

1 **A pilot operational flood warning system in Andalusia**
2 **(Spain): Presentation and first results**

3
4 **P.-A. Versini¹, M. Berenguer¹, C. Corral¹, D. Sempere-Torres¹, A. Santiago-**
5 **Gahete²**

6 [1] {Centre de Recerca Aplicada en Hidrometeorologia, Barcelona, Spain}
7 [2] {Agencia de Medio Ambiente y Agua, Consejería de Medio Ambiente - Junta de
8 Andalucía, Córdoba, Spain}

9 Correspondence to: P.-A. Versini (pierre-antoine.versini@crahi.upc.edu)

10
11 **Abstract**

12
13 This paper deals with the presentation of a flood warning system (FWS) developed for the
14 specific characteristics of the Guadalhorce basin (SE of Spain). This is a poorly gauged
15 basin and often affected by flash and plain floods. The system is oriented to provide
16 distributed warnings based on rainfall accumulations and discharge forecasts, and fulfils the
17 requirements of ungauged basins.

18
19 The system is adapted to the use of distributed rainfall maps (such as radar rainfall
20 estimates) and discharge forecasts are computed using a distributed rainfall-runoff model.
21 Due to the lack of flow measurements, the model parameters calibrated on a small
22 watershed have been transferred in most of the basin area.

23
24 This work studies the performance of the system on two recent rainfall events which caused
25 many inundations. First results show how the FWS performed well and was able to forecast
26 the location and timing of flooding. It demonstrates that a simple model and a rough
27 calibration could be enough to issue valuable warnings. Moreover, the European Flood
28 Alert System (EFAS) forecasts have been used to provide a flood forecast several days in
29 advance. With low resolution and long anticipation, EFAS appears as a good complement
30 tool to improve flood forecasting and compensate for the short lead times of the GFWS.

31
32

33 **1. Introduction**

34 Floods represent the most serious natural hazard in Europe, and flood management is a
35 critical component of public safety. During the last 50 years significant efforts to improve
36 flood warning systems (FWS) have been carried out by the scientific, technical and
37 administration sectors. Thus in the context of medium to large river basins, with response
38 times of the order of tens of hours, forecasts, warnings and public preparedness for
39 reducing casualties from extreme plain floods have clearly improved (Meon, 2006).
40 However, the achievements for forecasting flash floods, characterized by short-lasting
41 storms affecting reduced areas of a watershed, have been less impressive. As flood
42 forecasting is generally limited to the main streams or to specific watersheds with particular
43 assets like hydropower dams, which are in most cases well-gauged river sections, it leaves
44 large parts of the territory not covered by flood monitoring networks (see for instance:
45 Borga et al., 2007; Costa and Jarett, 2008; Gaume et al., 2009).

46 A major concern in the context of FWS operating in basins prone to flash floods is to
47 monitor the variability of rainfall in space and time. In particular, the use of radar-based
48 quantitative precipitation estimates (QPE) and nowcasts has been demonstrated to be an
49 interesting tool for anticipating and quantifying the consequences of rainfall at the ground.
50 Radar products are particularly interesting in areas frequently affected by severe storms
51 with complex spatio-temporal patterns (of tens of km^2) and response times of the order of
52 tens of minutes to few hours (see for instance: Sempere-Torres et al., 1999; Berenguer et
53 al., 2005; Berne et al., 2005; Borga et al., 2006; Germann et al., 2009).

54 The use of distributed rainfall-runoff models represents a second key element in the
55 production of distributed flow forecasts. Distributed models in general do not seem to
56 perform significantly better than classic simple lumped models when they are used to
57 forecast the discharges at a few specific points of gauged watersheds, although this topic is
58 still a matter of discussion (e.g. Reed et al., 2004; Carpenter and Georgakakos, 2006).
59 However they provide much richer information than lumped models as they are able to
60 consider the spatial distribution of model inputs (in particular, rainfall) and/or parameters,
61 and produce distributed runoff simulations. In the case of ungauged watersheds,

62 regionalization techniques (see for example Blöschl and Sivapalan, 1995) are frequently
63 used to extrapolate model parameters estimated from closest gauged catchment.

64 In this context, two types of warnings can be delivered in the framework of FWS: (i)
65 warnings based on rainfall measurements, and (ii) warnings based on simulated discharges.
66 Both have advantages and limitations.

67 Basically, warnings based on rainfall can be delivered by comparing precipitation
68 accumulations (on different time) to a corresponding reference associated to a probability
69 of occurrence and a return period. As soil moisture condition is not taken into account, the
70 results can sometimes be very different to those based on hydrological simulations (see
71 Alfieri et al., 2011). A another well-known approach to issuing warnings based on rainfall
72 is the Flash Flood Guidance, FFG (Georgakakos, 2006). The FFG computes the amount of
73 rainfall of a given duration required to cause flooding in a certain basin. If the
74 corresponding observed or forecasted rainfall amounts (integrated for the same duration
75 within the basin) exceeds the pre-computed threshold, a flood warning is issued. The FFG
76 represents a first attempt to evaluate the potential flooding and can be employed at different
77 time and scale resolutions (Norbiato et al., 2008). It requires information on the antecedent
78 soil moisture conditions, but does not explicitly compute the discharge responsible for
79 flooding.

