
Response to the comments by Reviewers 

We appreciate the efforts and comments the reviewers have made in the reviewing process of our 
paper. Thanks for the opportunity to revise our paper. Based on the comments by the Reviewers, 
we have made some changes in the revised manuscript to more clearly present our research 
findings. We hope these changes and our response below will adequately address the reviewer’s 
concern. Please also note that we have corrected several spelling errors and updated our references. 
Supplements include revised manuscript and response to the comments by reviewers. 
 

Comments 

One of the most important conclusions, that is mentioned in the manuscript, is that parameter 
better can be transferred from dry to wet than vice versa. I find this, as stated before, 
counterintuitive and I suspect that the finding is an artifact related to the used objective function. 
The authors now included two additional objective functions, but I do not agree that these avoid 
the artifact/bias in a better way. I think this finding would motivate more discussions and analyses, 
where the effect of different flow conditions (dry/wet) on various objective functions is addressed. 

Response: 

We have rewritten the discussion and the conclusions parts, which are as following, 

--Line 572-585. Credibility of a hydrological model has traditionally been tested using streamflow 
data from a validation period that is similar to calibration period.  The assumption is that the 
model will be used under conditions similar to those of the calibration.  However, when dealing 
with impact of climate change on streamflow, the assumption is not generally valid and the model 
needs to be tested under conditions different from those of the calibration.  For this purpose, the 
two hydrological models were evaluated using differential split-sample test (Klemes, 1986).  
When using a dry period for calibration and a wet period for validation, the models produced more 
accurate estimates of streamflow (i.e. higher NSE and lower bias) compared with estimates 
produced using a wet period for calibration and a dry period for validation (see Table 4). Similar 
results have been reported by Vaze et al. (2010) and the finding can be partly explained by the fact 
that hydrological models generally perform better in wet periods than in dry periods (Vaze et al., 
2010; Gallart et al., 2007, Perrin et al. 2007; Lidén and Harlin, 2000, Gan et al., 1997; Hughes, 
1997). 

--Line 621-637. Apart from quality of the input data (e.g. rainfall) and model structure, 
performance of a hydrological model is also dependent on how it is calibrated. If a hydrological 
model is intended to simulate runoff for a wet climate scenario then it should be calibrated on a 
wet segment of the historic record. Conversely, if it is intended to simulate runoff for a dry climate 
scenario then it should be calibrated on a dry segment of the historic record. We also found that 
when using a dry period for calibration and a wet period for validation, the models produced more 
accurate estimates of streamflow compared with estimates produced using a wet period for 
calibration and a dry period for validation. In other words, transferring model parameter values 
obtained from dry periods to wet periods will result in smaller errors in streamflow estimation 



than transferring model parameter values obtained from wet periods to dry periods. The soil 
related model parameters are more sensitive to the choice of calibration period than other 
parameters and large uncertainty may be introduced when transferring the soil related parameters 
to conditions different from the calibration. Our research has implications for hydrological 
modellers looking to estimate future runoff and we hope this study will stimulate further research 
into the selection of calibration data. 

 

As we know, a number of factors can affect accuracy of a rainfall-runoff model and these include 
quality of the input data (e.g. rainfall), model structure, and model calibration.  It is also 
recognized that model accuracy is dependent on hydroclimatic conditions and in general 
rainfall-runoff models perform better in wet conditions than in dry conditions (Vaze et al., 2010; 
Gallart et al., 2007, Perrin et al. 2007; Lidén and Harlin, 2000, Gan et al., 1997; Hughes, 1997).  
Performance of a rainfall-runoff model can be gauged by a number of statistical indices (Hall, 
2001) providing different measures of goodness-of-fit of a model to measured runoff.  It is 
acknowledged that no single index is perfect and hence we used four statistical indices in our 
study to evaluate the model performance.  The statistical indices listed in Table 4 indicate that 
when using a dry period for calibration and a wet period for validation, the model produced more 
accurate estimates of streamflow compared with estimates produced using a wet period for 
calibration and a dry period for validation.  This conclusion is based on these results and it is not 
due to “an artifact related to the used objective function” as suggested by the reviewer. 

I want to draw your attention to the fact that our finding is consistent with the studies listed below 
from the literature. I hope the results presented in our paper and these studies provide strong 
support for our conclusion. It should also be noted that we considered the earlier comments made 
by the reviewer on this very same issue and addressed the concern by adding two more statistical 
indices to measure the model performance. The results are consistent and support our conclusion. 

 

Vaze et al. (2010) evaluated four rainfall runoff models in terms of their ability to predict runoff 
responses to changes in climate inputs. In their assessment of the model performance, they used a 
combined objective function of the Nash-Sutcliffe efficiency and a logarithmic function of bias. 
They found that it is more difficult for a model calibrated using data from a wet period to predict 
runoff over a dry period than vice versa. 

 

Gallart et al (2007) showed that TOPMODEL is suitable for simulating runoff under wet 
conditions, but not so much under dry conditions.  Perrin et al. (2007) also found that drier 
catchments were more difficult to calibrate. 

 

Lidén and Harlin (2000) evaluated performance of the HBV-96 model using data from four 
catchments located in Europe, Africa, and South America.  Mean annual rainfall, runoff, and 
potential evapotranspiration of these catchments range from 639 to 2209, 222-1712, and 1650 to 
700 mm per year, respectively.  The runoff ratio ranges from 0.3 to 0.8 and a higher coefficient of 



variation was found in the drier catchments. The HBV -96 model was calibrated using manual, 
automatic, and Monte Carlo methods with the objective functions defined by the Nash Sutcliffe 
efficiency and the combined criterion of the Nash Sutcliffe efficiency and the relative volume error. 
The results of Lidén and Harlin (2000) showed that model performance decreased with increased 
catchment dryness.  They attributed this to higher climatic variability in drier catchments.  
Generally speaking, evapotranspiration is a smaller proportion of rainfall in wetter catchments and 
the relative influence of a model error on runoff becomes less in wetter catchments (Lidén and 
Harlin, 2000). 

 

Gan et al (1997) showed that “On the whole, dry catchments are more sensitive to the model 
structure and harder to model than wet catchments. The model performance depends more on the 
model structure, the objective function used in automatic calibration, and data quality, than on 
model complexity (or number of parameters) or calibration data length. Also, it seems wet years 
provide better calibration data than dry years because the former contains more information 
(especially in terms of peak flows) than the latter.” 

 

Hughes (1997) evaluated applicability of two conceptual rainfall runoff models and found the 
models performed better in the wetter catchments. The main reason for the poorer results in the 
drier catchments is higher spatial rainfall variability, which was not well represented by the 
models. 
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Comments 

The authors should read carefully through their document one more time since there are some 
spelling mistakes (references etc.). 

Response: 

We have corrected several spelling errors and updated our references. 

--Line 653-655. Boorman D B, Sefton C E M. 1997. Recognising the uncertainty in the 
quantification of the effects of climate change on hydrological response, Climatic Change, 35: 
415-434. 

--Line 723-726. Monomoy G, O’Connor, K. M. 2007. Comparative assessment of six automatic 
optimization techniques for calibration of a conceptual rainfall–runoff model, Hydrological 
Sciences Journal – Journal Des Sciences Hydrologiques, 52(3): 432-449. 

