the NERC (Natural Environment Research Council) are
used for the Brue catchment from September 1993 to May 2000. All the data are
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downsampled into other sequences with time intervals of 30 min, 45 min, 60 min, 90 min
and 120 min. Daily potential evaporation data are obtained from the MOSES (Met Of-
fice Surface Exchange Scheme) and then disaggregated into the same time steps as
the rainfall.

For each catchment, one-year data are selected for the validation of the calibrated5

parameters of the rainfall-runoff model and the real-time updating scheme. Another
one-year is used for independent evaluation of the model performance (i.e. the fore-
cast accuracy). The rest data of nearly five years are used for calibration. It is widely
accepted that the information quality of the calibration data is of more importance in
deciding the performance of the calibrated model, rather than the data length (Gupta10

and Sorooshian, 1985a,b). According to the conclusions of Liu and Han (2010), a cal-
ibration data set of 12 months contains sufficient information of hydrological variability
to result in a reliable and stable model in the Brue catchment. In order to reduce the
burden of the calculation work and improve the efficiency of data utilisation, in this
study the most appropriate one-year data are selected from the calibration data sets15

for calibration using an effective selection index named the Information Cost Function
(ICF). More detailed information of the ICF index can be found in the work of Liu and
Han (2010).

The 5-yr calibration data are first split into a group of calibration scenarios with the
fixed length of 12 months, using a moving-window of one month. As a result, up to20

50 calibration scenarios are resulted for each catchment. With the one-year validation
data determined beforehand, the ICF index is used to select the most appropriate
10 calibration scenarios with sufficient hydrological information for calibration. Since
the ICF index can only identify the relatively better calibration scenarios rather than
the absolutely best one, the 10 scenarios initially selected by ICF are used to carry25

out the calibration procedure. The best three calibrated models which have the best
performances on the validation data are chosen to perform the real-time forecasting
1 ∼ 12 h ahead using the testing data, an independent 1-yr dataset of the calibration
and validation data. Finally, the forecasting performances of the best three models are
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averaged. This is to present more stable results and in that way the uncertainty of
calibration data can be involved in the final results which are unavoidable in practice.

It should be mentioned that the whole process described above is carried out for
all the four catchments and repeated using data with different time intervals of 15 min,
30 min, 45 min, 60 min, 90 min and 120 min. That is to say, for each data sequence5

with a certain time interval, the calibration and validation procedures are carried out to
construct a forecasting system that is suitable to perform with future data of the same
time interval, and real-time forecasting is made with the constructed system functioning
at the same time step.

3.3 Relation between the optimal data time interval and the forecast lead time10

Analyses and comparisons are based on the forecasting results (i.e. performances of
the forecasting system on the one-year testing data) with lead times of 1 ∼ 6, 9 and
12 h. The lead steps of the forecasting system constructed from data with different time
intervals are shown in Table 6. It can be noticed that for some forecast lead times
such as 1, 2, 3, 4, 5, 9 h, these are no integers for the time intervals of 45 min, 90 min15

and 120 min. Therefore, forecasts are not made for such lead times by the forecasting
systems constructed from the 45 min, 90 min and 120 min data.

The forecasting results for the four catchments are shown in Table 7, evaluated by the
root mean square error (RMSE). Example hydrographs resulted from the best calibra-
tion scenario for the 4h-ahead forecasts using the 30 min data are shown in Fig. 5. By20

examining each row of Table 7, it can be seen that for a forecasting system built on data
with a certain time interval, the RMSE value increases as the increase of the forecast
lead time. This trend is more obviously in Fig. 6 shown by the slopes of curves for the
Nash-Sutcliffe efficiency (NSE) statistics (Nash and Sutcliffe, 1977). For each catch-
ment in the subfigure of Fig. 6, all the six curves revealing the relationship between25

the performance of the forecasting system and the forecast lead time are on decreas-
ing trends. Moreover, when comparing the differences between the six curves, it can
be found as the lead time increases, the distance of the curves becomes increasingly
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larger and finally the curves are clearly distinct from each other. This means that when
the lead time is small, e.g. from 1 to 6 h, the variance of the forecasts resulted from
data with different time intervals is also subtle; while as the increase of the lead time,
e.g. when exceeding 6 h, the variance becomes more and more significant. This proves
that the choice of the time interval does have a considerable impact on the forecast-5

ing results, which is even more prominent with longer forecast lead times than shorter
ones.

