
Response to the comments by Reviewers 

We appreciate the efforts and comments the reviewers have made in the reviewing process of our 
paper. Thanks for the opportunity to revise our paper. As the reviewer suggested, we have 
removed R2 from the objective function. Also we have corrected Equation (20) for the water 
balance error (WBE). We hope these changes have adequately addressed the reviewer’s concern. 
Supplements include revised manuscript and response to the comments by reviewers. 

 
 

Comments 

The changes you have made to your manuscript based on reviewer comments have been well 
received by the reviewer. Only some remarks are being made: first is to remove R2 as an objective 
function: please consider whether you wish to do so or not. If you would like to maintain its 
inclusion, then please add some concerns with respect to this objective function. 

Response: 

We agree with the reviewer. We have removed R2 from the objective function. The revision has 
been made. We also update our paper such as descriptions of results and tables according to this 
change. 

 

--Line 879-881. 
Table 3 Summary results of the model calibration under different climatic conditions (i.e. dry and 
wet periods). 

Indicator 
SIMHYD 

calibrated on dry 
period 

SIMHYD 
calibrated on wet 

period 

DWBM 
calibrated on dry 

period 

DWBM 
calibrated on wet 

period 
25th NSE 0.84 0.85 0.71 0.77 

Median NSE 0.70 0.77 0.58 0.66 
75th NSE 0.61 0.68 0.43 0.54 

Average NSE 0.70 0.76 0.57 0.65 
25th d1 0.77 0.79 0.71 0.75 

Median d1 0.72 0.76 0.67 0.71 
75th d1 0.70 0.74 0.61 0.68 

Average d1 0.73 0.76 0.65 0.71 

25th WBE 22 16 25 24 

Median WBE 13 8 15 12 

75th WBE 6 4 9 5 

Average WBE 14 11 22 17 



 

--Line 894-896. 
Table 4 Summary results of the model validation when calibrated under different climatic 
conditions. 

Model Indicator dry/dry dry/wet wet/dry wet/wet 
25th NSE 0.72 0.74 0.68 0.77 

Median NSE 0.55 0.64 0.51 0.69 
75th NSE 0.42 0.44 0.41 0.55 

Average NSE 0.57 0.61 0.54 0.66 
25th d1 0.74 0.78 0.74 0.78 

Median d1 0.71 0.74 0.70 0.75 
75th d1 0.66 0.70 0.63 0.72 

Average d1 0.69 0.73 0.68 0.74 
25th WBE 34 30 39 23 

Median WBE 20 19 28 13 
75th WBE 14 8 16 7 

SIMHYD 

Average WBE 24 21 29 17 
25th NSE 0.56 0.65 0.51 0.72 

Median NSE 0.46 0.48 0.45 0.61 
75th NSE 0.34 0.35 0.30 0.42 

Average NSE 0.48 0.52 0.45 0.59 
25th d1 0.69 0.73 0.68 0.74 

Median d1 0.65 0.69 0.63 0.70 
75th d1 0.58 0.64 0.56 0.66 

Average d1 0.62 0.68 0.61 0.69 
25th WBE 35 29 53 25 

Median WBE 22 20 33 18 
75th WBE 15 12 18 11 

DWBM 

Average WBE 27 23 36 19 

 

 

Comments 

Second, please check upon equation 20, as now, indeed, the formula does not refer to the absolute 
water balance error (MAE) but to the relative mean absolute error: or equation 20 is adjusted 
appropriately, or, the MAE is used throughout the remainder of the text. 

Response: 

We have corrected Equation (20) for the water balance error (WBE). The revision has been made. 
We also update our paper such as descriptions of results and figures according to this change. 

 



--Line 352. 
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--Line 943-946. 
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Figure 5 (a) Percentage of model calibration tests with a NSE value greater than or equal to a 
given NSE value. Similarly, Figure 5 (b-c) are corresponding plots of the modified index of 
agreement (d1) and the water balance error (WBE), respectively. 



--Line 947-953. 
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Figures 6 (a) and (d) Percentage of model validation tests with a NSE value greater than or equal 
to a given NSE value. Similarly, Figures 6 (b) and (e), Figures 6 (c) and (f) are corresponding 
plots of the modified index of agreement (d1), the water balance error (WBE), respectively. 
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Abstract: This paper investigates issues involved in calibrating hydrological models 24 

against observed data when the aim of the modelling is to predict future runoff under 25 

different climatic conditions. To achieve this objective, we tested two hydrological 26 

models, DWBM and SIMHYD, using data from 30 unimpaired catchments in 27 

Australia which had at least 60 years of daily precipitation, potential 28 

evapotranspiration (PET), and streamflow data. Nash–Sutcliffe efficiency (NSE), 29 

modified index of agreement (d1) and water balance error (WBE) were used as 30 

performance criteria. We used a differential split-sample test to split up the data into 31 

120 sub-periods and 4 different climatic sub-periods in order to assess how well the 32 

calibrated model could be transferred different periods. For each catchment, the 33 

models were calibrated for one sub-period and validated on the other three. Monte 34 

Carlo simulation was used to explore parameter stability compared to historic climatic 35 

variability. The chi-square test was used to measure the relationship between the 36 

distribution of the parameters and hydroclimatic variability. The results showed that 37 

the performance of the two hydrological models differed and depended on the model 38 

calibration. We found that if a hydrological model is set up to simulate runoff for a 39 

wet climate scenario then it should be calibrated on a wet segment of the historic 40 

record, and similarly a dry segment should be used for a dry climate scenario. The 41 

Monte Carlo simulation provides an effective and pragmatic approach to explore 42 

uncertainty and equifinality in hydrological model parameters. Some parameters of 43 

the hydrological models are shown to be significantly more sensitive to the choice of 44 

calibration periods. Our findings support the idea that when using conceptual 45 

hydrological models to assess future climate change impacts, a differential 46 

split-sample test and Monte Carlo simulation should be used to quantify uncertainties 47 

due to parameter instability and non-uniqueness.  48 
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 49 

KEY WORDS: Hydrological models; nonstationarity; calibration; validation; climate 50 

change 51 

 52 

1 Introduction 53 

Climate change caused by increasing atmospheric concentration of greenhouse gases 54 

may have significant effects on the hydrological cycle and water availability, hence 55 

affecting agriculture, forestry, and other industries (Rind et al., 1992; IPCC, 2007). 56 

Changes in the hydrological cycle may mean more floods and droughts, and increased 57 

pressure on water supply and irrigation systems. It is important for us to be able to 58 

estimate the potential impact of climate change on water resources and develop 59 

sustainable management strategies. One of the challenges in predicting hydrological 60 

response to climate change is the issue of hydrological nonstationarity (Milly et al., 61 