--Line 83. Boorman and Sefton. (1997) evaluated effects of climate change on mean runoff 

--Line 88. Monomoy and O’Connor (2007) used 6 automatic optimisation techniques to calibrate a 
conceptual rainfall–runoff model 
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Abstract: This paper investigates issues involved in calibrating hydrological models 24 

against observed data when the aim of the modelling is to predict future runoff under 25 

different climatic conditions. To achieve this objective, we tested two hydrological 26 

models, DWBM and SIMHYD, using data from 30 unimpaired catchments in 27 

Australia which had at least 60 years of daily precipitation, potential 28 

evapotranspiration (PET), and streamflow data. Nash–Sutcliffe efficiency (NSE), 29 

coefficient of determination (R2), modified index of agreement (d1) and absolute 30 

percentage water balance error (WBE) were used as performance criteria. We used a 31 

differential split-sample test to split up the data into 120 sub-periods and 4 different 32 

climatic sub-periods in order to assess how well the calibrated model could be 33 

transferred different periods. For each catchment, the models were calibrated for one 34 

sub-period and validated on the other three. Monte Carlo simulation was used to 35 

explore parameter stability compared to historic climatic variability. The chi-square 36 

test was used to measure the relationship between the distribution of the parameters 37 

and hydroclimatic variability. The results showed that the performance of the two 38 

hydrological models differed and depended on the model calibration. We found that if 39 

a hydrological model is set up to simulate runoff for a wet climate scenario then it 40 

should be calibrated on a wet segment of the historic record, and similarly a dry 41 

segment should be used for a dry climate scenario. The Monte Carlo simulation 42 

provides an effective and pragmatic approach to explore uncertainty and equifinality 43 

in hydrological model parameters. Some parameters of the hydrological models are 44 

shown to be significantly more sensitive to the choice of calibration periods. Our 45 

findings support the idea that when using conceptual hydrological models to assess 46 

future climate change impacts, a differential split-sample test and Monte Carlo 47 

simulation should be used to quantify uncertainties due to parameter instability and 48 
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non-uniqueness.  49 

 50 

KEY WORDS: Hydrological models; nonstationarity; calibration; validation; climate 51 

change 52 

 53 

1 Introduction 54 

Climate change caused by increasing atmospheric concentration of greenhouse gases 55 

may have significant effects on the hydrological cycle and water availability, hence 56 

affecting agriculture, forestry, and other industries (Rind et al., 1992; IPCC, 2007). 57 

Changes in the hydrological cycle may mean more floods and droughts, and increased 58 

pressure on water supply and irrigation systems. It is important for us to be able to 59 

estimate the potential impact of climate change on water resources and develop 60 

sustainable management strategies. One of the challenges in predicting hydrological 61 

response to climate change is the issue of hydrological nonstationarity (Milly et al., 62 

2008). There are numerous factors that can affect hydrological stationarity and these 63 

include vegetation responses to elevated CO2, changes in land use and rainfall 64 

characteristics. It is crucial to improve our understanding of the effect of 65 

nonstationarity on hydrological assessments of climate change. 66 

 67 

Hydrological models are important tools for predicting the impact of climate change 68 

on future water resources and associated socioeconomic impacts. A number of models 69 

have been used to evaluate hydrological effects of climate change (Rind et al., 1992). 70 

Predicting the hydrological impacts of climate change involves two key steps: 71 

downscaling the outputs from global climate models (GCMs) and then running 72 
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hydrological models. At present, outputs from different GCMs have been used to 73 

drive hydrological models for predicting streamflow under a changed climate (Chiew 74 

et al., 2009). There are many factors that can affect the accuracy of a rainfall-runoff 75 

model in predicting the hydrological responses to climate change, including the 76 

particular hydrological model chosen, the GCM used, the optimisation technique 77 

employed, and the calibration period of the model. Most researchers usually use an 78 

ensemble of these techniques to minimise the uncertainty in predicting climate change 79 

impacts. For instance, Chiew et al. (1995) used results from 5 separate GCM 80 

experiments and reported that, in certain parts of Australia, the GCMs did not even 81 

agree on the direction of change in rainfall (i.e. increasing or decreasing rainfall). 82 

Boorman and Sefton. (1997) evaluated effects of climate change on mean runoff, 83 

flood magnitude, and low flow for 3 catchments in UK using 2 conceptual 84 

rainfall–runoff models. In their study, they considered 2 climate scenarios and 8 85 

climate sensitivity tests. Minville et al. (2008) produced an uncertainty envelope of 86 

future hydrological variables by considering 10 equally weighted climate projections 87 

from a combination of 5 GCMs and 2 greenhouse gas emission scenarios. Monomoy 88 

and O’Connor (2007) used 6 automatic optimisation techniques to calibrate a 89 

conceptual rainfall–runoff model, and there have been a number of more recent 90 

studies for estimating the impact of climate change on hydrological processes (Chiew 91 

et al., 2009, Vaze et al., 2010, Boyer et al., 2010). An implicit assumption in all these 92 

studies is that rainfall–runoff models calibrated over the historical period are valid for 93 

predicting the future hydrological regime under a changed climate and this relates 94 

directly to the assumption of hydrological stationarity. However, little has been 95 

carried out to test the validity of this assumption. 96 

 97 
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Calibration of hydrological models generally involves optimizing model parameters to 98 

match measured streamflow using observed rainfall as input. Performance of the 99 

model is usually tested using a simple spilt-sample test, i.e. the model is calibrated for 100 

one period of the record and tested for another period. The simple split-sample test 101 

may be sufficient for applications where hydroclimatic conditions between the 102 

calibration period and validation period are similar. However, when the model needs 103 

to be applied to simulate streamflow from periods with different conditions from 104 

those in the calibration periods, a more powerful test is required (Klemes, 1986, Xu, 105 

1999, Seibert, 2003). In a recent paper, Andreassian et al (2009) used crash test to 106 

advocate for more comprehensive model testing in hydrology. For predicting the 107 

impact of climate change on streamflow, the input rainfall series are varied according 108 

to an assumed future climate scenario and this often means different climatic 109 

conditions. But is it appropriate to use these models for future climatic conditions 110 

when rainfall–runoff relations could be very different to those experienced 111 

historically?  112 

 113 

This paper investigates the transferability of hydrological models under nonstationary 114 

climatic conditions. We compare results obtained with different hydrological models 115 

calibrated under different climatic conditions. The paper first presents two 116 

hydrological models chosen for this study – the Dynamic Water Balance Model 117 

(DWBM) and the SIMHYD model – and then describes the data used to calibrate 118 

them. We describe different methods of applying the data, including a differential 119 

split-sample test, a Monte Carlo simulation, and a performance criterion. Finally, we 120 

analyse the performance of the models under different calibration conditions and 121 

discuss the optimal parameters for each. 122 
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 123 

2 Description of Hydrological Models and Data 124 

Two lumped hydrological models with daily inputs were chosen for this study: the 125 

