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Abstract 7 

In this paper, Split Markov Process (SMP) is developed to assess one-step-ahead variation 8 

of daily rainfall at a rain gauge station. SMP is an advancement of general Markov Process 9 

(MP) and specially developed for probabilistic assessment of change in daily rainfall 10 

magnitude. The approach is based on a first-order Markov chain to simulate daily rainfall 11 

variation at a point through state/sub-state Transitional Probability Matrix (TPM). The 12 

state/sub-state TPM is based on the historical transitions from a particular state to a 13 

particular sub-state, which is the basic difference between SMP and general MP. In MP, the 14 

transition from a particular state to another state is investigated. However, in SMP, the daily 15 

rainfall magnitude is categorized into different states and change in magnitude from one 16 

temporal step to another is categorized into different sub-states for the probabilistic 17 

assessment of rainfall variation. The cumulative state/sub-state TPM is represented in a 18 

contour plot at different probability levels. The developed cumulative state/sub-state TPM is 19 

used to assess the possible range of rainfall in next time step, in a probabilistic sense. 20 

Application of SMP is investigated for daily rainfall at Khandwa station in the Nimar 21 

district in Madhya Pradesh, India. Eighty years of daily monsoon rainfall is used to develop 22 

the state/sub-state TPM and twenty years data is used for to investigate its performance. It is 23 
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observed that the predicted range of daily rainfall capture the actual observed rainfall with 24 

few exceptions. Overall, the assessed range, particularly the upper limit, provides a 25 

quantification possible extreme value in the next time step, which is very useful information 26 

to tackle the extreme events, such flooding, water logging etc. 27 

Keywords: Split Markov Process (SMP); Probabilistic Assessment; Rainfall Variation; 28 

Transitional Probability Matrix (TPM); Khandwa, India. 29 

1 Introduction 30 

Rainfall is one of the most complex and difficult component of the hydrologic cycle to 31 

model due to the complexity of the atmospheric processes and the wide range of variation in 32 

both space and time. However, prior information of rainfall is essential (both at large and 33 

small spatio-temporal scale) for proper planning and management of water resources. This 34 

is a high priority objective for developmental activities of a country, where the agricultural 35 

sector plays a key role for their economic growth. Large spatio-temporal variation of rainfall 36 

arises many water-related problems, such as, flood and drought, which seriously affect the 37 

crop production. Reasonably accurate rainfall prediction is required, which can help in 38 

alleviating such problems by planning for appropriate cropping patterns corresponding to 39 

water availability.  40 

At smaller spatio-temporal scale, variation of rainfall has an effect on day-to-day life, such 41 

as, water logging, heavy traffic jams, shutdown of airports, blackout problem and so on. 42 

Heavy rain may paralyze most of daily activities. High intensity of rainfall at Mumbai on 43 

July 26, 2005 causes a complete halt for the city, large number of death (almost 1100) and 44 

an enormous loss of housing, trade and commerce, agriculture, cattle (as per the status 45 

report published by the government). An early information (at least a day before) could have 46 

helped in better management of the disaster. According to scientists at National Centre for 47 
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Medium Range Weather Forecasting (NCMRWF), which is a premier institute to provide 48 

medium range weather forecast in India, the predictions of severe weather events have 49 

enormous limitations (Bohra et al., 2006). Even though such events have a very short life 50 

but still cause extensive damage. Thus, even though the prediction of rainfall (spatio-51 

temporal) is possible to achieve from numerical weather model, probabilistic information on 52 

of rainfall could be an added advantage for the concerned community. The main purpose is 53 

to provide as much advance notice as possible to the people to save the human and animal 54 

lives and properties from an impending disaster. The focus of this paper is the variation of 55 

point rainfall at a particular station. 56 

Use of probabilistic rainfall prediction has a long history to predict the near-future 57 

occurrence of extreme events (Box et al., 1976; Weeks and Boughton, 1987; Wójcik et al, 58 

2003). A framework for probabilistic rainfall forecast using nonparametric kernel density 59 

estimator is presented in a series of three papers (Sharma, 2000a; Sharma et al., 2000; 60 