80 Alternatively, FWSs may use rainfall-runoff model to issue warnings based on explicit
81 discharge simulations and forecasts. They run at different resolutions depending on the
82 characteristics of the floods that are to be forecasted. Covering whole Europe with a spatial
83 resolution of 5 km, the European Flood Alert System (EFAS, Thielen et al., 2009) aims at
84 alerting for floods in trans-national European river basins up to 10 days in advance using
85 model inputs generated with an ensemble weather prediction system. At regional scale,
86 there are several operational FWSs based on discharge simulations. Some examples can be
87 cited: VIGICRUES run by SCHAPI¹ in France (Tanguy et al., 2005), AIGA run by Meteo
88 France² in the south-east of France (Lavabre and Gregoris, 2006), EHIMI run by ACA³ in

1 French Hydro-meteorological National Center in charge of Flood Forecasting

2 French Meteorological Agency

89 Catalonia (Corral et al., 2009) and PREVAH, run by WSL⁴ in Switzerland (Viviroli et al.,
90 2009). Further work is still under development and not yet operational (Reed et al., 2007;
91 Javelle et al., 2010 for example). Although they are devoted to a limited area, these regional
92 systems are run at higher resolutions and, consequently, they are more adapted to forecast
93 flash floods. These FWSs are generally based on a similar scheme: the distributed rainfall-
94 runoff model is run to simulate the discharges in several locations of the basin, and these
95 are compared to a database of pre-established flow thresholds to quantify the hazard at each
96 location. A warning is issued when the simulated discharges exceed certain thresholds. The
97 advantage of this method is the use of a discharge value to assess flood hazard. The main
98 weakness generally related to discharge simulation is that model calibration requires stream
99 gauges distributed over the watershed and available historical time series for its calibration.

100 Based on these considerations, a real-time FWS was implemented in 2009 in the
101 Guadalhorce basin (Andalusia, Spain) in collaboration with regional stakeholders interested
102 in flood warning. The main objective was to operationally deliver spatially-distributed early
103 flood warnings, as a tool to raise the awareness of rescue services and increase their
104 preparedness. To suit the short response time and high space resolution required for
105 operational management of this basin, a specific and local FWS (referred to as GFWS
106 hereafter) has been developed. The main challenge the GFWS had to face was the scarcity
107 of stream gauges and the lack of historical hydrometeorological data. In part to overcome
108 this situation, we chose to explore the two approaches presented above: flood warnings in
109 the implemented system are based on both (i) distributed rainfall measurements, and (ii) the
110 discharge simulations obtained with a distributed rain-runoff model.

111 This paper describes the GFWS implemented in the Guadalhorce basin and the
112 methodology chosen to workaround the lack of data. Results obtained during two recent
113 flood events that affected the basin have been analysed. Flood warnings issued with the
114 GFWS have been compared to effective flooding records collected by the emergency
115 services. In addition, the complementarity between EFAS' low-resolution and long-

3 Catalan Water Agency

4 Swiss Federal Research Institute

116 anticipation warnings and high-resolution and short-anticipation warnings of the GFWS has
117 been analysed from an operational point of view. The lead-times provided by both systems,
118 and the time separating the warning issuance and the inundation occurrence, have been
119 particularly discussed.

120 The paper is organized as follows. Section 2 presents the framework of study: the
121 Guadalhorce basin and the compilation of historical and real-time hydro-meteorological
122 data. Section 3 describes the distributed hydrological model and the calibration procedure.
123 Section 4 presents the two configurations of the GFWS (based on rainfall and discharge).
124 Two rainfall events that occurred at the beginning of 2010 and caused significant floods are
125 presented in Section 5 as case studies. Section 6 briefly presents EFAS warning system and
126 analyses the warnings delivered for both events. Finally, Section 7 summarizes the main
127 results and concludes on future improvements.

128

129 **2. Case study:**

130 **2.1. The Guadalhorce basin**

131 The Guadalhorce basin (3200 km^2) is located in Andalusia, South of Spain. The river
132 passes through the city of Málaga (500,000 inhabitants) near the outlet of the
133 Mediterranean Sea. The basin is bordered on the West by moderately high mountains (1900
134 m amsl) and by a low plateau (500 m amsl) on the North. The dominant climate is warm-
135 temperate Mediterranean, characterized by a marked dry season, with hot summers and
136 generally mild winters. The warmest months are July and August with an average
137 temperature of 23°C , and the coldest season covers the period between December and
138 February with an average of 13°C . Annual precipitation is comprised between 500 and 600
139 mm. Rainfall is concentrated during the period October to April (90% of the total amount).
140 Historically, the Guadalhorce river represents a major risk for the city of Málaga and
141 periodically causes floods along its course. Although the region is mainly rural with
142 dominant bare land cover, stakes are numerous, with the population concentrated close to
143 Málaga and many activities related to tourism. For this reason, the regional government of

144 Andalusia has decided to implement an operational FWS with the aim of minimizing risk to
145 people and economic activity.

146 **2.2. Hydrometeorological data**

147 The studied watershed is covered by a quite scarce measuring instrumentation network. A
148 total of 25 automatic hourly rain gauges are located within or near the basin (see Fig. 1),
149 representing an average density of about one rain gauge per 180 km^2 . Such a density can
150 appear insufficient to enable accurate high resolution rainfall estimates through spatial
151 interpolations on small watersheds. Here, time and space scales suited to flash flood
152 dynamics are small: sub-hourly time step and kilometric scale (e.g. Creutin and Borga,
153 2003; Collier, 2007; Moulin et al., 2009). Nevertheless, this rain gauge network should be
154 enough for larger basins characterized by a response time at least higher than the rain gauge
155 time step. The region of Málaga is also covered by a C-Band Doppler radar operated by the
156 Meteorological Spanish Agency (AEMET). The radar is located at 1173 m amsl and fully
157 covers the basin. The GFWS has been developed to operationally consider radar products
158 characterized by a higher spatio-temporal resolution (1 km^2 and 10 minutes).