Dynamic Water Balance Model (DWBM) (Zhang et al., 2008) and the SIMHYD 126 

model (Chiew et al., 2002), and detailed description of the two models is presented 127 

below.  128 

 129 

2.1 The Dynamic Water Balance Model (DWBM) 130 

The DWBM model used in this study was developed by Zhang et al. (2008). It is a 131 

lumped conceptual water balance model with two stores: a near surface root-zone 132 

store and a deeper zone store (Figure 1). The model is based on Budyko’s concept of 133 

water availability and atmospheric demand (Budyko, 1958) or the concept of “limits 134 

and controls” (Calder, 1998). Fundamental to this model is a functional form that 135 

represents a smooth transition between supply and demand limits (Fu, 1981):  136 

ww

P
E

P
E

P
E

/1

00 11
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−+=                                         (1) 137 

where w is a model parameter ranging between 1 and ∞.  For the purpose of model 138 

calibration, we define α  = 1-1/w so that α varies between 0 and 1. This definition also 139 

conveniently associates an increase in α with an increase in evapotranspiration 140 

efficiency. P is rainfall and E0 is potential evapotranspiration at mean annual 141 

timescale. More details of this mean annual water balance model are given in Zhang 142 

et al. (2004) and Zhang et al. (2008). 143 

It is assumed that rainfall P(t) in time step t will be partitioned into direct runoff Qd(t) 144 

and catchment rainfall retention:  145 
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)()()( tXtQtP d +=                                               (2) 146 

where X(t) is called catchment rainfall retention and is the amount of rainfall retained 147 

by the catchment for evapotranspiration ET(t), change in soil moisture storage 148 

S(t)-S(t-1) and recharge R(t). 149 

The demand limit for X(t) is the sum of available storage capacity (Smax–S(t-1)) and 150 

potential evapotranspiration (E0(t)) and is denoted as X0(t), while the supply limit can 151 

be considered as rainfall P(t). Following a similar argument to Budyko (1958), we can 152 

postulate that: 153 

∞→→ )(/)(1)(/)( 0 tPtXastPtX  (very dry conditions)           (3) 154 

0)(/)()()( 00 →→ tPtXastXtX  (very wet conditions)            (4) 155 

The catchment rainfall retention X(t) can be calculated as:  156 

( ) ( )1)(
)( ,)( 0 αtP

tXFtPtX =                                             (5) 157 

where F( ) is Fu’s curve – equation (1), α1 is rainfall retention efficiency, i.e., a larger 158 

α1 value will result in more rainfall retention and less direct runoff.  159 

From equations (2) and (5), direct runoff is calculated as: 160 

)()()( tXtPtQd −=                                               (6) 161 

At sub-annual time scales, water availability W(t) can be defined as:  162 

)1()()( −+= tStXtW                                              (7) 163 

Combining the definition of X(t) with equation (7), one obtains: 164 

)()()()( tRtStETtW ++=                                          (8) 165 

While equation (7) defines the source of the water availability, Equation (8) 166 

determines the partitioning. Next define evapotranspiration opportunity 167 

(Sankarasubramanian and Vogel, 2002) as )()()( tStETtY += , we obtain: 168 

)()()( tRtYtW +=                                                (9) 169 
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The demand limit for Y(t) can be considered as the sum of potential 170 

evapotranspiration (E0(t)) and soil water storage capacity (Smax) and is denoted as Y0(t), 171 

while the supply limit is the available water W(t). Similar to Budyko (1958), we can 172 

postulate that: 173 

∞→→ )(/)(1)(/)( 0 tWtYastWtY  (very dry conditions)          (10) 174 

0)(/)()()( 00 →→ tWtYastYtY  (very wet conditions)          (11) 175 

The evapotranspiration opportunity Y(t) can be estimated from the following 176 

relationship: 177 

( ) ( )2)(
)( ,)( max0 αtW

StEFtWtY +=                                         (12) 178 

Thus groundwater recharge R(t) can be calculated from Equation (9). The next step is 179 

to calculate evapotranspiration ET(t). The demand limit for ET(t) can be considered as 180 

potential evapotranspiration E0(t) and the supply limit is the available water W(t). 181 

Similar to Budyko (1958), evapotranspiration ET(t) can be calculated as: 182 

( ) ( )2)(
)( ,)( 0 αtW

tEFtWtET =                                           (13) 183 

where α2 is a model parameter, representing evapotranspiration efficiency.   184 

Soil water storage can now be calculated as: 185 

)()()( tETtYtS −=                                               (14) 186 

Finally, groundwater storage is treated as linear reservoir, so that baseflow and 187 

groundwater balance can be modelled as: 188 

)1()( −= tdGtQb                                                (15) 189 

( ) )()1(1)( tRtGdtG +−−=                                        (16) 190 

where Qb is baseflow, G is groundwater storage, and d is a recession constant.   191 

 192 
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The DWBM model has been applied to 265 catchments in Australia and showed 193 

encouraging results (Zhang et al., 2008). The model has four parameters: retention 194 

efficiency(α1); evapotranspiration efficiency(α2); soil water storage capacity (Smax), 195 

and baseflow linear recession constant (d). The range of the parameter values is 196 

shown in Table 1. 197 

 198 

[Figure 1 and Table 1 here] 199 

 200 

2.2 The SIMHYD Model 201 

The SIMHYD model is a lumped conceptual daily rainfall–runoff model (Chiew et al., 202 

2002), driven by daily rainfall and PET, which simulates daily streamflow. It has been 203 

tested and used extensively across Australia (Chiew et al., 2002; Siriwardena et al., 204 

2006; Viney et al., 2008; Zhang et al., 2008; Zhang et al., 2009). Figure 2 shows the 205 

structure of the SIMHYD model and the algorithms controlling how water enters the 206 

system from precipitation, flows into several stores, and then flows out through 207 

evapotranspiration and runoff. The SIMHYD model has 7 parameters, and the useful 208 

ranges of them are shown in Table 2. 209 

 210 

[Figure 2 and Table 2 about here] 211 

 212 

In the SIMHYD model, daily rainfall is first intercepted by an interception store, 213 

which is emptied each day by evaporation. Incident rainfall, which occurs if rainfall 214 

exceeds the maximum daily interception, is then subjected to an infiltration function. 215 

The incident rainfall that exceeds the infiltration capacity becomes infiltration excess 216 

runoff. A soil moisture function diverts the infiltrated water to the river (as saturation 217 
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excess runoff/interflow), groundwater store (as recharge) and soil moisture store. The 218 

saturation excess runoff/interflow is first estimated as a linear function of the soil 219 

wetness (soil moisture level divided by soil moisture capacity). The equation used to 220 

simulate interflow therefore attempts to mimic both the interflow and saturation 221 

excess runoff processes (with soil wetness used to reflect those parts of the catchment 222 

that are saturated and from which saturation excess runoff can occur). Groundwater 223 

recharge is then estimated, also as a linear function of the soil wetness. The remaining 224 

moisture flows into the soil moisture store. Evapotranspiration from the soil moisture 225 

store is estimated as a linear function of the soil wetness, but cannot exceed the 226 

potential rate (PET minus intercepted water). The soil moisture store has a finite 227 

capacity and overflows into the groundwater store, baseflow from which is simulated 228 

as a linear recession from the groundwater store. The model has therefore three runoff 229 

components: infiltration excess runoff, saturation excess runoff/interflow, and 230 

baseflow. 231 

 232 

2.3 Study Catchments and Data 233 

In this study 30 catchments from Australia were selected with at least 60 years of 234 

unimpaired daily streamflow data (Figure 3). Unimpaired streamflow is defined as 235 

streamflow that is not subject to regulation or diversion. The catchment area ranges 236 

from 82 to 1891 km2 with mean annual streamflow varied between 53 to 1363 mm. 237 