The lowest RMSE values for the forecasts made with a certain lead time are high-
lighted in Table 7 to show the optimal choice of the time interval for a certain lead time
forecast. It can be seen that there is an increase of the optimal time interval for all four10

catchments when the lead time increases from 1 to 12 h. To further illustrate this, the
rankings of the time intervals according to the RMSE values are listed in Table 8. An
interesting phenomenon is revealed by the rankings, i.e. the optimal time interval is
replaced gradually by longer ones as the increase of the forecast lead time. Taking the
Brue catchment for example, the optimal intervals is 15 min for 1 h to 3 h-ahead fore-15

casts, while it is replaced by 30 min and 60 min for forecasting made with lead times of
4 and 5 h; later the 90 min interval replaces 60 min to be the best one when the lead
time is longer than 6 h. Moreover, it should be pointed out that for the 15 min interval,
although it is the optimal choice for the 1 h, 2 h and 3 h-ahead forecasting, it appears to
be at the bottom of the ranking when the lead time is 12 h. This again indicates the im-20

portance of selecting the appropriate time interval in real-time forecasting, rather than
simply build the model using data as what they are originally measured.

To make the patterns shown by Table 7 more obvious, the forecasting results are
plotted in three-dimensional coordinates for the four catchments, as shown in Fig. 7.
The x-axis stands for the data time interval (15 min, 30 min, 45 min, 60 min, 90 min and25

120 min); the y-axis represents the eight forecast lead times (1, 2, 3, 4, 5, 6, 9, 12 h);
and the values on the vertical axis z show the forecasting results in RMSE. In each
subfigure, each of the eight suspended curves indicates the variance of the forecast
accuracy with respect to different time intervals for forecasts made with a certain lead

10846

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 10829–10875, 2012

Optimal data time
interval for real-time

hydrological
forecasting

J. Liu and D. Han

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

time. The lowest points of the eight curves (representing the optimal time intervals
which result in the least forecasting errors) are projected onto the X−Y plane and
then connected together. The projection curve (in blue) thus reveals the relationship
between the optimal time interval and the forecast lead time. It can be seen that all the
four projection curves for the four catchments are on increasing trends, which indicates5

the increase of the optimal time interval with the increase of the forecast lead time.
This is consistent with the previous conclusions made by examining the rankings in
Table 8. However, besides the positive relation between the optimal time interval and
the forecast lead time, it can also be noted that the increasing patterns of the projection
curves are quite different for the four catchments. The reason of this various increasing10

pattern will be fully discussed in the next section.

3.4 Implication of the catchment concentration time

By examining the increasing pattern of the projection curves in Fig. 7, it is interest-
ing to note that the sharpest curve is generated by the catchment of Bishop Hull in
Fig. 7d, which has the largest drainage area of 202.0 km2 with the largest LDP (longest15

drainage path) value of 40.21 km (see Table 5). Further, when comparing the projec-
tion curves in Fig. 7a and c produced by Bellever and Brue, it can be found the two
curves start at the same values of the optimal time interval (both at 15 min) when the
lead time is within 2 h, and become stable after the lead time exceeds 6 h. However,
the middle section of the curve in Fig. 7c, which rises to 90 min at the lead time of 6 h,20

is much steeper than that of the curve in Fig. 7a, which only increases to 45 min at
the same lead time. This may also be explained by the concentration times of the two
catchments. From Table 5, it can be seen that Brue has a larger area of 135.2 km2 with
higher indices of LDP and DPLBAR suggesting a longer concentration time compared
to Bellever, which has an area of only 21.5 km2. A further comparison of DPSBAR25

which reflects the average steepness of the catchment can also lead to the same con-
clusion. For the catchment of Brue, DPSBAR shows a lower value representing a lower
catchment steepness, which thus indicates a longer concentration time compared to
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Bellever. All these facts imply that a longer concentration time might result in a sharper
increase of the projection curve; while on the other hand, a flatter curve might be re-
sulted from a catchment with a quicker response.

FEH provides a simple method to calculate the catchment concentration time us-
ing a generalised model of the catchment descriptors derived by regression analysis5

(Houghton-Carr, 1999), as shown by Eq. (11):

Tp = 4.270×DPSBAR−0.35 ×PROPWET−0.80 ×DPLBAR0.54 × (1+URBEXT)−5.77 (11)

where Tp stands for the time-to-peak of the instantaneous unit hydrograph. The advan-
tage of this equation is that it is theoretically independent of the time interval, which
enables an independent evaluation of catchment concentration time other than those10

normally derived by using rainfall-runoff data sampled with a certain time interval (Little-
wood and Croke, 2008). The calculated results of the four catchments are 4.36, 6.81,
8.37 and 8.82 h, respectively for Bellever, Halsewater, Brue and Bishop Hull. This is
in agreement with the above conclusion made by simply examining the values of the
catchment descriptors of LDP, DPLBAR and DPSBAR. It should be mentioned that15

results from the Eq. (11) also can only provide a provisional comparison of the concen-
tration times, which may not be treated as the realistic response times of the catchment
(Houghton-Carr, 1999).