Sharma, 2000b). The approach is developed for station rainfall data. However, the temporal 61 

resolution is seasonal to interannual. Application of Markov Process (MP) for short-term 62 

rainfall forecast through a probabilistic way is well accepted for a long time (Gabriel and 63 

Neumann, 1962; Chin, 1977; Fraedrich and Muller, 1983; Stern and Coe, 1984; 64 

Rajagopalan et al., 1996; Jimoh and Webster, 1996; Kaseke and Thompson, 1997; Wilks, 65 

1999; Hayhoe, 2000; Kottegoda et al., 2004; Baik et al., 2006; Deni et al., 2009). For 66 

instance, Gabriel and Neumann (1962) found that the first-order Markov chain model could 67 

be fitted to daily rainfall data at the Tel Aviv in Israel. However, it was argued later that a 68 

second order model would fit the data more suitably (Gates and Tong, 1976). Fraedrich and 69 

Muller (1983) predicted the probability of weather state by first order of Markov chains by 70 

using data of single station and forecasted daily sunshine measurements and rainfall 71 

combined with three hourly past weather observations. Stern and Coe (1984) used a 72 
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nonstationary Markov chain to model the occurrence of daily rainfall along with Gamma 73 

distribution to model the amount of rainfall. Fraedrich and Leslie (1987) used a linear 74 

combination of probabilistic approach (Markov chain) and numerical weather prediction 75 

(NWP) for short-term rainfall prediction. A first-order Markov process is a continuous-time 76 

process for which the future behavior, given the past and the present, only depends on the 77 

present and not on the past and characterized by set of states and the transition probabilities 78 

ijP  between the states. Here, ijP  is the probability that the state in the next time step is j , 79 

given that the same is i  at the present time step. Haan et al. (1976) developed the stochastic 80 

model which was based on a first-order Markov process and used rainfall data to estimate 81 

the Markov transitional probabilities and simulated daily rainfall record of any length which 82 

was based on the estimated transitional probabilities and frequency distributions of rainfall 83 

amounts and concluded that simulated data had statistical properties similar to those of 84 

historical data. Kaseke and Thompson (1997) developed the partially observed Markov 85 

process algorithms for rainfall runoff process model and considered the special case of the 86 

martingale estimating function approach on the runoff model in the presence of rainfall. 87 

Rajagopalan et al. (1996) estimated the daily transition probability matrices 88 

nonparametrically and estimated the transition probabilities through a weighted average of 89 

transition by kernel estimator. Based on the assumption that the daily rainfall occurrence 90 

depends only on the previous days rainfall, first order Markov chain model was reported by 91 

Kottegoda et al. (2004) to fit the observed daily rainfall at Italy. However, application of 92 

higher order Markov chain model was established to be suitable for stochastic weather 93 

generator for daily rainfall characteristics (Wilks, 1999; Hayhoe, 2000). Optimum order of 94 

Markov chain model for a particular data was also addressed (Chin, 1977; Jimoh and 95 

Webster, 1996). Deni et al., (2009) applied an optimum order model for daily rainfall in 96 

Peninsular Malaysia using the Akaike’s (AIC) and Bayesian information criteria (BIC). 97 
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Almost all these approaches follow a general path of creating a single set of different states 98 

depending on historical record and the probabilities of transition from one state to another is 99 

obtained. However, for rainfall variation study, the change in rainfall magnitude, 100 

particularly in higher side, is more crucial information as indicated before. Quantifying 101 

these changes, through a single set of states, demands large number of defined states. The 102 

word ‘large’ is subjective and implies more number of required states for more the inherent 103 

variability. Generally, in the tropical countries, the variation of daily rainfall is very high 104 

and application of MP may not perform well. Moreover, probabilistic prediction is more 105 

useful than simple point prediction. Defining another set of sub-states, classifying the 106 

changes in magnitude of daily rainfall will be helpful for such probabilistic assessment. This 107 

is the theme of this paper. The objective of this study is to develop an approach for change 108 

prediction daily rainfall through state to sub-state transition, which is achieved through Split 109 

Markov Process (SMP). However, the approach considers daily rainfall in which sequential 110 

phases within a particular event of rainfall (e.g., initiation, growth, peak, decay and vanish) 111 

is not of interest. Rather the total rainfall in a day is considered, which is important from 112 

water resources point of view. Thus, the transitions through states to sub-states is computed 113 

through state/sub-state Transitional Probability Matrix (TPM) for a daily temporal 114 

resolution, which is used for probabilistic assessment of one-step-ahead rainfall variation. 115 