159 Four reservoirs and three hourly automatic gauge stations are also located in the upstream
160 part of the Guadalhorce basin: Bobadilla (761 km^2), Ardales (211 km^2), and Teba (202 km^2)
161 as illustrated in Fig. 1. They cover a third of the total basin area, leaving the remaining
162 area ungauged (where Málaga is located). Measured discharges are also available in real
163 time for operational purpose. Available historical discharge data have been compiled since
164 2008 to calibrate the rainfall-runoff model.

165 Statistical climate data on historical precipitation are also available (MOPU, 1990) as maps
166 of maximum daily rainfall amounts (MOPU, 1999), and Intensity-Duration-Frequency
167 curves (IDF), as well as regionalised parameters for the application of the rational Method
168 are described in MOPU (1990).

169 **3. Rainfall-runoff model**

170 A grid-based distributed rainfall-runoff model has been implemented and adjusted with the
171 aim of computing warnings based on simulated discharges at every pixel of the grid inside

172 the area of study. Due to the lack of historical hydrological data, and in order to simplify
173 the calibration procedure, the model was chosen to be simple, robust, and depending on a
174 reduced number of adjustable parameters.

175 **3.1. Presentation of the distributed rainfall-runoff model**

176 The Guadalhorce basin has been split into hydrological cells of 1 km² that are connected to
177 the outlet of the basin following a simplified drainage network based on the analysis of the
178 topography. To take into account the effect of the three dams, it was considered that the
179 drained area located upstream of each dam does not contribute to cells located downstream.
180 Each cell is treated as a hydrological unit, where a lumped model is applied. The lumped
181 model employed here is based on the common Soil Conservation Service (SCS) Curve
182 Number (CN) method (Mockus, 1957) for computing excess rainfall, combined with the
183 linear diffusive wave unit hydrograph for flow routing (Szymkiewicz, 2002).

184 The SCS-CN method assumes that flood flows are essentially composed of surface runoff
185 water or at least fast responding runoff processes. Because of its simplicity and minimal
186 data requirements, the SCS-CN method is widely used in flash flood simulation (see for
187 examples Borga et al., 2007; Rozalis et al., 2010; Versini et al., 2010). It is based on the
188 water balance equation and a proportionality stating that the ratio of the amount of
189 cumulative infiltration ($F(t)$, in mm) to the amount of potential maximum retention capacity
190 (S , in mm) is equal to the ratio of the amount of total runoff volume ($V(t)$, in mm) to the
191 maximum potential runoff volume. The latter being represented by the total rainfall amount
192 from the beginning of the event $P_{tot}(t)$, to which the initial abstraction I_a (both in mm) is
193 substrating. Assuming $F(t)=P_{tot}(t)-I_a-V(t)$, total runoff volume can be computed as:

$$194 V(t) = \frac{(P_{tot}(t) - I_a)^2}{P_{tot}(t) - I_a + S} \quad (1)$$

195 From this formula, the instantaneous runoff coefficient at time t , $C(t)$, can be deduced. This
196 coefficient has then to be multiplied by the rainfall intensity $P(t)$ to estimate the direct
197 runoff $Q_f(t)$:

198
$$C(t) = \frac{\partial V(t)}{\partial P_{tot}(t)} = 1 - \frac{S^2}{(P_{tot}(t) - I_a + S)^2} \quad (2)$$

199 Retention capacity S is related to the CN coefficient which is usually estimated from the
 200 soil properties and taking a value between 0 and 100. The original SCS equation was
 201 adjusted for events with large amounts of precipitation accumulated during long periods
 202 (several days). Thus, when the total amount of precipitation increases during an event, the
 203 soil drainage process is not explicitly represented and there is no possibility for the system
 204 to recover the basin's water retention capacity. The instantaneous runoff coefficient
 205 increases simultaneously and the simulated direct runoff has a strong tendency to be
 206 overestimated. In this study, an attempt was made to take into account the process
 207 accumulating rainfall on an adapted time period. After several tests, a period of 24 hours
 208 has been arbitrarily chosen to accumulate rainfall after subtracting the initial abstraction:

209
$$Q_f(t) = P(t) \cdot \left[1 - \frac{S^2}{(P_{24h}(t) + S)^2} \right] \quad \text{when } P_{tot}(t) > I_a \quad (3)$$

210
$$Q_f(t) = 0 \quad \text{otherwise}$$

211 It is worth noticing that initial abstraction, I_a , is not considered as a parameter, and is
 212 independent of S . Instead, the I_a is estimated from observations for each event (see further
 213 detail in next section). In this sense, Michel et al. (2005) proposed a modified version of the
 214 SCS model, emphasising on the need to avoid confusion between intrinsic parameters and
 215 initial condition for example. In our case, we have chosen equation (3) to represent the
 216 production of direct runoff (which implies that the initial abstraction is always positive).
 217 Additionally, the conceptual function proposed by Weeks and Boughton (1987) has been
 218 chosen to model the slow flow $Q_s(t)$:

219
$$Q_s(t) = \Delta t \cdot \alpha \cdot Q_f(t) + Q_s(t - \Delta t) \quad \text{if } Q_f(t) > 0 \quad (4)$$

220
$$Q_s(t) = Q_{ini} + [Q_s(t - \Delta t) - Q_{ini}] \cdot (1 - \Delta t \cdot \alpha) \quad \text{if } Q_f(t) = 0 \quad (5)$$

221 Where α (with units of time^{-1}) is a parameter to calibrate, Δt is the time step, and $Q_s(t=0)$ is
 222 initialized with the observed runoff at the beginning of the event.