By a further check of the correlations between the concentration times and the in-
creasing patterns of the projection curves in Fig. 7, it can be noticed that the projection20

curve in Fig. 7b for the Halsewater catchment seems to be much flatter than the one
in Fig. 7a produced by Bellever, although Halsewater has a larger catchment area to-
gether with larger values of LDP, DPLBAR and Tp, and a lower average steepness
(DPSBAR), compared to Bellever. Nevertheless, this might be explained to some ex-
tent by another index, ASPVAR (see Tables 4 and 5), which reveals the invariability of25

the slope directions in every grid of the catchment. Halsewater has the largest ASP-
VAR value among the four catchments, which indicates the highest consistency of the
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directions of all catchment grids and thus might result in a better concentration of the
surface and underground flow.

All the above analyses indicate that the concentration time might play a considerable
role in influencing the selection of the optimal time interval when the forecast lead time
is determined. It is known that a steeper, naturally wetter and more urbanised catch-5

ment tends to have a faster response; whilst the larger and longer the catchment is,
the slower the response will be. However, besides the descriptors presented in Table 4
and used in Eq. (11), the concentration time is also affected by many other factors
(Akan, 1989), e.g. the density of the watercourse, the consistency of the flow direc-
tions, the soil infiltration conditions, the rainfall intensity and the storm path, etc. As10

a consequence, although it can be deduced from the above analyses that the longer
the concentration time is, the steeper the projection curve tends to be, the various in-
fluencing factors make it difficult to figure out how exactly the selection of the optimal
time interval is affected by the concentration time. And it is far too early to say that the
concentration time is definitely the principal factor determining the increasing pattern15

of the optimal time interval with respect to the increase of the forecast lead time. More
research with various catchments bearing different response characteristics is needed
to explore the underlying factors and their functions in determining the optimal time
interval.

4 Discussion: hypothetical pattern for the selection of the optimal data20

time interval

Based on the analyses of the forecasting results in the case studies, it is interesting
to note that the conclusions from the four catchments are consistent with the findings
in modern control engineering as mentioned in the Introduction part, i.e. the best fore-
casts with a certain lead time are not always produced by the finest time interval or25

the largest one. Conversely, in hydrological forecasting, the optimal choice of the time
interval is found to be increased with the extension of the forecast lead time. Following
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this, a generalised pattern for the selection of the optimal time interval in real-time hy-
drological forecasting can be proposed, as shown in Fig. 8, in similar three-dimensional
coordinates as that in Fig. 7.

In Fig. 8, the axes of X , Y and Z represent the time interval, the forecast lead time
and the forecasting error in the three subfigures. Two U-shape curves are used to5

describe the relations between the forecasting error and the time interval in two cases
when forecasts are made with a small forecast lead time and a long lead time, as
shown, respectively in Fig. 8a and b. The lowest points of the two U-shape curves,
(X1,Z1) and (XN ,ZN ), thus represent the optimal choices of the time interval in the two
cases. As concluded from the case studies, with the increase of the forecast lead time,10

the forecasting accuracy is decreasing and the optimal time interval is on an increase.
Consequently, the two lowest points have the relations of Z1 < ZN and X1 < XN . This
trend is more obvious when the two curves are represented in the three-dimensional
coordinates in Fig. 8c. A connection of the projections of the two lowest points on the
X−Y plane (i.e. the red dotted line) reveals a positive relation between the optimal15

time interval and the forecast lead time, which is, the longer the lead time is, the larger
should the optimal time interval be. Although this projection curve is found to be positive
by the case studies, the exact increasing pattern cannot be easily determined. The
increasing rate can be either a constant or an accelerating/ decelerating value, or even
a non-monotonic rate, which is found to be highly related to the characteristics of the20

catchment, such as the concentration time as discussed in the case studies.
It should be emphasised that this hypothetical pattern of the optimal time interval

is especially proposed for real-time forecasting, rather than simulation with only the
rainfall-runoff model. When making forecasts using either the data-driven model (e.g.
ANN and TF model, etc.) or the physically-based rainfall-runoff model together with25