The mean annual precipitation (P) ranges from 628 to 2095 mm and annual potential 238 

evapotranspiration (PET) ranges from 817 to 2098 mm, representing diverse 239 

hydrological and climatic conditions. The runoff coefficient varies from 0.08 to 0.65. 240 

 241 
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Catchment averaged annual rainfall was estimated from gridded SILO daily rainfall 242 

(http://www.longpaddock.qld.gov.au/silo, Jeffrey et al., 2001). The SILO Data Drill 243 

provides surfaces of daily rainfall and other climate data interpolated from point 244 

measurements made by the Australian Bureau of Meteorology. The spatial resolution 245 

of the gridded daily rainfall data is 0.05 degrees based on interpolation of over 6000 246 

rainfall stations across Australia. The interpolation uses monthly rainfall data, 247 

ordinary kriging with zero nugget, and a variable range. Monthly rainfall for each 5 × 248 

5 km grid cell was converted to daily rainfall using daily rainfall distribution from the 249 

station closest to the grid cell (Jeffrey et al., 2001). The daily time series of maximum 250 

and minimum temperatures, incoming solar radiation, actual vapour pressure, and 251 

precipitation at 0.05 × 0.05 (~ 5 km × 5 km) grid cells from the SILO Data Drill 252 

(http://www.longpaddock.qld.gov.au/silo) were used. 253 

 254 

Potential evaporation was calculated using the Priestley-Taylor equation (Priestley 255 

and Taylor, 1972) for each catchment with the Priestley-Taylor coefficient set to 1.26 256 

following Raupach (2000). In the calculation, the available energy was taken as equal 257 

to the net radiation by neglecting ground heat flux. The net radiation was calculated 258 

from the incoming global shortwave and longwave radiation, surface albedo, surface 259 

emissivity, and surface temperature as described by Raupach et al. (2001). 260 

 261 

Daily streamflow data were obtained from the Australian Land and Water Resources 262 

Audit project (Peel et al., 2000) and have been quality checked. Firstly, data quality 263 

codes were checked for any missing and poor-quality data as most gauging stations 264 

provide numerical codes indicating quality of streamflow data. Missing streamflow 265 

data were infilled by interpolating streamflow values at previous and following days. 266 
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Secondly, time series of daily rainfall and streamflow were plotted to identify any 267 

inconsistency and recording errors in the data (e.g. spikes, same streamflow value for 268 

a long period of time). The quality checks are to ensure good quality streamflow data 269 

are used in the study. 270 

 271 

[Figure 3 here] 272 

 273 

3 Methods 274 

3.1 Differential Split-sample Test 275 

In general, hydrological models rely on stationary conditions (Xu, 1999). Usually, 276 

model calibration requires a split-sample test, where the model is calibrated during 277 

one climatic period and validated on another independent period. The split-sample test 278 

is the classical test, being applicable to cases where there is sufficiently long time 279 

series of the climatic data for both calibration and validation and where the catchment 280 

conditions remain unchanged, i.e. stationary (Refsgaard and Storm, 1996). This test 281 

gives an indication how the model might perform for an independent period having 282 

similar conditions. Unfortunately, this test is unable to guarantee the applicability of 283 

hydrological models under nonstationary conditions (Xu, 1999; Henriksen et al., 284 

2003). 285 

 286 

In order to try to answer the question of whether the transfer of parameter values from 287 

the present-day climate to a future climate is justified, the ‘differential split-sample 288 

test’ proposed by Klemes (1986) was considered, in which the hydrological model is 289 
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tested on calibration and validation periods under contrasting climatic conditions. In 290 

this case, different sub-periods are chosen with different historical rainfall conditions. 291 

 292 

In this study, different periods with various climatic conditions were identified. First 293 

of all, we calculated annual and mean annual precipitation over the whole period of 294 

record for each catchment. Then sub-periods with consecutive annual precipitation 295 

greater than the mean were selected as the “wet” periods and sub-periods with 296 

consecutive annual precipitation less than the mean were selected as the “dry” periods. 297 

The precipitation in the “wet” periods is 10.2% to 47.1% above the long-term average 298 

annual precipitation, while the precipitation in the “dry” periods is 10.4% to 28.3% 299 

below the long-term average annual precipitation. In the selection, the minimum 300 

length of the sub-period was set to 5 years to ensure stable model calibration. If this 301 

process results in more than two “wet” or “dry” periods, then the two wettest periods 302 

or two driest periods were selected for model calibration and validation (Figure 4). 303 

The hydrological model was calibrated for each of the 4 sub-periods and validated on 304 

each of the remaining 3 sub-periods in turn, resulting in a total of 12 calibration and 305 

validation tests. 306 

 307 

To examine model performance under different calibration and validation conditions, 308 

results from the above tests are grouped as “dry/dry”, “dry/wet”, “wet/wet”, and 309 

“wet/dry” to represent climatic conditions in the calibration and validation periods 310 

respectively. 311 

 312 

[Figure 4 about here] 313 

 314 
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3.2 Monte Carlo Simulation 315 

It has been widely recognized that hydrological models can perform equally well 316 

against measured runoff estimates even with different parameter sets and this 317 

so-called parameter equifinality may result in large prediction uncertainty (Beven, 318 

1993; Boorman et al., 1997; Niel et al., 2003; Wilby et al., 2005; Minville et al., 2008). 319 

The parameter equifinality is related to overparamterzation of hydrological models 320 

and poor parameter identifiability. For some practical applications, the parameter 321 

equifinality problem may not be an issue and any of the parameter sets may be 322 

appropriate. However, these equally good parameter sets may give different 323 

predictions when the model is used to estimate the effects of climate change and land 324 

use change on streamflow (Uhlenbrook et al., 1999). The need for improved model 325 

calibration and testing has been emphasized in recent years. Monte Carlo simulation is 326 

an effective way of calculating confidence limits of predicted time series and 327 

exploring parameter stability and identifiability in the context of historic climate 328 

variability (Uhlenbrook et al., 1999; Wilby, 2005; Widen-Nilsson et al., 2009). 329 

 330 

For each catchment and each calibration period, a Monte Carlo simulation was 331 

undertaken with 1,000,000 runs, each with randomly generated parameter values 332 

within the given ranges listed in Tables 1 and 2 for the two models respectively. We 333 

then selected assemblies of the 100 best parameter sets for each catchment and each 334 

calibration period according to a goodness-of-fit measure which is defined in section 335 

3.3. Finally, the models were run during the validation periods with all the 100 best 336 

parameter sets. Calibration with the 100 best parameter sets gave very similar results 337 

and the means were used in subsequent analysis. 338 

 339 
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3.3 Model Performance Criteria 340 

The Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) was used as the 341 

statistic criterion of the model performance. The objective function used in the model 342 

calibration is the Nash and Sutcliffe efficiency of daily runoff, which is defined as: 343 
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where Qsim,i and Qobs,i are the simulated and observed daily runoff, respectively, 345 