2008). There are numerous factors that can affect hydrological stationarity and these 62 

include vegetation responses to elevated CO2, changes in land use and rainfall 63 

characteristics. It is crucial to improve our understanding of the effect of 64 

nonstationarity on hydrological assessments of climate change. 65 

 66 

Hydrological models are important tools for predicting the impact of climate change 67 

on future water resources and associated socioeconomic impacts. A number of models 68 

have been used to evaluate hydrological effects of climate change (Rind et al., 1992). 69 

Predicting the hydrological impacts of climate change involves two key steps: 70 

downscaling the outputs from global climate models (GCMs) and then running 71 

hydrological models. At present, outputs from different GCMs have been used to 72 
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drive hydrological models for predicting streamflow under a changed climate (Chiew 73 

et al., 2009). There are many factors that can affect the accuracy of a rainfall-runoff 74 

model in predicting the hydrological responses to climate change, including the 75 

particular hydrological model chosen, the GCM used, the optimisation technique 76 

employed, and the calibration period of the model. Most researchers usually use an 77 

ensemble of these techniques to minimise the uncertainty in predicting climate change 78 

impacts. For instance, Chiew et al. (1995) used results from 5 separate GCM 79 

experiments and reported that, in certain parts of Australia, the GCMs did not even 80 

agree on the direction of change in rainfall (i.e. increasing or decreasing rainfall). 81 

Boorman and Sefton. (1997) evaluated effects of climate change on mean runoff, 82 

flood magnitude, and low flow for 3 catchments in UK using 2 conceptual 83 

rainfall–runoff models. In their study, they considered 2 climate scenarios and 8 84 

climate sensitivity tests. Minville et al. (2008) produced an uncertainty envelope of 85 

future hydrological variables by considering 10 equally weighted climate projections 86 

from a combination of 5 GCMs and 2 greenhouse gas emission scenarios. Monomoy 87 

and O’Connor (2007) used 6 automatic optimisation techniques to calibrate a 88 

conceptual rainfall–runoff model, and there have been a number of more recent 89 

studies for estimating the impact of climate change on hydrological processes (Chiew 90 

et al., 2009, Vaze et al., 2010, Boyer et al., 2010). An implicit assumption in all these 91 

studies is that rainfall–runoff models calibrated over the historical period are valid for 92 

predicting the future hydrological regime under a changed climate and this relates 93 

directly to the assumption of hydrological stationarity. However, little has been 94 

carried out to test the validity of this assumption. 95 

 96 



 5

Calibration of hydrological models generally involves optimizing model parameters to 97 

match measured streamflow using observed rainfall as input. Performance of the 98 

model is usually tested using a simple spilt-sample test, i.e. the model is calibrated for 99 

one period of the record and tested for another period. The simple split-sample test 100 

may be sufficient for applications where hydroclimatic conditions between the 101 

calibration period and validation period are similar. However, when the model needs 102 

to be applied to simulate streamflow from periods with different conditions from 103 

those in the calibration periods, a more powerful test is required (Klemes, 1986, Xu, 104 

1999, Seibert, 2003). In a recent paper, Andreassian et al (2009) used crash test to 105 

advocate for more comprehensive model testing in hydrology. For predicting the 106 

impact of climate change on streamflow, the input rainfall series are varied according 107 

to an assumed future climate scenario and this often means different climatic 108 

conditions. But is it appropriate to use these models for future climatic conditions 109 

when rainfall–runoff relations could be very different to those experienced 110 

historically?  111 

 112 

This paper investigates the transferability of hydrological models under nonstationary 113 

climatic conditions. We compare results obtained with different hydrological models 114 

calibrated under different climatic conditions. The paper first presents two 115 

hydrological models chosen for this study – the Dynamic Water Balance Model 116 

(DWBM) and the SIMHYD model – and then describes the data used to calibrate 117 

them. We describe different methods of applying the data, including a differential 118 

split-sample test, a Monte Carlo simulation, and a performance criterion. Finally, we 119 

analyse the performance of the models under different calibration conditions and 120 

discuss the optimal parameters for each. 121 
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 122 

2 Description of Hydrological Models and Data 123 

Two lumped hydrological models with daily inputs were chosen for this study: the 124 

Dynamic Water Balance Model (DWBM) (Zhang et al., 2008) and the SIMHYD 125 

model (Chiew et al., 2002), and detailed description of the two models is presented 126 

below.  127 

 128 

2.1 The Dynamic Water Balance Model (DWBM) 129 

The DWBM model used in this study was developed by Zhang et al. (2008). It is a 130 

lumped conceptual water balance model with two stores: a near surface root-zone 131 

store and a deeper zone store (Figure 1). The model is based on Budyko’s concept of 132 

water availability and atmospheric demand (Budyko, 1958) or the concept of “limits 133 

and controls” (Calder, 1998). Fundamental to this model is a functional form that 134 

represents a smooth transition between supply and demand limits (Fu, 1981):  135 
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where w is a model parameter ranging between 1 and ∞.  For the purpose of model 137 

calibration, we define α  = 1-1/w so that α varies between 0 and 1. This definition also 138 

conveniently associates an increase in α with an increase in evapotranspiration 139 

efficiency. P is rainfall and E0 is potential evapotranspiration at mean annual 140 

timescale. More details of this mean annual water balance model are given in Zhang 141 

et al. (2004) and Zhang et al. (2008). 142 

It is assumed that rainfall P(t) in time step t will be partitioned into direct runoff Qd(t) 143 

and catchment rainfall retention:  144 
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)()()( tXtQtP d +=                                               (2) 145 

where X(t) is called catchment rainfall retention and is the amount of rainfall retained 146 

by the catchment for evapotranspiration ET(t), change in soil moisture storage 147 

S(t)-S(t-1) and recharge R(t). 148 

The demand limit for X(t) is the sum of available storage capacity (Smax–S(t-1)) and 149 

potential evapotranspiration (E0(t)) and is denoted as X0(t), while the supply limit can 150 

be considered as rainfall P(t). Following a similar argument to Budyko (1958), we can 151 

postulate that: 152 

∞→→ )(/)(1)(/)( 0 tPtXastPtX  (very dry conditions)           (3) 153 

0)(/)()()( 00 →→ tPtXastXtX  (very wet conditions)            (4) 154 

The catchment rainfall retention X(t) can be calculated as:  155 

( ) ( )1)(
)( ,)( 0 αtP

tXFtPtX =                                             (5) 156 

where F( ) is Fu’s curve – equation (1), α1 is rainfall retention efficiency, i.e., a larger 157 