223 It assumes that there is a constant ratio between the runoff component $Q_f(t)$ and the
224 variation of the slow component between two time steps. Base flow is also recursively
225 estimated from the previous value. It is initialized with the initial flow Q_{ini} measured in
226 gauged cells at the beginning of the event, and extrapolated to the rest of the basin
227 proportionally to the drainage area of each cell. When there is no direct runoff, the
228 recession curve $Q_s(t)$ becomes exponential.

229 The total runoff $Q_{tot}(t)=Q_f(t)+Q_s(t)$ generated at each cell is then routed downstream
230 following the drainage network. A single unit hydrograph based on the linear diffusive
231 wave function and Muskingum parameters (Szymkiewicz, 2002) has been used:

$$232 \quad HU(t) = \frac{1}{\sqrt{2\pi \cdot (1-2X)}} \cdot \frac{N}{K} \cdot \left(\frac{K}{t}\right)^{\frac{5}{2}} \cdot \exp\left[-\frac{(t-N \cdot K)^2}{2 \cdot (1-2X) \cdot K \cdot t}\right] \quad (6)$$

233 Where X is the weighting factor (dispersion parameter) that varies between 0 and 0.5, K is
234 the storage time for one path, and N the number of paths of the course.

235 This function is first applied in each cell to represent the hillslope flow propagation. Then it
236 is applied on the river course connecting the hillslope cell to the downstream point of
237 interest to represent the propagation of the stream flow. The linear diffusive wave function
238 can represent both processes changing its parameters. For each cell, both hillslope and river
239 routing parameters (N, X, K) need also to be adjusted.

240

241 **3.2. Reduction of the number of parameters to calibrate**

242 As described above, the number of parameters to adjust is rather large and has to be
243 reduced for practical reasons: (i) spatially distributed CN [used in Eq. (3)], the base flow
244 parameter α [see Eq. (4) and (5)] for the loss function and, (ii) spatially distributed routing
245 parameters for both hillslope (N_h, X_h, K_h) and river (N_r, X_r, K_r) routing functions.

246 An *a priori* method has been used to estimate distributed CN values over the entire
247 watershed. Geomorphological data (slope, geology and land cover) at cell scale have been
248 used to compute the CN according to the recommendations of the Spanish Ministry of

249 Public Works (MOPU, 1990). Previous studies based on this method (Corral et al., 2000;
250 2002) have shown significant differences between effective field capacities and those
251 obtained with this *a priori* method: simulated discharges have a clear tendency to be
252 overestimated. For this reason, an average curve number correction factor (FCN) has been
253 calibrated to scale the map of CN values.

254 In many applications of the SCS method, the initial abstraction I_a does not take into account
255 antecedent moisture condition and is deduced from the potential maximum retention S . In
256 this study, I_a is firstly approximated as the difference between the total amounts of
257 antecedent evapotranspiration and rainfall over the previous 15 days. Then, I_a is updated in
258 real time from stream gauge measurements identifying by means of the hydrograph initial
259 rising time. I_a represents the total amount of precipitation from the beginning of the event
260 to the first initial hydrograph rising time (deducing the response time of the watershed).

261 The three parameters that govern both hillslope and river routing functions have also been
262 simplified. Concerning the hillslope function, N_h is fixed to one path, and X_h to 0
263 representing a maximum attenuation in peak discharge. Concerning the river function,
264 applied on the river course to the outlet, N_r is assumed to represent the number of cells until
265 the outlet; the remaining weighting factor X_r needs to be calibrated and is assumed to be
266 uniform over the basin. Both storage times K_h and K_r are computed as the ratio between
267 hillslope or river course lengths (derived from the DTM) and flow velocities. These
268 velocities v_l and v_r are also considered uniform over the basin and represent the last
269 parameters to be calibrated.

270 Summarizing, the adjustment of the model required the calibration of 5 parameters: the
271 curve number correction factor (FCN), the base flow parameter (α), and three routing
272 parameters [hillslope velocity (v_h), river velocity (v_r), river weighting factor (X_r)].

273

274 **3.3. Calibration of the parameters**

275 The rainfall-runoff model described above has been calibrated using observed discharges
276 available at the gauged watersheds (see Section 2). Eight rainfall events for 2008 have been

277 selected for the adjustment of the model. Radar data were not available for this period, so
278 spatially interpolated rain gauge data have been used. The total rainfall amounts of these
279 events were not very large (between 20 and 100 mm). The calibration of the model has
280 been carried out with the observations measured at the Bobadilla stream gauge (no
281 significant discharges were measured at the two other stations and/or the data were not
282 available). Because the number of interesting rainfall events was rather small, we chose to
283 calibrate the model manually, and to reproduce the most intense events. The results have
284 been evaluated with the Nash criterion (Nash and Sutcliffe, 1970) and are summarized in
285 Table 1.

286 The performance of the model in term of Nash efficiency varies from one rainfall event to
287 another. The simulations accuracy is acceptable in the light of the results obtained in
288 comparable case studies (ungauged basins or poor instrumented framework), for which the
289 model calibration was made with a longer historical database (for example: Borga, 2008;
290 Versini et al., 2010). The performance of the model is generally better for the largest
291 rainfall events, where the effort of calibration was made (the more significant events are
292 represented on Fig. 2). The hydrological response to smallest events appears a little more
293 erratic and is probably linked to the non-linearity of the rainfall—runoff transformation. In
294 this case, initial abstraction plays a major role and can strongly affect the simulated
295 discharges. Note that to achieve reasonable simulations, a curve number correction factor
296 FCN of 0.5 has been chosen, implying that the map of CN calculated a priori, strongly
297 overestimate discharges. This value may seem rather large, but tends to be common in
298 flood simulation in Mediterranean basins (see Francés and Benito, 1995; Corral et al.,
299 2002).