,obs iQ is the mean observed runoff, i is the ith day, and N is the number of days 346 

sampled and it varies with individual catchment. 347 

 348 

Following recommendations by Legates and McCabe (1999) and Hogue et al., 2006, 349 

three statistics are used to indicate the accuracy of the SIMHYD and DWBM models: 350 

the coefficient of determination (R2), the modified index of agreement (d1) and the 351 

absolute percentage water balance error (WBE): 352 
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with the symbols defined above. 356 

 357 

3.4 Analysis of Parameter Probability Distributions under Different Calibration 358 

Periods 359 

For each of the models, we ended up with 100 best parameter sets for each catchment 360 

and for each calibration period. From these parameters sets we calculated a 361 

probability distribution of each parameter. For a given significance level α, the 362 

chi-square test (χ2 test) was used to test the null hypothesis that the parameter 363 

distributions obtained for a dry period and a wet period were significantly different. A 364 

p value greater than 0.01 indicates a rejection of the null hypothesis, which means that 365 

the parameter probability distributions for the two different calibration periods are 366 

similar. 367 

 368 

4 Results  369 

4.1 Comparisons of Model Calibration under Different Climatic Conditions 370 

Results of model calibration under different climatic conditions are shown in Figure 5 371 

and Table 3. Figure 5(a) shows the percentage of model calibration tests that have a 372 

NSE value exceeding a given NSE value. Similarly, Figure 5(b-d) are corresponding 373 

plots of the coefficient of determination (R2), the modified index of agreement (d1), 374 

the absolute percentage water balance error (WBE), respectively. It can be seen that 375 

the SIMHYD model was well calibrated under both dry and wet conditions. The 376 

average value is greater than 0.70 for NSE, 0.86 for R2, 0.73 for d1. The average water 377 

balance error is 14% and 11% for the dry and wet calibration periods. Compared with 378 

the SIMHYD model, the DWBM model showed slightly poorer results. The average 379 
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value for the DWBM model is greater than 0.57 for NSE, 0.76 for R2, 0.65 for d1. The 380 

average water balance error is 22% and 17% for the dry and wet calibration periods. 381 

 382 

The plots show that both models were better calibrated under wet periods than under 383 

dry ones, with higher values of NSE, R2, and d1 and lower values of WBE in the wet 384 

calibration periods. For example, under the dry conditions, average NSE was 0.70 and 385 

0.57 for the SIMHYD and the DWBM model. Under the wet conditions, average NSE 386 

was 0.76 and 0.65 respectively for the two models. In Figure 5(a), a larger NSE value 387 

means a better performance, whereas in Figure 5(d), a smaller percentage WBE value 388 

is better. It can be noted that all the results became worse when the calibration periods 389 

became drier, indicating a higher sensitivity of the models to dry climatic conditions. 390 

The results also indicated that the errors in the simulated runoff were increased under 391 

drier climatic conditions. 392 

 393 

It can be seen from Table 3 that under dry and wet calibration periods, the median 394 

NSE values are, for the SIMHYD model, 0.70 and 0.77, respectively, and for the 395 

DWBM model, 0.58 and 0.66. The median R2 values are 0.86 and 0.88 for the 396 

SIMHYD model and 0.76 and 0.82 for the DWBM model. The median d1 values 397 

showed similar patterns under dry and wet calibration conditions. The median 398 

percentile of the absolute percentage WBE values are 13% and 8% for the SIMHYD 399 

model under dry and wet calibration periods respectively, and 15% and 12% for the 400 

DWBM model. All these results indicate that the two models can be calibrated 401 

satisfactorily for most of the tests, although the calibration results of the DWBM 402 

model are slightly poorer compared with those of the SIMHYD model. The average 403 

NSE values calibrated under the wet periods are higher – i.e. better – by 0.06 404 
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(SIMHYD model) and 0.08 (DWBM model) than those calibrated under dry periods. 405 

The average absolute percentage WBE values calibrated under wet periods are lower 406 

– again better – by 3% (SIMHYD model) and 5% (DWBM model) than those 407 

calibrated under the dry period. 408 

 409 

[Figure 5 and Table 3 about here] 410 

 411 

4.2 Comparisons of Model Validation using Different Calibration Periods 412 

Validation runs were conducted for 60, 120, 60, and 120 tests for the dry/dry, dry/wet, 413 

wet/dry, and wet/wet groups, respectively. The model validation results are 414 

summarized in Figure 6 and Table 4. As expected, the validation results are slightly 415 

poorer than the calibration results, with the averaged NSE values in the model 416 

validation generally being 0.1 to 0.2 lower than those in the model calibration and 417 

percentage water balance error being 2 to 7% higher.  418 

 419 

Comparing the validation results of the dry/dry, dry/wet, wet/dry, and wet/wet 420 

groups in Figure 6, it can be noted both the SIMHYD and DWBM models gave 421 

similar patterns. The results for the wet/wet are better than those of the dry/wet – this 422 

means that the models performed better during a wet period when they are calibrated 423 

against a wet period, compared to when they are calibrated against a dry period. These 424 

results suggest, not unexpectedly, that if a hydrological model is intended to simulate 425 

streamflow for a wet climate period then it should be calibrated on a wet segment of 426 

the historic record. They also show that hydrological models will, in general, perform 427 

better when calibrated in a wet period than when calibrated in the dry period. 428 

 429 
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Table 4 summarizes the 25th percentile, median, 75th percentile, and average values of 430 

NSE, R2, d1, and absolute percentage WBE in the validation periods. The results from 431 

the dry/dry test are slightly better than the results from the wet/dry test in terms of 432 

NSE, d1, and WBE. The coefficient of determination (R2) showed higher values for 433 

the wet/dry test. The results indicate, again reasonably, that the hydrological models 434 

perform better in a dry period when calibrated in a dry period rather than in a wet 435 

period.  436 

 437 

[Figure 6 and Table 4 about here] 438 

 439 

4.3 Parameter Uncertainty under Climatic Nonstationarity 440 

As described in section 3.2, assemblies of the 100 best parameter sets were selected 441 

from Monte Carlo simulation under different calibration conditions. Table 5 shows 442 

the percentage of the catchments in which the model parameter distributions for a dry 443 

and wet period were significantly different (p<0.01). For each model, the parameters 444 

are ranked from the most sensitive to calibration conditions to least sensitive. For the 445 

SIMHYD model, the most sensitive parameters were SUB, SMSC, SQ, and CRAK, 446 

each of which significantly affected 50% or more of the catchments. The other three 447 

parameters, K, COEFF, and INSC had smaller effects, with INSC (having an effect in 448 

only 10% of catchments) being the most insensitive to choice of dry and wet 449 

calibration periods. 450 

 451 

[Table 5 about here] 452 

 453 
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In order to further examine the effects of climatic conditions on the results, we 454 

grouped the 30 study catchments into two climatic types: 16 water-limited catchments 455 

with an index of dryness (Ep/P) greater than 1, and 14 energy-limited catchments with 456 

an index of dryness less than 1. It can be noted that all parameters performed 457 

differently in water-limited and energy-limited catchments, in particular SUB, SMSC, 458 

and CRAK.  459 

 460 

For the DWBM model, the parameters α1 and Smax exhibited different effects on 461 

runoff under the dry and wet calibration periods as 67% and 63% of the catchments 462 

showed statistically different results at the 0.01 level. At the other extreme, the 463 

parameter α2 displayed an apparent insensitivity to the calibration periods (just 23% 464 

of catchments were affected). The parameter α2 represents evapotranspiration 465 

efficiency and it behaves similarly to the parameter w of Zhang et al. (2001) and 466 