α1 value will result in more rainfall retention and less direct runoff.  158 

From equations (2) and (5), direct runoff is calculated as: 159 

)()()( tXtPtQd −=                                               (6) 160 

At sub-annual time scales, water availability W(t) can be defined as:  161 

)1()()( −+= tStXtW                                              (7) 162 

Combining the definition of X(t) with equation (7), one obtains: 163 

)()()()( tRtStETtW ++=                                          (8) 164 

While equation (7) defines the source of the water availability, Equation (8) 165 

determines the partitioning. Next define evapotranspiration opportunity 166 

(Sankarasubramanian and Vogel, 2002) as )()()( tStETtY += , we obtain: 167 

)()()( tRtYtW +=                                                (9) 168 
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The demand limit for Y(t) can be considered as the sum of potential 169 

evapotranspiration (E0(t)) and soil water storage capacity (Smax) and is denoted as Y0(t), 170 

while the supply limit is the available water W(t). Similar to Budyko (1958), we can 171 

postulate that: 172 

∞→→ )(/)(1)(/)( 0 tWtYastWtY  (very dry conditions)          (10) 173 

0)(/)()()( 00 →→ tWtYastYtY  (very wet conditions)          (11) 174 

The evapotranspiration opportunity Y(t) can be estimated from the following 175 

relationship: 176 

( ) ( )2)(
)( ,)( max0 αtW

StEFtWtY +=                                         (12) 177 

Thus groundwater recharge R(t) can be calculated from Equation (9). The next step is 178 

to calculate evapotranspiration ET(t). The demand limit for ET(t) can be considered as 179 

potential evapotranspiration E0(t) and the supply limit is the available water W(t). 180 

Similar to Budyko (1958), evapotranspiration ET(t) can be calculated as: 181 

( ) ( )2)(
)( ,)( 0 αtW

tEFtWtET =                                           (13) 182 

where α2 is a model parameter, representing evapotranspiration efficiency.   183 

Soil water storage can now be calculated as: 184 

)()()( tETtYtS −=                                               (14) 185 

Finally, groundwater storage is treated as linear reservoir, so that baseflow and 186 

groundwater balance can be modelled as: 187 

)1()( −= tdGtQb                                                (15) 188 

( ) )()1(1)( tRtGdtG +−−=                                        (16) 189 

where Qb is baseflow, G is groundwater storage, and d is a recession constant.   190 

 191 
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The DWBM model has been applied to 265 catchments in Australia and showed 192 

encouraging results (Zhang et al., 2008). The model has four parameters: retention 193 

efficiency(α1); evapotranspiration efficiency(α2); soil water storage capacity (Smax), 194 

and baseflow linear recession constant (d). The range of the parameter values is 195 

shown in Table 1. 196 

 197 

[Figure 1 and Table 1 here] 198 

 199 

2.2 The SIMHYD Model 200 

The SIMHYD model is a lumped conceptual daily rainfall–runoff model (Chiew et al., 201 

2002), driven by daily rainfall and PET, which simulates daily streamflow. It has been 202 

tested and used extensively across Australia (Chiew et al., 2002; Siriwardena et al., 203 

2006; Viney et al., 2008; Zhang et al., 2008; Zhang et al., 2009). Figure 2 shows the 204 

structure of the SIMHYD model and the algorithms controlling how water enters the 205 

system from precipitation, flows into several stores, and then flows out through 206 

evapotranspiration and runoff. The SIMHYD model has 7 parameters, and the useful 207 

ranges of them are shown in Table 2. 208 

 209 

[Figure 2 and Table 2 about here] 210 

 211 

In the SIMHYD model, daily rainfall is first intercepted by an interception store, 212 

which is emptied each day by evaporation. Incident rainfall, which occurs if rainfall 213 

exceeds the maximum daily interception, is then subjected to an infiltration function. 214 

The incident rainfall that exceeds the infiltration capacity becomes infiltration excess 215 

runoff. A soil moisture function diverts the infiltrated water to the river (as saturation 216 
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excess runoff/interflow), groundwater store (as recharge) and soil moisture store. The 217 

saturation excess runoff/interflow is first estimated as a linear function of the soil 218 

wetness (soil moisture level divided by soil moisture capacity). The equation used to 219 

simulate interflow therefore attempts to mimic both the interflow and saturation 220 

excess runoff processes (with soil wetness used to reflect those parts of the catchment 221 

that are saturated and from which saturation excess runoff can occur). Groundwater 222 

recharge is then estimated, also as a linear function of the soil wetness. The remaining 223 

moisture flows into the soil moisture store. Evapotranspiration from the soil moisture 224 

store is estimated as a linear function of the soil wetness, but cannot exceed the 225 

potential rate (PET minus intercepted water). The soil moisture store has a finite 226 

capacity and overflows into the groundwater store, baseflow from which is simulated 227 

as a linear recession from the groundwater store. The model has therefore three runoff 228 

components: infiltration excess runoff, saturation excess runoff/interflow, and 229 

baseflow. 230 

 231 

2.3 Study Catchments and Data 232 

In this study 30 catchments from Australia were selected with at least 60 years of 233 

unimpaired daily streamflow data (Figure 3). Unimpaired streamflow is defined as 234 

streamflow that is not subject to regulation or diversion. The catchment area ranges 235 

from 82 to 1891 km2 with mean annual streamflow varied between 53 to 1363 mm. 236 

The mean annual precipitation (P) ranges from 628 to 2095 mm and annual potential 237 

evapotranspiration (PET) ranges from 817 to 2098 mm, representing diverse 238 

hydrological and climatic conditions. The runoff coefficient varies from 0.08 to 0.65. 239 

 240 
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Catchment averaged annual rainfall was estimated from gridded SILO daily rainfall 241 

(http://www.longpaddock.qld.gov.au/silo, Jeffrey et al., 2001). The SILO Data Drill 242 

provides surfaces of daily rainfall and other climate data interpolated from point 243 

measurements made by the Australian Bureau of Meteorology. The spatial resolution 244 

of the gridded daily rainfall data is 0.05 degrees based on interpolation of over 6000 245 

rainfall stations across Australia. The interpolation uses monthly rainfall data, 246 

ordinary kriging with zero nugget, and a variable range. Monthly rainfall for each 5 × 247 

5 km grid cell was converted to daily rainfall using daily rainfall distribution from the 248 

station closest to the grid cell (Jeffrey et al., 2001). The daily time series of maximum 249 

and minimum temperatures, incoming solar radiation, actual vapour pressure, and 250 

precipitation at 0.05 × 0.05 (~ 5 km × 5 km) grid cells from the SILO Data Drill 251 