300 Rainfall estimates based on spatial interpolation of rain gauge measurements could also
301 represent a source of uncertainty. The coverage of the current rain gauge network may be
302 insufficient to estimate reliable distributed rainfall in the gauged watershed used for
303 calibration (Bobadilla), where no rain gauge is available inside (see Fig. 1). This may
304 partially explain the differences between simulated and observed discharges.

305 The calibration of the rainfall-runoff model has been carried out under a number of
306 limitations (given the scarcity of data, number of rain gauges, model structure...) that may

307 have a significant impact on the performance of the model. This needs to be considered
308 when analysing the results of the GFWS. Post-flood field investigation and new time series,
309 as they become available, may be used to improve the rainfall-runoff model (specially its
310 calibration).

311 Finally, the values of the parameters calibrated in the Bobadilla stream gauge (i.e. FCN , α ,
312 v_h , v_r and X_r) have been transferred to the remaining (ungauged) part of the basin,
313 implicitly assuming a similar hydrological behaviour.

314 **4. The GFWS**

315 The purpose of the GFWS, presented here, is to provide distributed warnings based on
316 rainfall accumulations and runoff simulations (at the same resolution of 1 km^2). In the
317 current configuration, the warnings are computed at each time step from all the
318 precipitation data available up to the present. Three different types of warnings related to
319 hazard probability expressed in terms of return periods are delivered. Two of these are
320 based on rainfall estimates and one on simulated discharges.

321 **4.1. Warnings based on rainfall estimates**

322 Without taking into account any hydrological process, the distributed rainfall data can bring
323 a first interesting attempt related to the expected consequences of the rainfall event and to
324 localize the potential inundations. Two different types of warnings can be computed for
325 every cell of the studied area and using these precipitation fields: (i) based on estimated
326 rainfall at point locations (cells of 1 km^2), (ii) based on spatially aggregated rainfall at each
327 point (i.e. accumulated within the area upstream of each point). These warnings have the
328 advantage to be computed quickly and effectively, without any information other than
329 rainfall.

330 **4.1.1. Use of IDF curves**

331 IDF curves are used as a benchmark for estimating the return period associated with a given
332 rainfall. IDF curves are widely used, and different techniques exist to compute them [see
333 Ben-Zvi, (2009) for an exhaustive review]. In Spain a common methodology is that

334 recommended by the Spanish Ministry of Public Works for drainage design studies
335 (MOPU, 1990). It has been chosen in this study and has the following synthetic expression:

336
$$P_D(T) = \frac{P_{24h}(T)}{24} \cdot FR^{\frac{28^{0.1}-D^{0.1}}{28^{0.1}-1}} \quad (7)$$

337 Where $P_D(T)$ is the rainfall (in mm) associated with a duration D (hours) and a return
338 period T , $P_{24h}(T)$ is the daily accumulated rainfall (mm) for a return period T , and FR is a
339 regional factor equal to 8.5 for the area of study.

340 IDF maps have been calculated with a resolution of 1 km^2 , for different return periods (2, 5,
341 10, 25, 50, 100, 200 and 500 years) and different durations (1, 2, 3, 4, 6, 12 and 24 hours)
342 for both point and spatial aggregated rainfall.

343 **4.1.2. Warning based on point rainfall**

344 This type of warning is calculated from the point rainfall measurements accumulated during
345 one hour. It is assumed that this accumulation time is relevant to deliver information about
346 the most critical situations at cell scale. It could be of interest for issuing warning in urban
347 environment or for very sensitive points such as roads (e.g. Versini et al., 2010). The
348 warning computation is based on a direct comparison, cell to cell, between estimated
349 rainfall, and the IDF threshold values computed for $D=1$ hour and different return periods
350 T . The value assigned to the warning in a particular cell is the maximum of the return
351 period values that has been exceeded by accumulated rainfall estimates.

352 **4.1.3. Warnings based on aggregated rainfall**

353 In this case, the warning is computed to represent as well as possible the consequences of
354 rainfall at watershed scale (every cell draining an area larger than 4 km^2). With this aim,
355 rainfall is accumulated for a duration D equal to the estimated concentration time of the
356 basin. This concentration time is obtained from both river length and average slope data
357 according to MOPU, 1990). These same recommendations propose a correction factor to
358 diminish the thresholds for areal rainfall amount which depends on the drained area S :

359
$$k = 1 - \log\left(\frac{S}{15}\right) \quad \text{when } S > 15 \text{ km}^2 \quad (8)$$

$$360 \quad k = 1 \quad \text{otherwise}$$

361

362 4.2. Warnings based on simulated discharges

363 Warnings based on simulated discharges are computed with the distributed rainfall-runoff
 364 model for every cell where the drained area exceeds 10 km^2 . At these locations, the
 365 simulated discharges are compared with peak flow thresholds estimated for return periods
 366 $T=\{2, 5, 10, 25, 50, 100, 200, 500 \text{ years}\}$. They are based on the Rational Method, as
 367 described in MOPU (1990).

368

369 5. Test case studies

The GFWS started operating in May 2009. Little after, two serious rainfall events occurred (in January and February 2010), both resulting in significant flooding in the region of Málaga. These two events were not used in the calibration of the rainfall-runoff model (see Section 3.3), and resulted the largest accumulations since the GFWS has started. As weather radar observations were not available for these events, the rainfall field was estimated by spatial interpolation of rain gauge measurements with a resolution of 1 hour (as a complementary part, a minor event using radar QPE is presented in Appendix). The events and the associated performance of the GFWS are presented herein, also considering the information on the inundations in the Guadalhorce basin reported by the emergency services.