(2004), which was shown to be mostly correlated with vegetation cover. The 467 

parameter d was more sensitive to the choice of the calibration period for the 468 

water-limited catchments than for the energy-limited catchments. It is interesting to 469 

note that all the parameters behaved differently under the water-limited and 470 

energy-limited conditions, except perhaps for parameter α2. 471 

 472 

The above results indicate that some of the model parameters are sensitive to 473 

calibration conditions and the others are relative robust. An important question is how 474 

the sensitive parameters vary between the different calibration periods. Figures 7 and 475 

8 show the distributions of the optimized parameters of the two models under the dry 476 

and wet conditions in two selected catchments. The catchment 110003 has 477 

summer-dominant rainfall and catchment 401210 is winter-dominant. For the 478 
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SIMHYD model, some parameters exhibited different distributions in the dry and wet 479 

calibration periods. For example, the parameter SUB tends to be more likely at a 480 

higher value in the dry periods than in the wet periods. However, the results did not 481 

reveal any systematic trends in the other parameters. For the DWBM model, the most 482 

likely value for the parameter α1 was higher in the dry period than in the wet period 483 

for catchment 110003 and vice versa for catchment 401210 (Figure 8). The parameter 484 

Smax showed different distributions in the dry and wet periods and these distributions 485 

vary across the catchments.  486 

 487 

[Figures 7 and 8 about here] 488 

 489 

5 Discussion 490 

Streamflow of a catchment is influenced by a number of factors, most noticeably 491 

rainfall and antecedent soil moisture. During dry periods, catchments are generally 492 

characterized by small runoff events and lower runoff to rainfall ratios with higher 493 

percentage error in both rainfall and runoff. In this case, rainfall-runoff models 494 

become very sensitive to both rainfall and parameter optimization. Also, dry periods 495 

may not contain enough high flows to adequately calibrate model parameters 496 

responsible for simulating high flows (Gan et al., 1997). Apart from rainfall amount, 497 

spatial variability of rainfall can also affect runoff. Smith et al. (2004) showed that 498 

improved runoff simulations can be obtained from distributed versus lumped 499 

rainfall-runoff models in catchments with considerable rainfall variability. Spatial 500 

variability of rainfall was also found to be the dominant control on runoff production 501 

(Segond et al., 2007). In this study, spatially averaged rainfall was used in both model 502 
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calibration and validation. This is likely to affect the model results and it is expected 503 

that the rainfall variability effect will be greater in dry periods than in wet periods. 504 

 505 

It has been widely acknowledged that spatial variability of antecedent soil moisture 506 

conditions plays an important role in runoff generation (Grayson and Blöschl, 2000). 507 

Minet et al. (2011) investigated the effect of spatial soil moisture variability on runoff 508 

simulations using a distributed hydrologic model and showed that model results are 509 

sensitive to soil moisture spatial variability, especially in dry conditions. At catchment 510 

scales, soil moisture exhibit larger heterogeneity under dry conditions than wet 511 

conditions and this means errors associated with dry period runoff simulations are 512 

likely to be greater as runoff generation exhibits non-linear threshold behaviour. 513 

In this study, the differences in average annual rainfall between the wet and dry 514 

periods ranged from 10 to 47% of the long-term average rainfall and are comparable 515 

with percentage change in man annual rainfall for 2030 relative to 1990 from 15 516 

GCMs for the Murray Darling Basin in Australia (Chiew et al., 2008). 517 

 518 

The results of this study indicate that calibration periods can cause significant shifts in 519 

model parameter distributions. Some model parameters are relatively sensitive to the 520 

choice of calibration periods, while the others are fairly insensitive. As well as the 521 

impact of calibration periods on parameter distributions, whether catchments are 522 

water-limited or energy-limited also needs to be taken into consideration. For the 523 

SIMHYD model, the most sensitive parameters are SUB, SMSC, and CRAK. The 524 

parameter SUB is used to estimate interflow and it can be an important parameter in 525 

some catchments (Chiew and McMahon, 1994). However, it is difficult to estimate 526 

this parameter a priori as it is poorly correlated with any catchment characteristics 527 
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(Chiew and McMahon, 1994). The soil moisture store capacity (SMSC) affects many 528 

processes such as infiltration and evapotranspiration and it is determined by soil 529 

properties and vegetation characteristics (e.g. rooting depth). Accurate estimation of 530 

this parameter is essential to achieving satisfactory model performance. The 531 

parameter CRAK determines groundwater recharge/baseflow and is highly correlated 532 

with soil types. For the DWBM model, the most sensitive parameters are α1 and Smax, 533 

and d, representing catchment rainfall retention efficiency, maximum storage capacity, 534 

and the recession constant, respectively (Zhang et al. 2008). In a way, these 535 

parameters are similar to those sensitive parameters in SIMHYD in terms of their 536 

functional controls on water balance components. Merz et al (2011) applied a 537 

semi-distributed conceptual rainfall-runoff model to 273 catchments in Austria and 538 

showed that the parameters of the soil moisture accounting schemes exhibited strong 539 

dependence on calibration conditions, consistent with the results of the current study.  540 

This also suggests that parameters related to soil moisture accounting are likely to 541 

change with calibration conditions. The fact that these parameters are sensitive to the 542 

choice of calibration period (i.e. dry vs wet) also indicates that large uncertainty may 543 

be associated with these parameters and cares need to be exercised when transferring 544 

the parameters to conditions different from the calibration. 545 

 546 

These findings have major implications for studies of climate change impact on 547 

streamflow. When a hydrological model calibrated for a given climatic condition (e.g. 548 

wet periods) is used to simulate runoff of different climatic conditions (e.g. dry 549 

periods), transfer of some model parameters (i.e. sensitive parameters) may result in 550 

large errors in simulated runoff. One may argue that the sensitive model parameters 551 

should be updated by functionally relating them with climatic variables such as 552 
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rainfall (Merz et al., 2011). This could potentially reduce uncertainty and lead to more 553 

accurate predictions. However, some of the parameters are poorly related to 554 

catchment characteristics (e.g. rainfall) and the problem is further complicated by the 555 

fact that not every parameter is well identified and different parameter values can 556 

result in equal model performance, i.e. equifinality (Beven, 1993). It has also been 557 

recognized that model calibration tends to compensate model structural errors (Merz 558 

et al., 2011, Wagner et al., 2003), making it difficult to understand how model 559 

parameters vary with calibration conditions (Wagener et al., 2010).  560 

 561 

The differential split-sample test can be considered as the first step in addressing the 562 

issue of parameter transferability under non-stationary conditions. Monte Carlo 563 

simulation provided an effective and pragmatic approach to exploring uncertainty in 564 

hydrological model parameters. The performance of rainfall-runoff models is related 565 

to catchment characteristics such as climate, topography, soil, vegetation, catchment 566 

shape, geology, drainage network. In such a complex situation, it is hard to pinpoint 567 

the source of parameter uncertainty, but the results of this study showed that 568 

calibration periods and catchment climatic conditions are both important factors that 569 

can result in uncertainty in model performance. 570 

 571 

Credibility of a hydrological model has traditionally been tested using streamflow 572 

data from a validation period that is similar to calibration period.  The assumption is 573 

that the model will be used under conditions similar to those of the calibration.  574 