a real-time updating scheme, an extrapolation is made based on the historical data to
the future. Too dense data will result in a worse extrapolation further into the future,
while too sparse data can also make the extrapolation fail in very near future. This is
why in substance the data time interval makes differences to the forecasting results.
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On the other hand, as discussed by using the wavelet decomposition in Sect. 2.2, for
pure simulations with only the rainfall-runoff model, the simulated flow may not vary
too much when the model is driven by rainfall data with different time intervals. This is
true to some extent due to the low-pass filtering function of the rainfall-runoff model,
which filtering out the high-frequency variances of the rainfall inputs with different time5

intervals. However, in real-time forecasting, the involvement of the flow data as another
input of the modelling system by the updating scheme (e.g. the ARMA model) makes
the case very different. This may to some extent explain why the optimal time interval
exists for real-time forecasting but not in the case of pure simulation (at least for the
commonly-used time intervals as those examined in this study). Nevertheless, it is10

believed that with an infinitely small or large time interval, the simulation results can
also get deteriorated due to the involvement of measurement noises or the lack of an
efficient representation of the original signals of rainfall.

The forecasting results in the case studies are to some extent subject to the spe-
cific structure of the forecasting system (i.e. the PDM model integrated with the ARMA15

updating scheme) and the characteristics of the selected catchments. Therefore it is
important that more case studies are explored by in different geographical and climatic
regions with various forecasting systems, i.e. various combinations of the hydrological
models and the real-time updating schemes. In that case the proposed hypothetical
pattern can be further verified, improved or on the contrary refuted, e.g. is the pro-20

posed curve universal or only applicable to a certain types of catchments or forecast-
ing systems? Besides these, another question that might be raised is when different
error measurement statistics are used, will the hypothetical pattern remain the same?
Hall (2001) addressed the error measurement issue and analysed 10 commonly used
indices to evaluate the goodness-of-fit of a model to a set of observations, and it was25

found that not a single error measurement method was perfect. Here we chose the
two square error based statistics, NSE and RMSE, in this study since they are the
most widely used error measurements in hydrological forecasting. However, other error
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evaluation methods are worth trying, to testify whether the hypothetical pattern is lim-
ited to a certain type of error statistics or not.

5 Conclusions

This paper explores the time interval of the model input data and its impact on the
hydrological forecasting system, consisted of a conceptual rainfall-runoff model and5

a real-time updating scheme. Modern telemetry system is able to measure and record
hydrological variables with increasingly higher sampling rates, e.g. nowadays rainfall
data can be collected once a second by the optical rain gauge. An important problem
deserves attention from hydrologists would be what suitable time interval should be
used, i.e. should our hydrological forecasting system take in rainfall and flow data mea-10

sured in seconds? Such a problem has long been recognised in control engineering
(albeit mainly in linear systems), but is a largely ignored topic in operational hydrolog-
ical forecasting area. In the beginning of this paper, discrete wavelet decomposition
is used to examine the spectral variances of rainfall-runoff data with different time in-
tervals in the frequency domain. It is found that the rainfall signal has energy spread15

more widely than the flow; but due to the low-pass filtering function of the rainfall-runoff
model, the high-frequency variances of the rainfall signal with different time intervals
are not likely to be transformed into the flow. This indicates that higher sampling rates
may not always help improve the results of rainfall-runoff modelling. To further investi-
gate the impact of time interval in real-time forecasting, which is more complicated by20

involving the flow data as the system inputs by the real-time updating scheme, case
studies are carried out in four catchments with different sizes and concentration times.
Main findings from the case studies can be concluded as: (1) the data time interval
does have a considerable impact on the performance of the forecasting system, which
is more prominent to longer lead times than shorter ones; (2) there exists an optimal25

time interval for forecasts made with a certain lead time, and the length of the optimal
time interval is increasing as the increase of the forecast lead time; (3) the positive
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relation between the optimal time interval and the forecast lead time can show various
patterns, which is found to be highly related to the catchment concentration time; and
(4) the longer the concentration time is, the more sharply the optimal time interval tends
to increase as the increase of the forecast lead time. Finally, according to the results of
the case studies, a hypothetical pattern is proposed in three-dimensional coordinates5

for the selection of the optimal time interval in real-time hydrological forecasting.
It should be recognised that the data time interval issue addressed in this study

has not yet been completely solved by the control engineers, albeit they have many
decades of experience with this problem. According to Ljung (1999), it is impossible to
deduce a mathematical expression for the identification of the optimal time interval for10