380 5.1. Event of 6-7 January 2010

381 5.1.1. Description of the rainfall event

382 The maximum observed accumulations reached up to 70 mm on the southern portion of the
383 Guadalhorce basin (see Fig. 3-a). The event started at about 23:00 UTC on 6 January 2010
384 and lasted for 12 hours. However, most of the precipitation was registered between 08:00
385 and 10:00 UTC (during this period rain gauges around Málaga registered accumulations of
386 40 mm) as a consequence of a mesoscale convective system sweeping the basin.

387 The intense precipitation registered in the morning of 7 January caused flooding of houses,
388 basements, garages and streets, mainly in the suburbs of Málaga and in Alhaurín de la
389 Torre (Fig. 4): emergency services registered a hundred flooding incidences between 9:00
390 and 10:00 UTC in these two cities. These areas are frequently affected by inundations and
391 this event illustrates a typical case of urban flash flood due to an intense storm that is not
392 rare in southern Andalusia.

393 During this event, two of the three stream gauges of the basin (Bobadilla, Teba) operated
394 normally. These gauges (see Fig. 1) are located far upstream from the area mostly affected
395 by precipitation (around the city of Málaga), and the total precipitation amounts in the sub-
396 catchments drained at these points were relatively minor (around 30 mm). Consequently,
397 the resulting observed discharges were not significant (see Table 2).

398 **5.1.2. Performance of the GFWS**

399 The comparison between stream gauge observations and the simulations obtained with the
400 rainfall-runoff model at these locations show some agreement, as quantified in terms of the
401 Nash efficiency (presented in Table 2). It is worth noting the performance of the model at
402 the stream gauge in Teba, whose measurements were not used in the calibration of the
403 rainfall-runoff model (stated in Section 3.3).

404 The GFWS was able to issue warnings in the areas where flooding actually occurred. Fig. 4
405 shows the maximum warnings based on point rainfall (issued at 9:00 UTC), and based on
406 aggregated rainfall and simulated discharges (both at 10:00 UTC). Concerning the former
407 (Fig. 4a), a warning was issued around the city of Málaga and matching the area where the
408 most intense convective cell affected the basin. The core of the warning (in green)
409 corresponded to an hourly intensity over 35 mm/h, which correspond to a return period of
410 around 5 years. Around this core, the 2-year return period warning level was reached in the
411 blue area (which corresponds to an average hourly intensity over 25 mm/h). These patterns
412 had some correspondence with the flooding that occurred in this area between 9:00 and
413 10:00 UTC. These warnings were confirmed by those based on aggregated rainfall and
414 simulated discharge in the area. Because these two use information on the spatial structure
415 of the basin, they have advantage to localize more precisely the location of potential

416 flooding. Both predicted the maximum threat of flooding at 10:00 UTC West of Málaga
417 (Fig. 4-b and 4-c), where a small tributary stream crosses the subbrial industrial area, and
418 at Alhaurín de la Torre (respectively, draining basins of 30 and 73 km²). Both criteria were
419 consistent with each other and only differed on the assigned return periods: 2 years when
420 assessed based on aggregated rainfall and 5 years when the computations are based on
421 simulated discharges. This difference is due to the estimated initial abstractions almost
422 equal to 0. In any case, these warnings coincided very well with the reaches where flooding
423 was reported within the basin.

424

425 **5.2. Event of 15-16 February 2010**

426 **5.2.1. Description of the rainfall event**

427 There are clear differences between this rainfall event and that presented in Section 5.1:
428 Rainfall intensities were much lighter, maximum hourly intensities hardly exceeded 20
429 mm/h, but it lasted significantly longer (it did not stop raining for about 24 hours), which
430 resulted in progressive saturation of the soils of the basin. The area located near the coast
431 was particularly affected, with substantial amounts of rainfall registered in Alhaurín de la
432 Torre (totals reached up to 215 mm -nearly a third of the mean annual precipitation), and
433 over 100 mm around Málaga (see Fig. 3-b). In terms of daily rainfall, and according to
434 MOPU, 1990), the 50 years return period (180 mm) was exceeded in Alhaurín de la Torre,
435 and it was between 5 and 10 years (90 and 115 mm, respectively) in Málaga. Along the
436 event, the accumulated precipitation caused several floodings in the morning of 16
437 February 2010 (after 24 hours of precipitation). The rescue services did more than 40
438 actions related to flooding (essentially homes and garages) in several municipalities in the
439 province of Málaga: Alhaurín de la Torre, Coín, Campanillas and Cártama (see Fig. 5).
440 These actions included the use of helicopters to evacuate people trapped at home or in
441 flooded roads.

442 As in the previous event, the largest rainfall amounts occurred downstream the gauged
443 watersheds (50 and 20 mm in the sub-basins of Ardales and Bobadilla, respectively). As a

444 result, observed discharges were not significantly high, and the observed peaks were
445 comparable to those of 6-7 January 2010 (see Table 2).

446 **5.2.2. Performance of the GFWS**

447 The hydrographs simulated with the rainfall-runoff model can be considered acceptable in
448 terms of the Nash efficiency (see Table 2). Despite of the rough calibration, the model
449 seems to reproduce correctly the hydrological response at the location of stream gauges.

450 The GFWS was able to issue consistent warnings in the flooded areas depending on the
451 type of warning used (based on rainfall or simulated discharge). As explained above, the
452 large rainfall accumulations recorded during this event were the result of the long duration
453 of the event, rather than very intense precipitation. As a result, observed precipitation
454 intensities did not exceed the thresholds to issue warnings based on hourly point rainfall at
455 any time: The highest observed intensity in the basin was around 20 mm/h, lighter than the
456 average value for the 2-year return period around 25 mm/h.