The methodology of Split Markov Process (SMP) is explained in next section. The proposed 116 

methodology is applied to a station rainfall data at Khandwa raingauge station in the Nimar 117 

district in Madhya Pradesh, India. Results and discussions are presented afterwards. 118 
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2 Methodology 119 

2.1 General Markov Process 120 

The Markov Process (MP) at discrete time points is characterized by a set of states and the 121 

transition probabilities ijP  from state i  at time step t  to state j  at time step 1+t  (Haan et 122 

al, 1976; Haan, 2002). The matrix representation of all possible ijP  forms the transition 123 

probability matrix (TPM) of the Markov chain, denoted as P . The definition of the ijP  124 

implies that the sums of all elements in any row equal to 1 as the transitions from a 125 

particular state to all possible states are ‘mutually exhaustive’.  126 

The property of successive dependence in a time series is modeled through MP. The order 127 

of a MP is equal to the number of previous observation(s) on which the present value 128 

depends. For example, the conditional probability for thm  order Markov Process is 129 

expressed as [ ]lmtktitjt aXaXaXaXP ==== −−− ,,, 21 L . Similarly, a first order Markov 130 

process is a stochastic process in which the state of the value tX  of the process at time t  131 

depends only on the state of 1−tX  at time 1−t  and no other previous values. Thus, the 132 

transition probability for the first order MP, ijP  , is expressed as  133 

[ ],1 itjtij aXaXPP === −      (1) 134 

The collection of all these probabilities with m  different states forms the transition 135 

probability matrix (TPM), which provides information of transition from one state to 136 

another state, and thus can be synonymously termed as state-to-state TPM or state/state 137 

TPM as against state/sub-state TPM in case of SMP 138 
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2.2 Split Markov Process (SMP) 139 

Major steps of SMP are shown in a flowchart in Fig. 1. It is a data driven process as in case 140 

of a MP. Basic assumption is the first order stationarity of the data. However, homogeneity 141 

of the data across different stations is not a necessary requirement if SMP is being applied to 142 

a specific station. In order to investigate the daily rainfall variation in a probabilistic way, 143 

another sub-state is introduced in addition to the existing states. Thus, the states categorize 144 

the daily rainfall amount and the sub-states categorize the daily rainfall variation. The 145 

observed rainfall data is classified in different categories depending on its variability and 146 

these categories are denoted as different states, say, nSSS ,,, 21 L , n  being the total 147 

number of states. The amount of variation in daily rainfall magnitude is obtained by first 148 

order differencing of original data. These variations in daily rainfall magnitude are classified 149 

into different categories depending on the range of their variability. These categories are 150 

denoted as sub-states, say, msss ,,, 21 L , m  being the total number of states. The 151 

probability of transitions from a particular state to a particular sub-state is obtained from 152 

historical data and denoted as state/sub-state transition probability. The general thm  order 153 

state/sub-state transition probability is expressed as 154 

( ) [ ]lmnkninjn
m

jsS SRSRSRsrPP ===== −−− ,,, 21, L    (2) 155 

where R  denotes the daily rainfall magnitude and r denotes the change in daily rainfall 156 

magnitude. A first-order state/sub-state transition implies that the change in magnitude for 157 

the next time step depends on the state of the system at the current time. Thus, a first-order 158 

state/sub-state transition probability is expressed as  159 

( ) ( ) [ ]injnjsiS SRsrPP === −1
1

,      (3) 160 
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The first-order state/sub-state TPM is expressed as (omitting the superscript for clarity) 161 
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State/Sub-state transition probability matrix is computed by selecting a particular state and 163 

counting the number of transition from that state to a particular sub-state. If a particular 164 

state, say ( )jS , is observed for  a total n  times and m  is the number of transition from state 165 