highly nonlinear systems. Only for very simple models, e.g. the Gauss-Markov process,
the problem may be addressed by a deductive approach. Hydrological models together
with the real-time updating schemes are highly nonlinear and diverse, which militate
a deductive derivation and favour an inductive approach. Although nowadays most
operational hydrological forecasting systems still have low data sampling rates (daily15

or hourly), the trend in the future is that higher sampling rates will become widespread
and there is an urgent need for both academic and practising hydrologists to realise
the significance of the time interval issue. The main purpose of this paper is to draw
attentions of hydrologists to this problem at an early stage when they are dealing with
the “data-rich environment”, rather than providing a general mathematical formula in20

selecting the most appropriate data time interval. Therefore, the best way to identify the
optimal time interval is to explore various forecasting models with different catchments
and eventually a more general pattern applicable to a wide range of cases could be
found.
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Table 1. Frequency bands of the wavelet decomposition levels for data with a sampling interval
of 15 min.

Level j 2−j−1 2−j Sampling Frequency band
rate fs (Hz) ∆F (×10−6 Hz)

1 0.25 0.5 1/900 s [278, 556]
2 0.125 0.25 1/900 s [139, 278]
3 0.0625 0.125 1/900 s [69, 139]
4 0.03125 0.0625 1/900 s [35, 69]
5 0.015625 0.03125 1/900 s [17, 35]
6 0.007813 0.015625 1/900 s [9, 17]

Note: For a certain decomposition level of the wavelet analysis, the detail contains
the components of the original signal within the relevant frequency band, while the
approximation represents the components below the frequency band.
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Table 2. Energy distributions in different frequency bands for one-year rainfall-runoff observa-
tions with different sampling intervals of 15 min, 30 min, 45 min, 60 min, 90 min and 120 min.

Details Total
Frequency band Approx. Level 6 Level 5 Level 4 Level 3 Level 2 Level 1 energy
(10−6 Hz) [0, 9] [9, 17] [17, 35] [35, 69] [69, 139] [139, 278] [278, 566] [0, 566]

Flow 15 min 356 196 18 422 6848 543 39 3 1 382 052
30 min 356 176 18 375 6795 529 35 2 1 381 913
45 min 356 115 18 298 6705 504 29 2 1 381 654
60 min 356 026 18 175 6573 471 22 2 2 381 271
90 min 355 880 17 892 6253 395 18 7 2 380 447
120 min 355 718 17 477 5804 311 35 6 2 379 353

Rain 15 min 112 56 71 80 86 78 43 526
30 min 112 56 71 77 73 41 30 460
45 min 112 56 70 71 57 33 16 415
60 min 112 55 68 66 50 15 13 379
90 min 112 55 63 50 29 8 10 327
120 min 112 54 59 42 18 7 7 299

Note: The observed data are taken from the Brue catchment of the UK with a sampling interval of 15 min. Four-year
rainfall-runoff data (19 September 1993–19 July 1997) are used to form 47 sets of one-year data with a moving
window of one month. With the data collection methods of streamflow and rainfall described by Eqs. (1) and (2), each
data set is downsampled into another five series with time intervals of 30 min, 45 min, 60 min, 90 min and 120 min. For
a comparable analysis and a convenient calculation of the wavelet decomposition, extra data are added into the
30 min, 45 min, 60 min, 90 min and 120 min data series in order to make them have the same amount of data as the
15 min series, by either using a simple linear interpolation for the streamflow series or interpolating constant values for
the rainfall. In that case, all the data series have the same sampling interval of 15 min, thus a sampling frequency of
1/900 Hz. The 47 pairs of data series of streamflow and rainfall with a certain time interval are used to perform the
wavelet decomposition on 6 levels, which refer to the frequency bands of [278, 566] × 10−6 Hz, [139, 278] × 10−6 Hz,
[69, 139] × 10−6 Hz, [35, 69] × 10−6 Hz, [17, 35] × 10−6 Hz and [9, 17] × 10−6 Hz from level 1 to level 6. Finally, the
decomposition results are averaged for the 47 pairs of data series with a certain time interval and the energy values
are calculated for each frequency band based on the wavelet coefficients.
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Table 3. Parameters in the PDM model (Moore, 2007).

Parameter Unit Suggested Description
value

fc none 1 Rainfall factor
τd h 0 Time delay
cmin, cmax mm 0 Minimum and maximum soil moisture store capacity
b none 0.5 Exponent of the soil moisture distribution
be none 2.5 Exponent in the actual evaporation function
kg h mmbg−1 105 Groundwater recharge time constant
bg none 1.5 Exponent of the groundwater recharge function
St mm 0 Soil tension storage capacity in the recharge function
k1, k2 h 1–20 Time constants of the surface routing
kb h mm2 5–100 Time constant of the groundwater storage routing
qc m3 s−1 0 Constant flow representing returns/abstractions

10862

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 10829–10875, 2012

Optimal data time
interval for real-time

hydrological
forecasting

J. Liu and D. Han

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 4. Definitions of the FEH catchment descriptors (Bayliss, 1999).