457 The highest warning levels issued based on aggregated rainfall and simulated discharges
458 are presented in Fig. 5 (at 6:00 and 7:00 UTC, respectively). Aggregated rainfall exceeded
459 the 2-year return period for the first time at 03:00 UTC in the main stream between Coín to
460 Málaga. The levels progressively increased and at 6:00 UTC the 5-year return period was
461 exceeded. At the same time, small tributaries to this main stream were also marked as
462 potentially flooded. It is clear how the areas where the warnings were issued match the
463 points where the main floods actually occurred (Alhaurín de la Torre, Coín, Cártama, and
464 Málaga, circled with solid red ellipses), being the only exceptions Campanillas and the
465 suburbs of Málaga where no warning was issued. After 3:00 UTC, warning levels
466 decreased and remained only for the main stream. At 12:00, 4 hours after the rainfall had
467 ceased, only the Guadalhorce stream located between Cártama and Málaga was identified
468 as a risky area and remained so until the end of the day.

469 Warnings computed from simulated discharges were more intense and more numerous than
470 those already calculated with the aggregated rainfall (the estimated initial abstractions were
471 null). Indeed, the first warning appeared at 23:00 UTC, and at 3:00 UTC exceeded the
472 return period of 5 years (i.e. higher than the 2-year one issued for aggregated rainfall). At

473 7:00 UTC, the simulated discharges passing through Cártama and Alhaurín de la Torre
474 were exceeding the 25-year return period, and in Coín, Campanillas and Málaga, the 10-
475 year return period. The simulated peak discharge in Málaga outlet occurred at 10:00 and
476 reached a value of $817 \text{ m}^3/\text{s}$, although rescue services, based on ground observation,
477 estimated the discharge to temporarily exceeded $2000 \text{ m}^3/\text{s}$. The fact that drained area
478 located upstream of each dam were not considered can explain this large difference.
479 Warnings based on simulated flows, thus, corresponded very well with the floods that
480 occurred in this area. Unlike for the warnings based on aggregated rainfall, the flooding in
481 Campanillas and the suburbs of Málaga at 7:00 UTC (see Fig. 5-b) were not missed:
482 warnings of 10- and 5-year return period were issued at these points, respectively.

483 A flood warning (5-year return period) was also issued for the Ardales stream, downstream
484 of one of the dams of the basin (Conde Guadalhorce dam, surrounded in Fig. 5-b), where
485 no problem actually occurred. This area is not anthropized and for this reason was not
486 affected. As the simulated discharge was not propagated downstream the dam, no warning
487 was issued further.

488 **5.3. General comments**

489 Warnings based on point rainfall seem to be well adapted to prevent from the consequences
490 on the ground of intense precipitation. They are particularly useful to alert of urban flood
491 where the rainfall is directly responsible for flooding. As the current GFWS does not take
492 into account urban drainage (which requires a cadastral resolution), theses warnings appear
493 to be sufficient to localize the areas prone to flooding during intense precipitation event.

494 Although the model was calibrated for only one gauged basin and for few rainfall events,
495 the results computed with the rainfall-runoff model for these two recent events are rather
496 satisfactory: the simulated discharges calculated at the other stream gauges locations are
497 quite similar to the observed ones. The fact that only warnings based on simulated
498 discharge have pointed out every effective flooding for both events, illustrates the interest
499 of working with a distributed rainfall-runoff model. This rather positive result could, at
500 least in part, be attributed to the significant magnitude of the events, specially given the
501 limitations of the model calibration.

502 Moreover, return period characterizing warnings based on simulated discharges appear to
503 be higher than those based on aggregated rainfall. Regarding the consequences at the
504 ground of both studied rainfall events and the frequency of the total amount of precipitation
505 locally measured, discharge return periods seem to be the more representative. The
506 underestimation of aggregated rainfall-based warning may be due to different reasons.
507 First, this method has intrinsic limitations due to the non-consideration of rainfall-runoff
508 transformation. Second, the antecedent soil moisture conditions, which have a significant
509 role in the catchment response (see e.g. Merz and Blöschl, 2009), is not considered. Despite
510 the basic function used to estimate initial losses, the rainfall-runoff model is able to take
511 into account soil moisture *via* the parameter I_a in Eq. 3. For both studied events, the
512 estimated initial abstractions were almost equal to 0, which result to increase the amount of
513 water producing runoff.

514 **6. Combined use of EFAS with the GFWS for flood forecasting**

515 **6.1. The European Flood Alert System (EFAS)**

516 The European Flood Alert System (Thielen et al., 2009) issues flood warnings based on
517 probabilistic flood forecasts with lead times up to 10 days at European scale. It is based on
518 the hydrological model LISFLOOD (Van Der Knijff et al., 2010) and rainfall inputs come
519 from a medium-range ensemble weather predictions (NWP-EPS), consisting of a first set of
520 51 members generated at the European Centre for Medium-range Weather Forecasts
521 (ECMWF) over a 80-km grid, and a second set of 16-member ensemble from the COSMO
522 Consortium (COSMO-LEPS), run at 10-km grid resolution. Both sets of weather forecasts
523 are included in the hydrological model to produce two ensembles of 51 and 16 members of
524 flow forecasts. The hydrographs generated in such a way are then analysed to issue early
525 warnings on the basis of a threshold exceedance analysis.