(http://www.longpaddock.qld.gov.au/silo) were used. 252 

 253 

Potential evaporation was calculated using the Priestley-Taylor equation (Priestley 254 

and Taylor, 1972) for each catchment with the Priestley-Taylor coefficient set to 1.26 255 

following Raupach (2000). In the calculation, the available energy was taken as equal 256 

to the net radiation by neglecting ground heat flux. The net radiation was calculated 257 

from the incoming global shortwave and longwave radiation, surface albedo, surface 258 

emissivity, and surface temperature as described by Raupach et al. (2001). 259 

 260 

Daily streamflow data were obtained from the Australian Land and Water Resources 261 

Audit project (Peel et al., 2000) and have been quality checked. Firstly, data quality 262 

codes were checked for any missing and poor-quality data as most gauging stations 263 

provide numerical codes indicating quality of streamflow data. Missing streamflow 264 

data were infilled by interpolating streamflow values at previous and following days. 265 
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Secondly, time series of daily rainfall and streamflow were plotted to identify any 266 

inconsistency and recording errors in the data (e.g. spikes, same streamflow value for 267 

a long period of time). The quality checks are to ensure good quality streamflow data 268 

are used in the study. 269 

 270 

[Figure 3 here] 271 

 272 

3 Methods 273 

3.1 Differential Split-sample Test 274 

In general, hydrological models rely on stationary conditions (Xu, 1999). Usually, 275 

model calibration requires a split-sample test, where the model is calibrated during 276 

one climatic period and validated on another independent period. The split-sample test 277 

is the classical test, being applicable to cases where there is sufficiently long time 278 

series of the climatic data for both calibration and validation and where the catchment 279 

conditions remain unchanged, i.e. stationary (Refsgaard and Storm, 1996). This test 280 

gives an indication how the model might perform for an independent period having 281 

similar conditions. Unfortunately, this test is unable to guarantee the applicability of 282 

hydrological models under nonstationary conditions (Xu, 1999; Henriksen et al., 283 

2003). 284 

 285 

In order to try to answer the question of whether the transfer of parameter values from 286 

the present-day climate to a future climate is justified, the ‘differential split-sample 287 

test’ proposed by Klemes (1986) was considered, in which the hydrological model is 288 
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tested on calibration and validation periods under contrasting climatic conditions. In 289 

this case, different sub-periods are chosen with different historical rainfall conditions. 290 

 291 

In this study, different periods with various climatic conditions were identified. First 292 

of all, we calculated annual and mean annual precipitation over the whole period of 293 

record for each catchment. Then sub-periods with consecutive annual precipitation 294 

greater than the mean were selected as the “wet” periods and sub-periods with 295 

consecutive annual precipitation less than the mean were selected as the “dry” periods. 296 

The precipitation in the “wet” periods is 10.2% to 47.1% above the long-term average 297 

annual precipitation, while the precipitation in the “dry” periods is 10.4% to 28.3% 298 

below the long-term average annual precipitation. In the selection, the minimum 299 

length of the sub-period was set to 5 years to ensure stable model calibration. If this 300 

process results in more than two “wet” or “dry” periods, then the two wettest periods 301 

or two driest periods were selected for model calibration and validation (Figure 4). 302 

The hydrological model was calibrated for each of the 4 sub-periods and validated on 303 

each of the remaining 3 sub-periods in turn, resulting in a total of 12 calibration and 304 

validation tests. 305 

 306 

To examine model performance under different calibration and validation conditions, 307 

results from the above tests are grouped as “dry/dry”, “dry/wet”, “wet/wet”, and 308 

“wet/dry” to represent climatic conditions in the calibration and validation periods 309 

respectively. 310 

 311 

[Figure 4 about here] 312 

 313 
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3.2 Monte Carlo Simulation 314 

It has been widely recognized that hydrological models can perform equally well 315 

against measured runoff estimates even with different parameter sets and this 316 

so-called parameter equifinality may result in large prediction uncertainty (Beven, 317 

1993; Boorman et al., 1997; Niel et al., 2003; Wilby et al., 2005; Minville et al., 2008). 318 

The parameter equifinality is related to overparamterzation of hydrological models 319 

and poor parameter identifiability. For some practical applications, the parameter 320 

equifinality problem may not be an issue and any of the parameter sets may be 321 

appropriate. However, these equally good parameter sets may give different 322 

predictions when the model is used to estimate the effects of climate change and land 323 

use change on streamflow (Uhlenbrook et al., 1999). The need for improved model 324 

calibration and testing has been emphasized in recent years. Monte Carlo simulation is 325 

an effective way of calculating confidence limits of predicted time series and 326 

exploring parameter stability and identifiability in the context of historic climate 327 

variability (Uhlenbrook et al., 1999; Wilby, 2005; Widen-Nilsson et al., 2009). 328 

 329 

For each catchment and each calibration period, a Monte Carlo simulation was 330 

undertaken with 1,000,000 runs, each with randomly generated parameter values 331 

within the given ranges listed in Tables 1 and 2 for the two models respectively. We 332 

then selected assemblies of the 100 best parameter sets for each catchment and each 333 

calibration period according to a goodness-of-fit measure which is defined in section 334 

3.3. Finally, the models were run during the validation periods with all the 100 best 335 

parameter sets. Calibration with the 100 best parameter sets gave very similar results 336 

and the means were used in subsequent analysis. 337 

 338 
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3.3 Model Performance Criteria 339 

The Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) was used as the 340 

statistic criterion of the model performance. The objective function used in the model 341 

calibration is the Nash and Sutcliffe efficiency of daily runoff, which is defined as: 342 
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where Qsim,i and Qobs,i are the simulated and observed daily runoff, respectively, 344 

,obs iQ is the mean observed runoff, i is the ith day, and N is the number of days 345 

sampled and it varies with individual catchment. 346 

 347 

Following recommendations by Legates and McCabe (1999) and Hogue et al., 2006, 348 

two statistics are used to indicate the accuracy of the SIMHYD and DWBM models: 349 

the modified index of agreement (d1) and the water balance error (WBE): 350 
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with the symbols defined above. 353 

 354 

3.4 Analysis of Parameter Probability Distributions under Different Calibration 355 

Periods 356 



 16

For each of the models, we ended up with 100 best parameter sets for each catchment 357 

and for each calibration period. From these parameters sets we calculated a 358 

probability distribution of each parameter. For a given significance level α, the 359 

chi-square test (χ2 test) was used to test the null hypothesis that the parameter 360 

distributions obtained for a dry period and a wet period were significantly different. A 361 

p value greater than 0.01 indicates a rejection of the null hypothesis, which means that 362 

the parameter probability distributions for the two different calibration periods are 363 

similar. 364 

 365 

4 Results  366 

4.1 Comparisons of Model Calibration under Different Climatic Conditions 367 

Results of model calibration under different climatic conditions are shown in Figure 5 368 

and Table 3. Figure 5(a) shows the percentage of model calibration tests that have a 369 