However, when dealing with impact of climate change on streamflow, the assumption 575 

is not generally valid and the model needs to be tested under conditions different from 576 

those of the calibration.  For this purpose, the two hydrological models were 577 
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evaluated using differential split-sample test (Klemes, 1986).  When using a dry 578 

period for calibration and a wet period for validation, the models produced more 579 

accurate estimates of streamflow (i.e. higher NSE and lower bias) compared with 580 

estimates produced using a wet period for calibration and a dry period for validation 581 

(see Table 4). Similar results have been reported by Vaze et al. (2010) and the finding 582 

can be partly explained by the fact that hydrological models generally perform better 583 

in wet periods than in dry periods (Vaze et al., 2010; Gallart et al., 2007, Perrin et al. 584 

2007; Lidén and Harlin, 2000, Gan et al., 1997; Hughes, 1997). A closer examination 585 

of model errors reveals that when the model parameters, calibrated on a dry period, 586 

were used to simulate runoff during a wet period, the mean of the simulated runoff 587 

was usually underestimated; conversely, when model parameters, calibrated on a wet 588 

period, were used to simulate dry period runoff, the mean simulated runoff was 589 

overestimated, consistent with the findings of Gan et al. (1997). Vaze et al. (2010) 590 

also showed that when hydrological models were calibrated using long period of 591 

record and tested for sub-periods with above long-term average rainfall, the model 592 

performed well. However, performance of the models starts to deteriorate when tested 593 

for sub-periods with below long-term average rainfall. 594 

 595 

Traditionally, one would use a sufficiently long period of records for model 596 

calibration to ensure proper presentation of climate/streamflow variability and to 597 

achieve stable model parameters. If the model is to be used under stationary 598 

conditions, it is generally recommended that the whole record should be divided into 599 

two segments, one for calibration and the other for validation. However, if a model is 600 

to be used under non-stationary conditions, its parameters should be transferable. In 601 

other words, the parameters should be estimated so that the model gives accurate 602 
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estimates of streamflow outside the climatic conditions encountered in calibration 603 

period.  In this case, one should identify two periods with different climatic 604 

conditions (e.g. a dry period and wet period) from the whole record and apply the 605 

so-called differential split-sample test (Klemes, 1986). One another approach to this 606 

problem is to examine how other catchments behave under these different climatic 607 

conditions, i.e. trading space for time (Singh et al., 2011). 608 

 609 

6 Conclusions 610 

Potentially large uncertainties arise when predicting hydrological responses to future 611 

climate change – due to factors such as the choice of emission scenario, GCM, 612 

downscaling technique, hydrological model, optimization technique, and the way the 613 

model is calibrated. It is therefore important to develop reliable ways to calibrate 614 

hydrological models under present-day conditions. This study compared hydrological 615 

model performances under nonstationarity by using the differential split-sample test 616 

and two conceptual rainfall–runoff models, DWBM and SIMHYD, applied to 30 617 

catchments in Australia. Monte Carlo simulation was used to explore parameter 618 

stability and transferability in the context of historic climate variability. 619 

 620 

Apart from quality of the input data (e.g. rainfall) and model structure, performance of 621 

a hydrological model is also dependent on how it is calibrated. If a hydrological 622 

model is intended to simulate runoff for a wet climate scenario then it should be 623 

calibrated on a wet segment of the historic record. Conversely, if it is intended to 624 

simulate runoff for a dry climate scenario then it should be calibrated on a dry 625 

segment of the historic record. We also found that when using a dry period for 626 

calibration and a wet period for validation, the models produced more accurate 627 
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estimates of streamflow compared with estimates produced using a wet period for 628 

calibration and a dry period for validation. In other words, transferring model 629 

parameter values obtained from dry periods to wet periods will result in smaller errors 630 

in streamflow estimation than transferring model parameter values obtained from wet 631 

periods to dry periods. The soil related model parameters are more sensitive to the 632 

choice of calibration period than other parameters and large uncertainty may be 633 

introduced when transferring the soil related parameters to conditions different from 634 

the calibration. Our research has implications for hydrological modellers looking to 635 

estimate future runoff and we hope this study will stimulate further research into the 636 

selection of calibration data. 637 
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Table and Figure Captions 812 

Table 1 Ranges of parameter values in DWBM (/ indicates dimensionless). 813 

 814 

Table 2 Ranges of parameters in the SIMHYD model (/ indicates dimensionless). 815 

 816 

Table 3 Summary results of the model calibration under different climatic conditions 817 

(i.e. dry and wet periods). 818 

 819 

Table 4 Summary results of the model validation when calibrated under different 820 

climatic conditions. 821 

 822 

Table 5 Percent of the catchments in which the model parameter distributions for a 823 

dry and wet calibration period were significantly different (p<0.01) under Monte 824 

Carlo simulation. Also shown are the results for water-limited (Ep/P>1) and 825 

energy-limited (Ep/P <1) catchments. For each model, the parameters are ranked from 826 

the most sensitive to calibration conditions to least sensitive. 827 
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Figure 1 Structure of the lumped dynamic water balance model (DWBM). 835 

 836 

Figure 2 Structure of the lumped daily rainfall–runoff model (SIMHYD). 837 

 838 

Figure 3 Location map of the 30 catchments used for this study. 839 

 840 

Figure 4 Annual historical precipitation of the Corang River catchment showing 841 

estimation of 2 wet periods (A) and 2 dry periods (B) to represent different calibration 842 

conditions. 843 

 844 

Figure 5 (a). Percentage of model calibration tests with a NSE value greater than or 845 

equal to a given NSE value. Similarly, Figure 5 (b-d) are corresponding plots of the 846 

coefficient of determination (R2), the modified index of agreement (d1), the absolute 847 

percentage water balance error (WBE), respectively. 848 

 849 

Figures 6 (a) and (e) Percentage of model validation tests with a NSE value greater 850 

than or equal to a given NSE value. Similarly, Figures 6 (b) and (f), Figures 6 (c) 851 

and (g), Figures 6 (d) and (h) are corresponding plots of the coefficient of 852 

determination (R2), the modified index of agreement (d1), the absolute percentage 853 

water balance error (WBE), respectively. 854 

 855 

Figure 7 Probability density functions for 7 parameters of the SIMHYD model under 856 

dry and wet calibration periods in catchments 110003 and 4021210. 857 
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 858 

Figure 8 Probability density functions for 4 parameters of the DWBM model under 859 

dry and wet calibration periods in catchments 110003 and 4021210. 860 
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Tables and Figures 879 