( )jS  to a particular sub-state ( )js , then the ( )thji,  component of the state/sub-state TPM 166 

will be  167 

( ) ( ) n
mP jsiS =,       (5) 168 

The total number of times a particular state is observed and its transition to different sub-169 

states is obtained from sufficiently long record of daily rainfall series.  170 

Once the state/sub-state TPM is obtained, the cumulative state/sub-state TPM is obtained by 171 

row wise summation of column-by-column probabilities. A contour plot of this cumulative 172 

state/sub-state TPM will represent the nature of possible variation (probabilistically) in the 173 

forthcoming step from all possible states at the current time step. Thus, this contour plot can 174 

be used for probabilistic prediction of possible range of daily rainfall in the next step. For 175 

instance, from a particular state (current step), the possible variation of magnitude of 176 

expected change in next day rainfall (at some probability level) is computed using 177 

cumulative state/sub-state TPM. For graphical interpretation, one has to start from that 178 

particular state to that probability contour (desired probability level) and magnitude of 179 

expected change can be computed using a suitable interpolation technique. The minimum 180 

and maximum possible changes (with sign) are added to the rainfall magnitude of the 181 

current step to obtain the possible range of rainfall in the next time step. If the minimum 182 
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possible change turned out to be very high negative value, it might be possible to get the 183 

lower limit of predicted rainfall range as negative value. However, the lower bound of the 184 

predicted range of possible rainfall should be bounded by zero. 185 

2.3 Numerical example: Calculation of the transitional probability matrix for SMP 186 

Let us consider that there are 100 data points in a series of observed values. Each observed 187 

values can be categorized into different states, thus, there are 100 states. First odder 188 

differencing ( )tt XX −+1  is the (next-step) change in rainfall magnitude for the time step t . 189 

These changes can also be categorized into different sub-states and thus, there are 99 sub-190 

states. Finally, paired states and sub-states (one less, i.e., 99) are obtained. Let us further 191 

considered that there are 5 states (I, II, …, V) and 5 sub-states (a, b, …, e). It may, however, 192 

be noted that number of states and sub-states need not be same). Now, from the record, 193 

numbers of different states are as shown in 2nd column if table 1. Again, transition from one 194 

particular state to different sub-states is also obtained from the record and shown in 3rd to  195 

7th column of table 1. 196 

Now to compute the state/sub-state TPM, each row should be divided by row-wise total, 197 

e.g., 15 for first row, 45 for 2nd row, and so on. This ensures that total probability of 198 

transitions from one state to different sub-states is equal to unity. Thus, the state/sub-state 199 

TPM is as shown in table 2. Next, the cumulative state/sub-state TPM is obtained as row 200 

wise summation of probabilities up to that cell, i.e., cumulative probability of being 201 

transited to a particular sub-state or lower than that sub-state. Thus, the cumulative 202 

state/sub-state TPM is as shown in table 3. 203 

2.4 Numerical example: Estimation of probabilistic range of daily rainfall using SMP 204 

Computation of probabilistic range of predicted rainfall is computed from a particular row 205 

of the state/sub-state TPM. This row refers to the state at which the previous day rainfall 206 
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belongs to. Let us consider a row as follows, which indicates that at previous time step the 207 

rainfall state was in category 3. Possible range of each sub-states (a through e) are also 208 

shown in parentheses. 209 

Sub-states 
States a 

(<-100) 
b 

(-100 to -25) 
c  

(-25 to 25) 
d  

(25 to 100) 
e  

(>100) 
State 

S 0.000 0.291 0.515 0.183 0.011 

If we are interested to know the 95% limits of the next day rainfall, we should obtain the 210 

lower and upper limits of the predicted change. We should first get the cumulative 211 

probability distribution, which is as follows: 212 

Sub-states 
States a 

(<-100) 
b 

(-100 to -25) 
c  

(-25 to 25) 
d  

(25 to 100) 
e  

(>100) 
State 

S 0.000 0.291 0.806 0.989 1.000 

The change in magnitude should be in between states c and d. Lower limits of c and d are -213 

25 and 25 respectively, whereas upper limits of sub-states c and d are 25 and 100 214 

respectively. Thus, to find the limits of changes following interpolations are done. 215 

Interpolated values are shown in bold face. 216 

Interpolation for lower limit Interpolation for upper limit 

a 
(<-100) 

b 
(-100 to -25) 

0.291 -100 

0.806 -25 

0.950 14.34 

0.989 25 

1.000 100  

a 
(<-100) 

b 
(-100 to -25) 