NSE value exceeding a given NSE value. Similarly, Figure 5(b-c) are corresponding 370 

plots of the modified index of agreement (d1), the water balance error (WBE), 371 

respectively. It can be seen that the SIMHYD model was well calibrated under both 372 

dry and wet conditions. The average value is greater than 0.70 for NSE, 0.73 for d1. 373 

The average water balance error is 14% and 11% for the dry and wet calibration 374 

periods. Compared with the SIMHYD model, the DWBM model showed slightly 375 

poorer results. The average value for the DWBM model is greater than 0.57 for NSE, 376 

0.65 for d1. The average water balance error is 22% and 17% for the dry and wet 377 

calibration periods. 378 

 379 
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The plots show that both models were better calibrated under wet periods than under 380 

dry ones, with higher values of NSE and d1 and lower values of WBE in the wet 381 

calibration periods. For example, under the dry conditions, average NSE was 0.70 and 382 

0.57 for the SIMHYD and the DWBM model. Under the wet conditions, average NSE 383 

was 0.76 and 0.65 respectively for the two models. In Figure 5(a), a larger NSE value 384 

means a better performance, whereas in Figure 5(c), a smaller percentage WBE value 385 

is better. It can be noted that all the results became worse when the calibration periods 386 

became drier, indicating a higher sensitivity of the models to dry climatic conditions. 387 

The results also indicated that the errors in the simulated runoff were increased under 388 

drier climatic conditions. 389 

 390 

It can be seen from Table 3 that under dry and wet calibration periods, the median 391 

NSE values are, for the SIMHYD model, 0.70 and 0.77, respectively, and for the 392 

DWBM model, 0.58 and 0.66. The median d1 values showed similar patterns under 393 

dry and wet calibration conditions. The median percentile of the WBE values are 13% 394 

and 8% for the SIMHYD model under dry and wet calibration periods respectively, 395 

and 15% and 12% for the DWBM model. All these results indicate that the two 396 

models can be calibrated satisfactorily for most of the tests, although the calibration 397 

results of the DWBM model are slightly poorer compared with those of the SIMHYD 398 

model. The average NSE values calibrated under the wet periods are higher – i.e. 399 

better – by 0.06 (SIMHYD model) and 0.08 (DWBM model) than those calibrated 400 

under dry periods. The average WBE values calibrated under wet periods are lower – 401 

again better – by 3% (SIMHYD model) and 5% (DWBM model) than those calibrated 402 

under the dry period. 403 

 404 
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[Figure 5 and Table 3 about here] 405 

 406 

4.2 Comparisons of Model Validation using Different Calibration Periods 407 

Validation runs were conducted for 60, 120, 60, and 120 tests for the dry/dry, dry/wet, 408 

wet/dry, and wet/wet groups, respectively. The model validation results are 409 

summarized in Figure 6 and Table 4. As expected, the validation results are slightly 410 

poorer than the calibration results, with the averaged NSE values in the model 411 

validation generally being 0.1 to 0.2 lower than those in the model calibration and 412 

percentage water balance error being 2 to 7% higher.  413 

 414 

Comparing the validation results of the dry/dry, dry/wet, wet/dry, and wet/wet 415 

groups in Figure 6, it can be noted both the SIMHYD and DWBM models gave 416 

similar patterns. The results for the wet/wet are better than those of the dry/wet – this 417 

means that the models performed better during a wet period when they are calibrated 418 

against a wet period, compared to when they are calibrated against a dry period. These 419 

results suggest, not unexpectedly, that if a hydrological model is intended to simulate 420 

streamflow for a wet climate period then it should be calibrated on a wet segment of 421 

the historic record. They also show that hydrological models will, in general, perform 422 

better when calibrated in a wet period than when calibrated in the dry period. 423 

 424 

Table 4 summarizes the 25th percentile, median, 75th percentile, and average values of 425 

NSE, d1 and WBE in the validation periods. The results from the dry/dry test are 426 

slightly better than the results from the wet/dry test in terms of NSE, d1 and WBE. 427 

The results indicate, again reasonably, that the hydrological models perform better in 428 

a dry period when calibrated in a dry period rather than in a wet period.  429 
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 430 

[Figure 6 and Table 4 about here] 431 

 432 

4.3 Parameter Uncertainty under Climatic Nonstationarity 433 

As described in section 3.2, assemblies of the 100 best parameter sets were selected 434 

from Monte Carlo simulation under different calibration conditions. Table 5 shows 435 

the percentage of the catchments in which the model parameter distributions for a dry 436 

and wet period were significantly different (p<0.01). For each model, the parameters 437 

are ranked from the most sensitive to calibration conditions to least sensitive. For the 438 

SIMHYD model, the most sensitive parameters were SUB, SMSC, SQ, and CRAK, 439 

each of which significantly affected 50% or more of the catchments. The other three 440 

parameters, K, COEFF, and INSC had smaller effects, with INSC (having an effect in 441 

only 10% of catchments) being the most insensitive to choice of dry and wet 442 

calibration periods. 443 

 444 

[Table 5 about here] 445 

 446 

In order to further examine the effects of climatic conditions on the results, we 447 

grouped the 30 study catchments into two climatic types: 16 water-limited catchments 448 

with an index of dryness (Ep/P) greater than 1, and 14 energy-limited catchments with 449 

an index of dryness less than 1. It can be noted that all parameters performed 450 

differently in water-limited and energy-limited catchments, in particular SUB, SMSC, 451 

and CRAK.  452 

 453 
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For the DWBM model, the parameters α1 and Smax exhibited different effects on 454 

runoff under the dry and wet calibration periods as 67% and 63% of the catchments 455 

showed statistically different results at the 0.01 level. At the other extreme, the 456 

parameter α2 displayed an apparent insensitivity to the calibration periods (just 23% 457 

of catchments were affected). The parameter α2 represents evapotranspiration 458 

efficiency and it behaves similarly to the parameter w of Zhang et al. (2001) and 459 

(2004), which was shown to be mostly correlated with vegetation cover. The 460 

parameter d was more sensitive to the choice of the calibration period for the 461 

water-limited catchments than for the energy-limited catchments. It is interesting to 462 

note that all the parameters behaved differently under the water-limited and 463 

energy-limited conditions, except perhaps for parameter α2. 464 

 465 

The above results indicate that some of the model parameters are sensitive to 466 

calibration conditions and the others are relative robust. An important question is how 467 

the sensitive parameters vary between the different calibration periods. Figures 7 and 468 