Catchment Unit Definitions
descriptors

AREA km2 Catchment area
ALBAR m Mean altitude of the catchment above the sea level
LDP km Longest drainage path, defined by recording the greatest distance from

a catchment node (50 m gird) to the catchment outlet
DPLBAR km Mean drainage path length, calculated as the mean distances between

each catchment node and the outlet
DPSBAR m km−1 Mean drainage path slope, calculated as the mean of all the inter-nodal

slopes which characterises the overall steepness of the catchment
ASPVAR none Invariability of the inter-nodal slope directions, where values near to

zero indicate there is considerable variability in the aspect of catchment
slopes. Values approaching one indicate that catchment slopes tend to
face one particular direction.

SAAR mm Standard average annual rainfall (1961–1990)
QMED m3 s Median annual maximum flood (1961–2008)
PROPWET none Proportion of time when SMD (Soil Moisture Deficit) was equal to or

below 6 mm during the period 1961–1990
SPRHOST % Standard percentage runoff derived by using the HOST (Hydrology Of

Soil Types) soil classification
URBEXT none Extent of urban and suburban land cover (1990)
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Table 5. Flow gauge locations and values of the FEH catchment descriptors for the four catch-
ments in the case studies.

(A) (B) (C) (D)
Bellever Halsewater Brue Bishop Hull

Flow gauge Latitude 50.582◦ N 51.022◦ N 51.075◦ N 51.019◦ N
location Longitude 3.898◦ W 3.133◦ W 2.587◦ W 3.134◦ W
Catchment AREA (km2) 21.5 87.8 135.2 202.0
descriptors ALBAR (m) 459 109 104 144

LDP (km) 13.46 19.40 22.61 40.21
DPLBAR (km) 6.28 9.57 13.62 17.75
DPSBAR (m km−1) 94.9 85.7 71.1 98.0
ASPVAR 0.25 0.30 0.16 0.17
SAAR (mm) 2095 851 857 964
QMED (m3 s−1) 37.4 12.2 36.2 43.7
PROPWET 0.46 0.35 0.37 0.36
SPRHOST (%) 47.5 30.6 36.4 32.9
URBEXT 0 0.006 0.007 0.007
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Table 6. Lead steps of the forecasting system with different time intervals.

1 h 2 h 3 h 4 h 5 h 6 h 9 h 12 h
(60 min) (120 min) (180 min) (240 min) (300 min) (360 min) (540 min) (720 min)

15 min 4 8 12 16 20 24 36 48
30 min 2 4 6 8 10 12 18 24
45 min − − 4 − − 8 12 16
60 min 1 2 3 4 5 6 9 12
90 min − − 2 − − 4 6 8
120 min − 1 − 2 − 3 − 6
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Table 7. Forecasting results shown in RMSE (m3 s−1) for the four catchments using data with
different time intervals. The lowest RMSE value for a certain lead time forecasting is highlighted
to show the optimal time interval.

Forecast lead time (h)
1 2 3 4 5 6 9 12

(A) Bellever (21.5 km2)
15 min 0.2099 0.4870 0.7232 0.8915 1.0039 1.0754 1.1530 1.1593
30 min 0.2359 0.4851 0.6699 0.7955 0.8801 0.9378 1.0200 1.0448
45 min − − 0.6754 − − 0.9218 0.9981 1.0231
60 min 0.2938 0.5359 0.7073 0.8175 0.8907 0.9401 1.0143 1.0395
90 min − − 0.7942 − − 1.0489 1.1083 1.1260
120 min − 0.5833 − 0.9042 − 1.0189 − 1.0832

(B) Halsewater (87.8 km2)
15 min 0.0555 0.1177 0.1859 0.2516 0.3111 0.3638 0.4863 0.5672
30 min 0.0570 0.1211 0.1883 0.2510 0.3061 0.3535 0.4585 0.5238
45 min − − 0.1896 − − 0.3626 0.4827 0.5635
60 min 0.0605 0.1243 0.1930 0.2578 0.3161 0.3668 0.4842 0.5623
90 min − − 0.1905 − − 0.3644 0.4802 0.5568
120 min − 0.1246 − 0.2600 − 0.3668 − 0.5441