0.000 -100 

0.291 -25 

0.806 25 

0.950 84.02 

0.989 100  

Thus, the lower and upper limits of the projected change are 14.34 and 84.02 unit. These 217 

can be subtracted and added from actual observed value of present time step to obtain the 218 
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limit, subject to the lower bound of the predicted range of possible rainfall should be 219 

bounded by zero, as mentioned before. Thus, if the today’s observed rainfall is 10 unit, then 220 

tomorrow’s lower and upper limits of the rainfall will be 0 and 94.02 unit. 221 

3 Application of SMP 222 

The methodology is applied to the daily rainfall at four raingauge stations – Khandwa, 223 

Jabalpur, Sambalpur and Puri. Khandwa raingauge station is located in the Nimar district in 224 

Madhya Pradesh, India. Similar to the major part of Madhya Pradesh, Khandwa is having 225 

more or less plain topography. Average altitude of Khandwa is 316 m above mean see level. 226 

Puri is a costal station. It is located on the sea coast of Bay of Bengal and having an almost 227 

flat terrain. It is just few meter above the mean sea level. Sambalpur is having an undulating 228 

topography with approximate altitude 188 m above the mean sea level. It is about 300 km 229 

away from the coastal line. Jabalpur is located on the banks of the perennial Narmada River 230 

and approximate altitude is 393 m above mean see level. The entire area is low rocky and 231 

barren hillocks with slopes differing in grade from 2 to 30 per cent. Jabalpur and Khandwa 232 

are far away from the coast and located in the interior part of Indian land.  233 

The daily rainfall data is collected for the period 1901 to 1999 from Indian Meteorological 234 

Department (IMD), Pune. The data set is complete and there is no missing data. The data is 235 

for the monsoon period (June to September) only as most of the annual rainfall (above 80%) 236 

occurs in this period only. Basic statistics for the rainfall data at all these stations are shown 237 

in Table 4. It is found that the station Sambalpur is having maximum mean rainfall whereas 238 

the kurtosis (measure of peakedness) is maximum for Jabalpur. For Khandwa station, mean 239 

rainfall is lowest with the maximum coefficient of variation.  240 

Data for the period 1901 to 1980 is used for development of state/sub-state TPM and the 241 

data for the period 1981 to 1999 is used to test the performance of SMP. Stationarity of the 242 
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data set is checked and the results are shown in Table 5. The entire period of the data is 243 

divided into five parts and the mean daily rainfall is computed for each period. Mean is also 244 

computed for entire length of data (1901-1999). The p-value (in parentheses) is obtained for 245 

the null hypothesis that the mean is equal to the mean for entire period (1901-1999) for that 246 

station at 5% significance level. It is found that almost for all the cases the mean does not 247 

differ from the overall mean (except two cases). Thus, it can be safely assumed that the data 248 

is first order stationary. The methodology of SMP is applied to a specific station, thus the 249 

homogeneity of the data is not checked. On the other hand, being located over different 250 

parts of the country, the daily rainfall characteristics need not be homogeneous. However, it 251 

can be found later that the SMP is performs almost equally for all these stations. 252 

3.1 Result and Discussion 253 

The daily rainfall data ( R ) is divided into nine different states. The zero rainfall ( 0=R ) is 254 

categorized as State 1 and range of other eight states are selected suitably as follows (data in 255 

mm):  256 

                                      State 1         →      0=R                        257 

                                      State 2         →    50 ≤< R  258 

                                      State 3         →     105 ≤< R  259 

                                      State 4         →     2010 ≤< R  260 

                                      State 5         →     3020 ≤< R  261 

                                      State 6         →     4530 ≤< R  262 

                                      State 7         →     6540 ≤< R  263 

                                      State 8        →      10065 ≤< R  264 

                                      State 9        →      100>R   265 
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The states are selected in such a way that approximately 70% data falls below state 2, 80% 266 

data is below states 3, 85% data below state 4, 90% data below state 5, 95% data below state 267 