8 show the distributions of the optimized parameters of the two models under the dry 469 

and wet conditions in two selected catchments. The catchment 110003 has 470 

summer-dominant rainfall and catchment 401210 is winter-dominant. For the 471 

SIMHYD model, some parameters exhibited different distributions in the dry and wet 472 

calibration periods. For example, the parameter SUB tends to be more likely at a 473 

higher value in the dry periods than in the wet periods. However, the results did not 474 

reveal any systematic trends in the other parameters. For the DWBM model, the most 475 

likely value for the parameter α1 was higher in the dry period than in the wet period 476 

for catchment 110003 and vice versa for catchment 401210 (Figure 8). The parameter 477 



 21

Smax showed different distributions in the dry and wet periods and these distributions 478 

vary across the catchments.  479 

 480 

[Figures 7 and 8 about here] 481 

 482 

5 Discussion 483 

Streamflow of a catchment is influenced by a number of factors, most noticeably 484 

rainfall and antecedent soil moisture. During dry periods, catchments are generally 485 

characterized by small runoff events and lower runoff to rainfall ratios with higher 486 

percentage error in both rainfall and runoff. In this case, rainfall-runoff models 487 

become very sensitive to both rainfall and parameter optimization. Also, dry periods 488 

may not contain enough high flows to adequately calibrate model parameters 489 

responsible for simulating high flows (Gan et al., 1997). Apart from rainfall amount, 490 

spatial variability of rainfall can also affect runoff. Smith et al. (2004) showed that 491 

improved runoff simulations can be obtained from distributed versus lumped 492 

rainfall-runoff models in catchments with considerable rainfall variability. Spatial 493 

variability of rainfall was also found to be the dominant control on runoff production 494 

(Segond et al., 2007). In this study, spatially averaged rainfall was used in both model 495 

calibration and validation. This is likely to affect the model results and it is expected 496 

that the rainfall variability effect will be greater in dry periods than in wet periods. 497 

 498 

It has been widely acknowledged that spatial variability of antecedent soil moisture 499 

conditions plays an important role in runoff generation (Grayson and Blöschl, 2000). 500 

Minet et al. (2011) investigated the effect of spatial soil moisture variability on runoff 501 

simulations using a distributed hydrologic model and showed that model results are 502 



 22

sensitive to soil moisture spatial variability, especially in dry conditions. At catchment 503 

scales, soil moisture exhibit larger heterogeneity under dry conditions than wet 504 

conditions and this means errors associated with dry period runoff simulations are 505 

likely to be greater as runoff generation exhibits non-linear threshold behaviour. 506 

In this study, the differences in average annual rainfall between the wet and dry 507 

periods ranged from 10 to 47% of the long-term average rainfall and are comparable 508 

with percentage change in man annual rainfall for 2030 relative to 1990 from 15 509 

GCMs for the Murray Darling Basin in Australia (Chiew et al., 2008). 510 

 511 

The results of this study indicate that calibration periods can cause significant shifts in 512 

model parameter distributions. Some model parameters are relatively sensitive to the 513 

choice of calibration periods, while the others are fairly insensitive. As well as the 514 

impact of calibration periods on parameter distributions, whether catchments are 515 

water-limited or energy-limited also needs to be taken into consideration. For the 516 

SIMHYD model, the most sensitive parameters are SUB, SMSC, and CRAK. The 517 

parameter SUB is used to estimate interflow and it can be an important parameter in 518 

some catchments (Chiew and McMahon, 1994). However, it is difficult to estimate 519 

this parameter a priori as it is poorly correlated with any catchment characteristics 520 

(Chiew and McMahon, 1994). The soil moisture store capacity (SMSC) affects many 521 

processes such as infiltration and evapotranspiration and it is determined by soil 522 

properties and vegetation characteristics (e.g. rooting depth). Accurate estimation of 523 

this parameter is essential to achieving satisfactory model performance. The 524 

parameter CRAK determines groundwater recharge/baseflow and is highly correlated 525 

with soil types. For the DWBM model, the most sensitive parameters are α1 and Smax, 526 

and d, representing catchment rainfall retention efficiency, maximum storage capacity, 527 
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and the recession constant, respectively (Zhang et al. 2008). In a way, these 528 

parameters are similar to those sensitive parameters in SIMHYD in terms of their 529 

functional controls on water balance components. Merz et al (2011) applied a 530 

semi-distributed conceptual rainfall-runoff model to 273 catchments in Austria and 531 

showed that the parameters of the soil moisture accounting schemes exhibited strong 532 

dependence on calibration conditions, consistent with the results of the current study.  533 

This also suggests that parameters related to soil moisture accounting are likely to 534 

change with calibration conditions. The fact that these parameters are sensitive to the 535 

choice of calibration period (i.e. dry vs wet) also indicates that large uncertainty may 536 

be associated with these parameters and cares need to be exercised when transferring 537 

the parameters to conditions different from the calibration. 538 

 539 

These findings have major implications for studies of climate change impact on 540 

streamflow. When a hydrological model calibrated for a given climatic condition (e.g. 541 

wet periods) is used to simulate runoff of different climatic conditions (e.g. dry 542 

periods), transfer of some model parameters (i.e. sensitive parameters) may result in 543 

large errors in simulated runoff. One may argue that the sensitive model parameters 544 

should be updated by functionally relating them with climatic variables such as 545 

rainfall (Merz et al., 2011). This could potentially reduce uncertainty and lead to more 546 

accurate predictions. However, some of the parameters are poorly related to 547 

catchment characteristics (e.g. rainfall) and the problem is further complicated by the 548 

fact that not every parameter is well identified and different parameter values can 549 

result in equal model performance, i.e. equifinality (Beven, 1993). It has also been 550 

recognized that model calibration tends to compensate model structural errors (Merz 551 
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et al., 2011, Wagner et al., 2003), making it difficult to understand how model 552 

parameters vary with calibration conditions (Wagener et al., 2010).  553 

 554 

The differential split-sample test can be considered as the first step in addressing the 555 

issue of parameter transferability under non-stationary conditions. Monte Carlo 556 

simulation provided an effective and pragmatic approach to exploring uncertainty in 557 

hydrological model parameters. The performance of rainfall-runoff models is related 558 

to catchment characteristics such as climate, topography, soil, vegetation, catchment 559 

shape, geology, drainage network. In such a complex situation, it is hard to pinpoint 560 

the source of parameter uncertainty, but the results of this study showed that 561 

calibration periods and catchment climatic conditions are both important factors that 562 

can result in uncertainty in model performance. 563 

 564 

Credibility of a hydrological model has traditionally been tested using streamflow 565 

data from a validation period that is similar to calibration period.  The assumption is 566 

that the model will be used under conditions similar to those of the calibration.  567 