(C) Brue (135.2 km2)
15 min 0.2641 0.7190 1.1873 1.5767 1.8617 2.0583 2.3422 2.3939
30 min 0.3172 0.7824 1.2185 1.5671 1.8263 2.0157 2.3155 2.3867
45 min − − 1.2121 − − 1.9803 2.2150 2.2654
60 min 0.3208 0.8044 1.2549 1.5896 1.8114 1.9554 2.1539 2.1984
90 min − − 1.2584 − − 1.9229 2.0934 2.1395
120 min − 0.9306 − 1.7574 − 2.1469 − 2.3157

(D) Bishop Hull (202.0 km2)
15 min 0.1496 0.3849 0.6502 0.9099 1.1468 1.3567 1.8314 2.1099
30 min 0.1447 0.3677 0.6210 0.8713 1.1007 1.3048 1.7792 2.0676
45 min − − 0.7068 − − 1.4327 1.8736 2.1137
60 min 0.1644 0.4088 0.6783 0.9291 1.1436 1.3213 1.6848 1.8869
90 min − − 0.7190 − − 1.3865 1.7814 2.0101
120 min − 0.4576 − 0.9703 − 1.3422 − 1.8412
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Table 8. Rankings of different time intervals according to the forecasting results (RMSE) with
a certain lead time (from the lowest to the highest RMSE). The optimal time intervals (ranked
as the 1st) are highlighted.

1 h 2 h 3 h 4 h 5 h 6 h 9 h 12 h

(A) Bellever (21.5 km2)
1st 15 30 30 30 30 45 45 45
2nd 30 15 45 60 60 30 60 60
3rd 60 60 60 15 15 60 30 30
4th − 120 15 120 − 90 90 120
5th − − 90 − − 120 15 90
6th − − − − − 15 − 15
optimal 15 30 30 30 30 45 45 45

(B) Halsewater (87.8 km2)
1st 15 15 15 30 30 30 30 30
2nd 30 30 30 15 15 45 90 120
3rd 60 60 45 60 60 15 45 90
4th − 120 60 120 − 90 60 60
5th − − 90 − − 60 15 45
6th − − − − − 120 − 15
optimal 15 15 15 30 30 30 30 30

(C) Brue (135.2 km2)
1st 15 15 15 30 60 90 90 90
2nd 30 30 45 15 30 60 60 60
3rd 60 60 30 60 15 45 45 45
4th − 120 60 120 − 30 30 120
5th − − 90 − − 15 15 30
6th − − − − − 120 − 15
optimal 15 15 15 30 60 90 90 90

(D) Bishop Hull (202.0 km2)
1st 30 30 30 30 30 30 60 120
2nd 15 15 15 15 60 60 30 60
3rd 60 60 60 60 15 120 90 90
4th − 120 45 120 − 15 15 30
5th − − 90 − − 90 45 15
6th − − − − − 45 − 45
optimal 30 30 30 30 30 30 60 120
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Figure 1 Observed rainfall-runoff data with different sampling intervals of (a) 15min, (b) 

30min, (c) 60min and (d) 120min. 

 
 
 
 
 
 
 
 
 

Fig. 1. Observed rainfall-runoff data with different sampling intervals of (a) 15 min, (b) 30 min,
(c) 60 min and (d) 120 min.
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Figure 2 Process of the discrete wavelet decomposition following the Mallat decomposition 

algorithm. X[n] is a discrete signal with n samples, passing though a low-pass filter G and a 
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Figure 3 Conceptual structure of the PDM model. The 13 model parameters to be calibrated 

are in the brackets. 

 

 

 

 

 

 

 

Fig. 2. Process of the discrete wavelet decomposition following the Mallat decomposition algo-
rithm. X (n) is a discrete signal with n samples, passing though a low-pass filter G and a high-
pass filter H with impulse responses of G(n) and H(n), respectively. A1, A2, A3 and D1, D2, D3
are the decomposed approximations and details on level j = 1, 2, 3, ...
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Figure 3 Conceptual structure of the PDM model. The 13 model parameters to be calibrated 

are in the brackets. 

 

 

 

 

 

 

 

Fig. 3. Conceptual structure of the PDM model. The 13 model parameters to be calibrated are
in the brackets.

10870

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 10829–10875, 2012

Optimal data time
interval for real-time

hydrological
forecasting

J. Liu and D. Han

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 36

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Locations and configurations of the four UK catchments in case studies with river 

networks and the flow gauging stations at the catchment outlets: (a) Bellever, (b) Halsewater, 

(c) Brue and (d) Bishop_Hull. 
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Fig. 4. Locations and configurations of the four UK catchments in case studies with river net-
works and the flow gauging stations at the catchment outlets: (a) Bellever, (b) Halsewater,
(c) Brue and (d) Bishop Hull.