6, 97.5% data below state 7 and 99% data below state 8. Thus, it is ensured that higher the 268 

magnitude finer the division. However, it is also ensured that minimum 50 data should fall 269 

in any state. 270 

The changes in magnitude of daily rainfall are computed by taking first order different of 271 

the original series. These magnitudes ( r ) are classified into another set of nine different 272 

sub-states. The categorization is as follows (values are in mm): 273 

Sub-state a         →      100−≤r                        274 

Sub-state b         →    50100 −≤<− r  275 

Sub-state c         →     2550 −≤<− r  276 

Sub-state d         →     525 −≤<− r  277 

Sub-state e         →     55 ≤<− r  278 

Sub-state f         →     255 ≤< r  279 

Sub-state g         →     5025 ≤< r  280 

Sub-state h        →      10050 ≤< r  281 

Sub-state k        →      100>r   282 

State/sub-state TPM is computed by selecting one particular state and historical transitions 283 

from that state to a particular sub-state are obtained from the available data, as shown in 284 

eqn. (5) in the methodology. The state/sub-state TPM is shown in Table 6. Row wise 285 

summation of column-by-column probabilities in the state/sub-state TPM results in 286 

cumulative state/sub-state TPM. The cumulative state/sub-state TPM is represented in a 287 
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contour plot (Fig. 2). In this plot, 5%, 50% and 95% probability contours are shown in 288 

particular. 289 

Three points can be noticed from the contour plot of cumulative state/sub-state TPM. First, 290 

the low probability contour line are almost linear whereas the high contour lines are 291 

nonlinear. Second, the low probability contours indicate that a lower state can have a larger 292 

change in the next time step, particularly for the low probability contours. For example, if 293 

the initial state is 2, at 50% probability level, the change magnitude is somewhere in 294 

between sub-states d and e, whereas if the initial state is 4, the change magnitude is some 295 

where in between c and d. However, for high probability contours, change magnitude 296 

increases with the relatively higher initial states. This can be observed for states 1 though 4 297 

at 95% probability level. The third point is that for all the probability lines, for high initial 298 

states, the probability contours are linearly decreasing. This indicates that an extreme event 299 

can be followed by reduction in its magnitude in the next step (at daily scale).  300 

As stated before, the cumulative state/sub-state TPM can be used to probabilistically infer 301 

the possible change in rainfall magnitude in the next time step. Being in some particular 302 

state at the current time-step, computation of the magnitude of expected change in rainfall 303 

(at some probability level) in the next time step is carried out using cumulative state/sub-304 

state TPM. Two different values (minimum and maximum possible changes) are computed 305 

from the identified state of change by interpolation considering lower and upper boundaries 306 

for each sub-states. Results using linear interpolation are presented in this paper. The 307 

minimum and maximum possible changes (with sign) are added to the rainfall magnitude of 308 

the current step to obtain the possible range of rainfall in the next time step. The prediction 309 

performance in investigated for the period 1981 to 1999. The prediction performance varies 310 

with the probability level for the next day rainfall. A plot between probability level Vs 311 
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Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error 312 

(MAE) is prepared (Fig. 3). These measures are computed between observed and the 313 

average of upper and lower limits predicted range. It is found that both the MSE and RMSE 314 

remain constant up to 80% probability level. However, these values are actually decreasing 315 

up to 80% probability level. MAE is found to gradually increase with the increase in 316 

probability. However, considering all these measures, the best performance is obtained at 317 

80% probability level in terms of MSE and RMSE. Thus, the prediction performance is 318 

obtained at 80% probability level for the period 1981 to 1999 and shown in fig. 4a for all the 319 

raingauge stations. However, for clarity, the prediction performance for the period 1998 to 320 

1999 is shown in fig. 4b all the raingauge stations. Upper and lower limits of possible next 321 

day rainfall are shown in these plots along with the actual observed rainfall. It is found that 322 

most of the observed rainfall either lie within the predicted range or close to it. However, 323 

there are still few cases in which the predicted range fails to capture the observed values. In 324 

particular, the upper limit is very high compare to the observed one. This might be due to 325 

the non existence of such variation in the historical record. Even though this is an 326 

shortcoming of the prediction performance, the overall performance is very useful to the 327 

community as an early warning to tackle the extreme events, such flooding, water logging 328 

etc.  It is also worthwhile to mention here that one of the most important shortcomings of 329 

the SMP is the fact that it needs a long historical record to properly capture the historical 330 

behaviour of daily rainfall variation through state/sub-state TPM, which is a general 331 

shortcoming for almost all data driven approaches.  332 

4 Conclusions 333 

Daily variation of rainfall is one of the highly complex but most important parameter to 334 

tackle various hydrologic problems. Split Markov Process (SMP) is introduced in this paper 335 

to assess the daily rainfall variation in a probabilistic way. This study attempts to 336 
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statistically analyze and predict the probabilistic behavior of the station rainfall using SMP. 337 