Table 1 Ranges of parameter values in DWBM (/ indicates dimensionless). 880 

Parameter Units Description Lower 
bound

Upper 
bound

α1 / retention efficiency 1 5 

α2 / evapotranspiration 
efficiency 1 5 

Smax mm soil water storage capacity 5 500 

d / baseflow linear regression 0.01 1 

 881 

Table 2 Ranges of parameter values in the SIMHYD model (/ indicates 882 

dimensionless). 883 

Parameter Units Description Lower 
bound 

Upper 
bound 

INSC mm interception store capacity 0.5 5.0 

COEFF mm maximum infiltration loss 50 400 

SQ / infiltration loss exponent 0 6.0 

SMSC mm soil moisture store capacity 50 500 

SUB / constant of proportionality in 
interflow equation 0 1 

CRAK / constant of proportionality in 
groundwater recharge equation 0 1 

K / baseflow linear regression 
parameter 0.003 0.3 

 884 
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Table 3 Summary results of the model calibration under different climatic conditions 885 

(i.e. dry and wet periods). 886 

Indicator 
SIMHYD 

calibrated on dry 
period 

SIMHYD 
calibrated on wet 

period 

DWBM 
calibrated on dry 

period 

DWBM 
calibrated on wet 

period 
25th NSE 0.84 0.85 0.71 0.77 

Median NSE 0.70 0.77 0.58 0.66 
75th NSE 0.61 0.68 0.43 0.54 

Average NSE 0.70 0.76 0.57 0.65 
25th R2 0.91 0.91 0.82 0.87 

Median R2 0.86 0.88 0.76 0.82 
75th R2 0.80 0.85 0.70 0.76 

Average R2 0.86 0.88 0.76 0.81 
25th d1 0.77 0.79 0.71 0.75 

Median d1 0.72 0.76 0.67 0.71 
75th d1 0.70 0.74 0.61 0.68 

Average d1 0.73 0.76 0.65 0.71 
25th WBE 22 16 25 24 

Median WBE 13 8 15 12 

75th WBE 6 4 9 5 

Average WBE 14 11 22 17 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 
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Table 4 Summary results of the model validation when calibrated under different 898 

climatic conditions. 899 

Model Indicator dry/dry dry/wet wet/dry wet/wet 
25th NSE 0.72 0.74 0.68 0.77 

Median NSE 0.55 0.64 0.51 0.69 
75th NSE 0.42 0.44 0.41 0.55 

Average NSE 0.57 0.61 0.54 0.66 
25th R2 0.87 0.89 0.88 0.90 

Median R2 0.79 0.84 0.80 0.85 
75th R2 0.74 0.79 0.75 0.81 

Average R2 0.80 0.84 0.81 0.85 
25th d1 0.74 0.78 0.74 0.78 

Median d1 0.71 0.74 0.70 0.75 
75th d1 0.66 0.70 0.63 0.72 

Average d1 0.69 0.73 0.68 0.74 
25th WBE 34 30 39 23 

Median WBE 20 19 28 13 
75th WBE 14 8 16 7 

SIMHYD 

Average WBE 24 21 29 17 
25th NSE 0.56 0.65 0.51 0.72 

Median NSE 0.46 0.48 0.45 0.61 
75th NSE 0.34 0.35 0.30 0.42 

Average NSE 0.48 0.52 0.45 0.59 
25th R2 0.79 0.83 0.81 0.85 

Median R2 0.71 0.77 0.74 0.79 
75th R2 0.63 0.69 0.67 0.73 

Average R2 0.71 0.76 0.74 0.79 
25th d1 0.69 0.73 0.68 0.74 

Median d1 0.65 0.69 0.63 0.70 
75th d1 0.58 0.64 0.56 0.66 

Average d1 0.62 0.68 0.61 0.69 
25th WBE 35 29 53 25 

Median WBE 22 20 33 18 
75th WBE 15 12 18 11 

DWBM 

Average WBE 27 23 36 19 

 900 

 901 

 902 

 903 

 904 

 905 

 906 
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Table 5 Percent of the catchments in which the model parameter distributions for a 907 

dry and wet calibration period were significantly different (p<0.01) under Monte 908 

Carlo simulation. Also shown are the results for water-limited (Ep/P>1) and 909 

energy-limited (Ep/P <1) catchments. For each model, the parameters are ranked from 910 

the most sensitive to calibration conditions to least sensitive. 911 

Model Parameter 
Percent of 

catchments 

Percent of water-limited 

catchments 

Percent of energy-limited 

catchments 

SUB 63 81 43 

SMSC 60 75 43 

SQ 53 56 50 

CRAK 50 63 36 

K 37 31 43 

COEFF 33 38 29 

SIMHYD 

INSC 10 13 7 

α1 67 81 50 

Smax 63 75 50 

d 47 63 29 
DWBM 

α2 23 25 21 

 912 
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 913 

RAIN
PET

direct runoff
SMS

soil 
moisture 
store Smax

GW

groundwater store

baseflow

recharge Q

Model parameters and description
α1          retention efficiency
α2          evapotranspiration efficiency
Smax        soil water storage capacity (mm)
d            baseflow linear regression  914 

Figure 1 Structure of the lumped dynamic water balance model (DWBM). 915 
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PET = areal potential evapotranspiration (input data)
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Model parameters and description
INSC     interception store capacity (mm)
COEFF maximum infiltration loss (mm)
SQ         infiltration loss exponent
SMSC    soil moisture store capacity (mm)
SUB       constant of proportionality in interflow equation
CRAK    constant of proportionality in groundwater recharge equation
K           baseflow linear recession parameter

groundwater 
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 928 

Figure 2 Structure of the lumped daily rainfall–runoff model SIMHYD. 929 
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 935 

 936 

 937 

Figure 3 Location map of the 30 catchments used for this study. 938 

 939 

0

200

400

600

800

1000

1200

1400

1600

192
5

192
8

193
1

193
4

193
7

194
0

194
3

194
6

194
9

195
2

195
5

195
8

196
1

196
4

196
7

197
0

197
3

197
6

197
9

198
2

198
5

198
8

199
1

199
4

199
7

ob
se

rv
ed

 a
nn

ua
l p

re
ci

pi
ta

tio
n 

(m
m

)

 940 

Figure 4 Annual historical precipitation of the Corang River catchment showing 941 

estimation of 2 wet periods (A) and 2 dry periods (B) to represent different calibration 942 

conditions. 943 
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 947 

Figure 5 (a) Percentage of model calibration tests with a NSE value greater than or 948 

equal to a given NSE value. Similarly, Figure 5 (b-d) are corresponding plots of the 949 

coefficient of determination (R2), the modified index of agreement (d1), the absolute 950 

percentage water balance error (WBE), respectively. 951 

 952 
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 953 

Figures 6 (a) and (e) Percentage of model validation tests with a NSE value greater 954 

than or equal to a given NSE value. Similarly, Figures 6 (b) and (f), Figures 6 (c) 955 

and (g), Figures 6 (d) and (h) are corresponding plots of the coefficient of 956 
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determination (R2), the modified index of agreement (d1), the absolute percentage 957 

water balance error (WBE), respectively. 958 
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Figure 7 Probability density functions for 7 parameters of the SIMHYD model under 961 

dry and wet calibration periods in catchments 110003 and 4021210. 962 
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 963 

Figure 8 Probability density functions for 4 parameters of the DWBM model under 964 

dry and wet calibration periods in catchments 110003 and 4021210. 965 