10871

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 10829–10875, 2012

Optimal data time
interval for real-time

hydrological
forecasting

J. Liu and D. Han

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 37

 

(a) Bellever
      (Nov 2001~Apr 2002)

0

20

40

60
Fl

ow
 (m

3 /s
)

0

6

12

18

R
ai

nf
al

l (
m

m
/3

0m
in

)

Observed
Forecasted

 

(b) Halsewater 
      (Nov 2001~Apr 2002)

0

20

40

60

Fl
ow

 (m
3 /s

)

0

6

12

18

R
ai

nf
al

l (
m

m
/3

0m
in

)

Observed
Forecasted

 

(d) Bishop_Hull
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(c) Brue
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Figure 5 Six-month length hydrographs of the observed rainfall-runoff data versus the best 

results of the 4-hr-ahead forecasts using the 30 min data. The NSE values calculated between 

the observed and the forecasted flows are 0.8932, 0.9544, 0.9167 and 0.9420 respectively for 

the four catchments in subfigures (a), (b), (c) and (d). 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 5. Six-month length hydrographs of the observed rainfall-runoff data versus the best results
of the 4 h-ahead forecasts using the 30 min data. The NSE values calculated between the
observed and the forecasted flows are 0.8932, 0.9544, 0.9167 and 0.9420, respectively for the
four catchments in panels (a), (b), (c) and (d).

10872

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 10829–10875, 2012

Optimal data time
interval for real-time

hydrological
forecasting

J. Liu and D. Han

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 38

(a)

0.72

0.79

0.86

0.93

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12

Forecast lead time (hr)

N
S

E
15min

30min

45min

60min

90min

120min

(b)

0.72

0.79

0.86

0.93

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12

Forecast lead time (hr)

N
S

E 15min

30min
45min

60min

90min

120min

 

(c)

0.72

0.79

0.86

0.93

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12

Forecast lead time (hr)

N
S

E 15min

30min

45min

60min
90min

120min

(d)

0.65

0.72

0.79

0.86

0.93

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12

Forecast lead time (hr)

N
S

E 15min

30min

45min

60min
90min

120min

 
Figure 6 Decreasing performance of the forecasting system constructed using data with 

different time intervals as the increase of the forecast lead time, for the catchments of 

Bellever, Halsewater, Brue and Bishop_Hull, respectively in (a), (b), (c) and (d). 

 

 

 

 

 

 

Fig. 6. Decreasing performance of the forecasting system constructed using data with differ-
ent time intervals as the increase of the forecast lead time, for the catchments of Bellever,
Halsewater, Brue and Bishop Hull, respectively in (a), (b), (c) and (d).

10873

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/10829/2012/hessd-9-10829-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 10829–10875, 2012

Optimal data time
interval for real-time

hydrological
forecasting

J. Liu and D. Han

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 39

0
15

30
45

60

90

120

0123456
9

12
0.00

0.25

0.50

0.75

1.00

1.25

1.50

X

Y

Z

0
15

30
45

60

90

120

0123456
9

12
0.00

0.20

0.40

0.60

0.80

X

Y

Z

 

0
15

30
45

60

90

120

0123456
9

12
0.0

0.5

1.0

1.5

2.0

2.5

X

Y

Z

0
15

30
45

60

90

120

0123456
9

12
0.0

0.5

1.0

1.5

2.0

2.5

X

Y

Z

 
Figure 7 Forecasting results in three-dimensional coordinates for the four catchments, of 

Bellever, Halsewater, Brue and Bishop_Hull, respectively in subfigures (a), (b), (c) and (d).  
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Fig. 7. Forecasting results in three-dimensional coordinates for the four catchments, of Bellever,
Halsewater, Brue and Bishop Hull, respectively in panels (a), (b), (c) and (d).
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Figure 8 Hypothetical pattern for the general impact of data time interval on forecasting 

accuracy and the selection of the optimal time interval in real-time hydrological forecasting. 

The axes of X, Y and Z respectively stand for the time interval of the model input data, the 

forecast lead time and the forecasting error. 
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Fig. 8. Hypothetical pattern for the general impact of data time interval on forecasting accuracy
and the selection of the optimal time interval in real-time hydrological forecasting. The axes of
X , Y and Z , respectively stand for the time interval of the model input data, the forecast lead
time and the forecasting error.
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