SMP investigates the transition between states and sub-states, as against the general Markov 338 

Process (MP), which investigates the transition between different states of the system. In 339 

order to assess probabilistic range of variation, sub-states are introduced in addition to the 340 

states to obtain state/sub-state transition probability matrix (TPM) in SMP. The state/sub-341 

state TPM is generated for daily rainfall data from different raingauge stations using SMP. 342 

The probabilistic behavior of change in daily rainfall magnitude is captured through 343 

state/sub-state cumulative TPM, which is finally used to predict the possible range of daily 344 

rainfall in the next time step.  345 

Illustration of SMP in this paper deals with first order SMP. The concept can be extended to 346 

higher order as well. As explained in equation (2), in general, previous m  states are to be 347 

considered for thm  order SMP to obtain corresponding TPM. For example, TPM for second 348 

order SMP should consider two previous states. As it is noticed in the analysis, first order 349 

SMP with nine states and nine sub-states constitute a [ ]99×  TPM, i.e., 350 

[ ]statessubofNumberstatesofNumber −× . However, for 2nd order SMP the size of 351 

TPM will be 81X9. Similarly, for 3rd order SMP three previous states are to be considered 352 

and the size of TPM will be 729x9. Thus, the number of rows increases by 353 

( )orderstatesofNumber .  354 

Using SMP, predictions are provided with a possible range of upper and lower limit of 355 

rainfall magnitude. Four raingauge stations are selected including one coastal station (Puri), 356 

one station (Sambalpur) is few hundred kilometers interior from the sea coast and other two 357 

stations (Jabalpur and Khandwa) are located inland. Topography of each station differs from 358 

each other. However, the performance of SMP is found to be uniform for all the stations as 359 

revealed in the analysis. The results are very useful for the upper range of prediction. The 360 
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early notice for the extreme events is possible to communicate to the concerned community. 361 

However, as in the other data driven methods, the major drawback of the SMP is that it need 362 

a reasonably long historical record to capture the behavior of daily rainfall variation. 363 
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Figure Captions: 419 

Fig 1: Flowchart showing major steps of Split Markov Process (SMP) 420 

Fig.2. Contour plot of states/sub-state cumulative TPM showing 5%, 50% and 95% 421 

probability contours for different stations as shown in title 422 

Fig. 3: Plot of probability level Vs Mean Square Error (MSE), Root Mean Square Error 423 

(RMSE) and Mean Absolute Error (MAE) 424 

Fig. 4a: Prediction performance for the period June 1, 1981 to September, 1999 for different 425 

stations as shown in title 426 

Fig. 4b: Prediction performance for the period and June 1, 1998 to September, 1999 for 427 

different stations as shown in title 428 

 429 

Table Caption: 430 

Table 1: Number of occurrences of states and its transitions to different sub-states 431 

Table 2: State/sub-state TPM for the example problem shown in Table 1 432 

Table 3: Cumulative state/sub-state TPM for the example problem shown in Table 1 433 

Table 4: Descriptive statistics of the rainfall data 434 

Table 5:  Test for stationarity in mean 435 

Table 6: State/Sub-state Transition Probability Matrix using Split Markov Process 436 

 437 
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Table 1: Number of occurrences of states and its transitions to different sub-states (ref. 438 

section 2.3 for the example problem) 439 

Number of observed transitions to sub-state 
 State Number of occurrences 

(Total = 99) a b c d e 

I 15 5 6 3 0 1* 

II 45 15 22# 5 3 0 

III 18 2 7 6 1 2 

IV 12 1 2 5 2 2 

V 9 0 1 2 4 2 
* This cell should be read as there is 1 occurrence of transition from state I to sub-state e 440 
# This cell should be read as there are 22 occurrences of transition from state II to sub-state b and other cells 441 
should be read in a similar way 442 