However, when dealing with impact of climate change on streamflow, the assumption 568 

is not generally valid and the model needs to be tested under conditions different from 569 

those of the calibration. For this purpose, the two hydrological models were evaluated 570 

using differential split-sample test (Klemes, 1986). When using a dry period for 571 

calibration and a wet period for validation, the models produced more accurate 572 

estimates of streamflow (i.e. higher NSE and lower bias) compared with estimates 573 

produced using a wet period for calibration and a dry period for validation (see Table 574 

4). Similar results have been reported by Vaze et al. (2010) and the finding can be 575 

partly explained by the fact that hydrological models generally perform better in wet 576 
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periods than in dry periods (Vaze et al., 2010; Gallart et al., 2007, Perrin et al. 2007; 577 

Lidén and Harlin, 2000, Gan et al., 1997; Hughes, 1997). 578 

 579 

A closer examination of model errors reveals that when the model parameters, 580 

calibrated on a dry period, were used to simulate runoff during a wet period, the mean 581 

of the simulated runoff was usually underestimated; conversely, when model 582 

parameters, calibrated on a wet period, were used to simulate dry period runoff, the 583 

mean simulated runoff was overestimated, consistent with the findings of Gan et al. 584 

(1997). Vaze et al. (2010) also showed that when hydrological models were calibrated 585 

using long period of record and tested for sub-periods with above long-term average 586 

rainfall, the model performed well. However, performance of the models starts to 587 

deteriorate when tested for sub-periods with below long-term average rainfall. 588 

 589 

Traditionally, one would use a sufficiently long period of records for model 590 

calibration to ensure proper presentation of climate/streamflow variability and to 591 

achieve stable model parameters. If the model is to be used under stationary 592 

conditions, it is generally recommended that the whole record should be divided into 593 

two segments, one for calibration and the other for validation. However, if a model is 594 

to be used under non-stationary conditions, its parameters should be transferable. In 595 

other words, the parameters should be estimated so that the model gives accurate 596 

estimates of streamflow outside the climatic conditions encountered in calibration 597 

period.  In this case, one should identify two periods with different climatic 598 

conditions (e.g. a dry period and wet period) from the whole record and apply the 599 

so-called differential split-sample test (Klemes, 1986). One another approach to this 600 
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problem is to examine how other catchments behave under these different climatic 601 

conditions, i.e. trading space for time (Singh et al., 2011). 602 

 603 

6 Conclusions 604 

Potentially large uncertainties arise when predicting hydrological responses to future 605 

climate change – due to factors such as the choice of emission scenario, GCM, 606 

downscaling technique, hydrological model, optimization technique, and the way the 607 

model is calibrated. It is therefore important to develop reliable ways to calibrate 608 

hydrological models under present-day conditions. This study compared hydrological 609 

model performances under nonstationarity by using the differential split-sample test 610 

and two conceptual rainfall–runoff models, DWBM and SIMHYD, applied to 30 611 

catchments in Australia. Monte Carlo simulation was used to explore parameter 612 

stability and transferability in the context of historic climate variability. 613 

 614 

Apart from quality of the input data (e.g. rainfall) and model structure, performance of 615 

a hydrological model is also dependent on how it is calibrated. If a hydrological 616 

model is intended to simulate runoff for a wet climate scenario then it should be 617 

calibrated on a wet segment of the historic record. Conversely, if it is intended to 618 

simulate runoff for a dry climate scenario then it should be calibrated on a dry 619 

segment of the historic record. We also found that when using a dry period for 620 

calibration and a wet period for validation, the models produced more accurate 621 

estimates of streamflow compared with estimates produced using a wet period for 622 

calibration and a dry period for validation. In other words, transferring model 623 

parameter values obtained from dry periods to wet periods will result in smaller errors 624 

in streamflow estimation than transferring model parameter values obtained from wet 625 
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periods to dry periods. The soil related model parameters are more sensitive to the 626 

choice of calibration period than other parameters and large uncertainty may be 627 

introduced when transferring the soil related parameters to conditions different from 628 

the calibration. Our research has implications for hydrological modellers looking to 629 

estimate future runoff and we hope this study will stimulate further research into the 630 

selection of calibration data. 631 
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Table and Figure Captions 807 

Table 1 Ranges of parameter values in DWBM (/ indicates dimensionless). 808 

 809 

Table 2 Ranges of parameters in the SIMHYD model (/ indicates dimensionless). 810 

 811 

Table 3 Summary results of the model calibration under different climatic conditions 812 

(i.e. dry and wet periods). 813 

 814 

Table 4 Summary results of the model validation when calibrated under different 815 

climatic conditions. 816 

 817 

Table 5 Percent of the catchments in which the model parameter distributions for a 818 

dry and wet calibration period were significantly different (p<0.01) under Monte 819 

Carlo simulation. Also shown are the results for water-limited (Ep/P>1) and 820 

energy-limited (Ep/P <1) catchments. For each model, the parameters are ranked from 821 

the most sensitive to calibration conditions to least sensitive. 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 
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Figure 1 Structure of the lumped dynamic water balance model (DWBM). 830 

 831 

Figure 2 Structure of the lumped daily rainfall–runoff model (SIMHYD). 832 

 833 

Figure 3 Location map of the 30 catchments used for this study. 834 

 835 

Figure 4 Annual historical precipitation of the Corang River catchment showing 836 

estimation of 2 wet periods (A) and 2 dry periods (B) to represent different calibration 837 

conditions. 838 

 839 

Figure 5 (a) Percentage of model calibration tests with a NSE value greater than or 840 

equal to a given NSE value. Similarly, Figure 5 (b-c) are corresponding plots of the 841 

modified index of agreement (d1), the water balance error (WBE), respectively. 842 