Table 2: State/sub-state TPM for the example problem shown in Table 1 443 

Sub-states 
State 

a b c d e 

I 0.333 0.400 0.200 0.000 0.067 

II 0.333 0.489 0.111 0.067 0.000 

III 0.111 0.389 0.333 0.056 0.111 

IV 0.083 0.167 0.417 0.167 0.167 

V 0.000 0.111 0.222 0.444 0.222 

Table 3: Cumulative state/sub-state TPM for the example problem shown in Table 1 444 

Sub-states 
State 

a b c d e 

I 0.333 0.733 0.933 0.933 1.000 
II 0.333 0.822 0.933 1.000 1.000 
III 0.111 0.500 0.833 0.889 1.000 
IV 0.083 0.250 0.667 0.833 1.000 
V 0.000 0.111 0.333 0.778 1.000 

 445 



23 
 

Table 4: Descriptive statistics of the rainfall data 446 

Descriptive statistics for daily rainfall data 
Station 

Mean Median CV Skewness Kurtosis 

Khandwa 6.22 0 2.69 5.75 52.58 

Jabalpur 9.99 1.00 2.21 6.52 111.45 

Sambalpur 11.33 1.60 2.09 4.96 52.87 

Puri 7.98 0.10 2.46 4.91 41.42 

Table 5:  Test for stationarity in mean. The p-value (in parentheses) is for the null 447 

hypothesis that the mean is equal to the mean for entire period (1901-1999) for that station. 448 

The bold face cells indicate that null hypothesis can not be rejected at 5% significance level. 449 

Mean in mm (p-value) Station 1901-1999 1901-1920 1921-1940 1941-1960 1961-1980 1981-1999

Khandwa 6.22 4.97 
(0.001) 

6.06 
(0.682) 

7.03 
(0.029) 

6.80 
(0.124) 

6.21 
(0.983) 

Jabalpur 9.99 9.09 
(0.060) 

11.30 
(0.008) 

10.05 
(0.909) 

9.76 
(0.635) 

9.76 
(0.653) 

Sambalpur 11.33 11.47 
(0.787) 

11.99 
(0.209) 

11.48 
(0.777) 

10.58 
(0.147) 

11.14 
(0.724) 

Puri 7.98 7.62 
(0.391) 

7.88 
(0.807) 

7.88 
(0.818) 

7.79 
(0.658) 

8.78 
(0.074) 

 450 

Table 6: State/Sub-state Transition Probability Matrix using Split Markov Process 451 

Sub-states 
States 

a b c d e f g h k 

1 0.000 0.000 0.000 0.000 0.876 0.088 0.023 0.011 0.002 

2 0.000 0.000 0.000 0.001 0.773 0.155 0.048 0.017 0.006 

3 0.000 0.000 0.000 0.476 0.291 0.144 0.057 0.020 0.012 

4 0.000 0.000 0.000 0.684 0.113 0.112 0.055 0.025 0.011 

5 0.000 0.000 0.158 0.648 0.072 0.066 0.033 0.018 0.006 

6 0.000 0.000 0.646 0.229 0.044 0.026 0.022 0.026 0.007 

7 0.000 0.311 0.500 0.104 0.031 0.018 0.031 0.006 0.000 

8 0.000 0.782 0.126 0.058 0.012 0.000 0.000 0.000 0.023 

9 0.629 0.258 0.048 0.048 0.000 0.000 0.016 0.000 0.000 
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 452 

Fig 1: Flowchart showing major steps of Split Markov Process (SMP) 453 
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 455 

456 

 457 

Fig.2. Contour plot of states/sub-state cumulative TPM showing 5%, 50% and 95% 458 

probability contours 459 

 460 
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       461 

    462 

Fig. 3: Plot of probability level Vs Mean Square Error (MSE), Root Mean Square Error 463 

(RMSE) and Mean Absolute Error (MAE) 464 



27 
 

 465 

 466 

 467 

 468 

Fig. 4a: Prediction performance for the period June 1, 1981 to September, 1999 for different 469 

station as shown in title 470 
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 472 

 473 

 474 

Fig. 4b: Prediction performance for the period and June 1, 1998 to September, 1999 for 475 

different station 476 