 843 

Figures 6 (a) and (d) Percentage of model validation tests with a NSE value greater 844 

than or equal to a given NSE value. Similarly, Figures 6 (b) and (e), Figures 6 (c) 845 

and (f) are corresponding plots of the modified index of agreement (d1), the water 846 

balance error (WBE), respectively. 847 

 848 

Figure 7 Probability density functions for 7 parameters of the SIMHYD model under 849 

dry and wet calibration periods in catchments 110003 and 4021210. 850 

 851 
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 852 

Figure 8 Probability density functions for 4 parameters of the DWBM model under 853 

dry and wet calibration periods in catchments 110003 and 4021210. 854 

 855 
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Tables and Figures 873 

Table 1 Ranges of parameter values in DWBM (/ indicates dimensionless). 874 

Parameter Units Description Lower 
bound

Upper 
bound

α1 / retention efficiency 1 5 

α2 / evapotranspiration 
efficiency 1 5 

Smax mm soil water storage capacity 5 500 

d / baseflow linear regression 0.01 1 

 875 

Table 2 Ranges of parameter values in the SIMHYD model (/ indicates 876 

dimensionless). 877 

Parameter Units Description Lower 
bound 

Upper 
bound 

INSC mm interception store capacity 0.5 5.0 

COEFF mm maximum infiltration loss 50 400 

SQ / infiltration loss exponent 0 6.0 

SMSC mm soil moisture store capacity 50 500 

SUB / constant of proportionality in 
interflow equation 0 1 

CRAK / constant of proportionality in 
groundwater recharge equation 0 1 

K / baseflow linear regression 
parameter 0.003 0.3 

 878 
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Table 3 Summary results of the model calibration under different climatic conditions 879 

(i.e. dry and wet periods). 880 

Indicator 
SIMHYD 

calibrated on dry 
period 

SIMHYD 
calibrated on wet 

period 

DWBM 
calibrated on dry 

period 

DWBM 
calibrated on wet 

period 
25th NSE 0.84 0.85 0.71 0.77 

Median NSE 0.70 0.77 0.58 0.66 
75th NSE 0.61 0.68 0.43 0.54 

Average NSE 0.70 0.76 0.57 0.65 
25th d1 0.77 0.79 0.71 0.75 

Median d1 0.72 0.76 0.67 0.71 
75th d1 0.70 0.74 0.61 0.68 

Average d1 0.73 0.76 0.65 0.71 
25th WBE 22 16 25 24 

Median WBE 13 8 15 12 

75th WBE 6 4 9 5 

Average WBE 14 11 22 17 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 
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Table 4 Summary results of the model validation when calibrated under different 894 

climatic conditions. 895 

Model Indicator dry/dry dry/wet wet/dry wet/wet 
25th NSE 0.72 0.74 0.68 0.77 

Median NSE 0.55 0.64 0.51 0.69 
75th NSE 0.42 0.44 0.41 0.55 

Average NSE 0.57 0.61 0.54 0.66 
25th d1 0.74 0.78 0.74 0.78 

Median d1 0.71 0.74 0.70 0.75 
75th d1 0.66 0.70 0.63 0.72 

Average d1 0.69 0.73 0.68 0.74 
25th WBE 34 30 39 23 

Median WBE 20 19 28 13 
75th WBE 14 8 16 7 

SIMHYD 

Average WBE 24 21 29 17 
25th NSE 0.56 0.65 0.51 0.72 

Median NSE 0.46 0.48 0.45 0.61 
75th NSE 0.34 0.35 0.30 0.42 

Average NSE 0.48 0.52 0.45 0.59 
25th d1 0.69 0.73 0.68 0.74 

Median d1 0.65 0.69 0.63 0.70 
75th d1 0.58 0.64 0.56 0.66 

Average d1 0.62 0.68 0.61 0.69 
25th WBE 35 29 53 25 

Median WBE 22 20 33 18 
75th WBE 15 12 18 11 

DWBM 

Average WBE 27 23 36 19 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 
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Table 5 Percent of the catchments in which the model parameter distributions for a 906 

dry and wet calibration period were significantly different (p<0.01) under Monte 907 

Carlo simulation. Also shown are the results for water-limited (Ep/P>1) and 908 

energy-limited (Ep/P <1) catchments. For each model, the parameters are ranked from 909 

the most sensitive to calibration conditions to least sensitive. 910 

Model Parameter 
Percent of 

catchments 

Percent of water-limited 

catchments 

Percent of energy-limited 

catchments 

SUB 63 81 43 

SMSC 60 75 43 

SQ 53 56 50 

CRAK 50 63 36 

K 37 31 43 

COEFF 33 38 29 

SIMHYD 

INSC 10 13 7 

α1 67 81 50 

Smax 63 75 50 

d 47 63 29 
DWBM 

α2 23 25 21 

 911 
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 912 

RAIN
PET

direct runoff
SMS

soil 
moisture 
store Smax

GW

groundwater store

baseflow

recharge Q

Model parameters and description
α1          retention efficiency
α2          evapotranspiration efficiency
Smax        soil water storage capacity (mm)
d            baseflow linear regression  913 

Figure 1 Structure of the lumped dynamic water balance model (DWBM). 914 
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 926 
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runoff (SRUN)
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SMS
soil 
moisture 
store

SMSC

Q

EXC
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INF = lesser of { COEFF exp (-SQ×SMS/SMSC) , EXC }
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INT = SUB × SMS/SMSC × INF
REC = CRAK × SMS/SMSC × (INF - INT)
SMF = INF - INT - REC
ET = lesser of { 10 × SMS/SMSC , PET }
BAS = K × GW

Model parameters and description
INSC     interception store capacity (mm)
COEFF maximum infiltration loss (mm)
SQ         infiltration loss exponent
SMSC    soil moisture store capacity (mm)
SUB       constant of proportionality in interflow equation
CRAK    constant of proportionality in groundwater recharge equation
K           baseflow linear recession parameter

groundwater 
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 927 

Figure 2 Structure of the lumped daily rainfall–runoff model SIMHYD. 928 
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 934 

 935 

 936 

Figure 3 Location map of the 30 catchments used for this study. 937 
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 939 

Figure 4 Annual historical precipitation of the Corang River catchment showing 940 

estimation of 2 wet periods (A) and 2 dry periods (B) to represent different calibration 941 

conditions. 942 
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 943 

Figure 5 (a) Percentage of model calibration tests with a NSE value greater than or 944 

equal to a given NSE value. Similarly, Figure 5 (b-c) are corresponding plots of the 945 

modified index of agreement (d1) and the water balance error (WBE), respectively. 946 
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 949 

Figures 6 (a) and (d) Percentage of model validation tests with a NSE value greater 950 

than or equal to a given NSE value. Similarly, Figures 6 (b) and (e), Figures 6 (c) 951 

and (f) are corresponding plots of the modified index of agreement (d1), the water 952 

balance error (WBE), respectively. 953 

 954 
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Figure 7 Probability density functions for 7 parameters of the SIMHYD model under 956 

dry and wet calibration periods in catchments 110003 and 4021210. 957 
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Figure 8 Probability density functions for 4 parameters of the DWBM model under 959 

dry and wet calibration periods in catchments 110003 and 4021210. 960 