526 LISFLOOD was not adjusted for the Guadalhorce basin using discharge measurements (as
527 it is for other European catchments). However, the discharge thresholds associated to flood
528 warnings are directly defined based on a statistical analysis of simulated discharges over a
529 historical 30-year period. The highest discharge obtained from these long-term simulations
530 is used to set the “severe” situation (that is, when the model outputs exceed the 30-year

531 maximum flow situation, a “severe” warning is issued). Similarly, the discharge value
532 corresponding to the 99% percentile of historical flow simulations is chosen as the
533 threshold for which a “high” warning is issued. When comparing “high” discharges with
534 records from level gauges in Europe where the model was calibrated, Thielen et al. (2009)
535 reported that the value obtained for “high” warnings usually corresponds to return periods
536 around 1 to 2 years.

537 **6.2. EFAS forecasts for the studied events**

538 EFAS did not issue any warning in advance for the case of 6-7 January 2010, since rainfall
539 accumulations were due to a local and intense rainfall core that NWP-EPS had missed.

540 Alternatively, for the second event (15-16 February 2010) the NWP-EPS did depict the
541 main space and time features of the rainfall field. Consequently, EFAS delivered flood
542 warnings with an anticipation of four days: probabilistic forecasts issued a significant flood
543 warning on the main stream of the Guadalhorce river between the 3 dams and Málaga,
544 leaving the secondary streams (where most of the inundations occurred) safe. From the 51
545 ECMWF members, 80% forecasted floods, whereas the simulations of 2 of the 16 COSMO
546 members exceed the threshold of “high” level 4 days in advance (8 out of 16 members 2
547 days in advance). For this second event, the outlet peak flow simulated with LISFLOOD
548 was around 160 m³/s. Although this is enough to exceed the “high” level warning in the
549 Guadalhorce basin (around 142 m³/s, and, as discussed above, corresponding to a 1-2 years
550 return period), it is far from the maximum discharges simulated with the GFWS (817 m³/s
551 in Málaga) and the 25-year return period obtained for the GFWS simulations (see section
552 5.2). We believe that the latter may be more accurate as it matches better the reports of
553 local rescue services, which had not faced similar flooding for 20 years (reports based on
554 eye observation estimated the peak flows in about 2000 m³/s, higher than the 100-year
555 return period). It is worth insisting on that the version of EFAS currently running in the
556 Guadalhorce basin is uncalibrated, and, therefore, flow simulations cannot be interpreted in
557 absolute terms. Also, it is necessary to remark that no intermediate threshold is established
558 between the “high” and “severe” warnings, which in cases such as the one analysed here
559 could have helped. Note that a more general discussion on the matching between simulated
560 discharges and reference thresholds is conducted in the last section.

561 **6.3. Use of EFAS warnings to improve lead-time**

562 In the two case studies, most of the watersheds responsible for flooding are small (less than
563 100 km²) and, consequently, characterized by short response times (less than 1 hours). In
564 the operational framework, GFWS warnings based on weather radar and/or rain gauges
565 measurements require the collection of rainfall measurements (which, currently, takes up to
566 20 minutes). This means that it takes very short time after the warnings are issued for the
567 inundations to occur in the smallest watersheds (or even equal to 0). This is often
568 insufficient to prevent the concerned population from the flooding. Recent works (e.g.
569 Siccardi et al., 2005; Creutin et al., 2009) have shown that when the social response time is
570 longer than the catchment response time, the planning of management measures requires
571 the use of forecast rainfall fields such as NWP-EPSs. That is why mid-term rainfall
572 forecasts and EFAS warnings represent a good complementary tool for the GFWS.
573 Delivering these forecasts some days in advance, despite the rough spatial accuracy, can be
574 useful from a practical point of view. They can be used as pre-alarms to inform decision-
575 makers about a possible flooding and advise the population, for example, to reduce their
576 trips and to protect vulnerable items. Similarly, emergency services can prepare their teams
577 and anticipate their future actions around the areas of possible flooding to intervene more
578 rapidly the day in question. According to this configuration, the warnings issued by EFAS
579 on the main stream of the Guadalhorce for the 15 and 16 February 2010 could have limited
580 damages. Warnings issued by the GFWS could have then been used to act more precisely
581 on the affected tributaries.

582

583 **7. Discussion and Conclusion**

584 A local Flood Warning System has been implemented in the Guadalhorce basin, frequently
585 affected by plain floods and flash floods. The system delivers distributed warnings over the
586 entire basin based on the available sources of information: rainfall estimates and runoff
587 simulations are compared to pre-computed values of hazard probability (separately for
588 rainfall and runoff) to determine the warning level expressed in terms of return period.

589 The performance of the GFWS has been demonstrated on two major events that occurred in
590 the basin at the beginning of 2010 (the most intense since the system is operating). In
591 general, the warnings issued by the system matched the timing and location where actual
592 inundations occurred. The performance of the system during the presented cases has shown
593 how the different warnings (based on rainfall estimates or on flow simulations) are well
594 adapted to the types of hazard that affect the Guadalhorce basin. Indeed, results obtained
595 for 7 January 2010 confirm that warnings based on point rainfall are well adapted to alert of
596 urban or flash floods, as they are driven by very intense precipitation. As urban drainage is
597 not considered in the system, the precise location of intense rainfall could be enough from
598 the end-user point of view. On the other hand, results obtained on 16 February 2010
599 illustrate the effectiveness of warnings based on aggregated rainfall and discharge
600 simulations to forecast the inundations caused by stream overflows.

601 Moreover, on the analysed events, a significant difference has also been noticed between
602 the return period characterizing warnings based on aggregated rainfall and simulated
603 discharges. Those calculated with the rainfall-runoff model, usually higher, have also
604 pointed out every effective flooding. This underlines the importance of taking into account
605 rainfall-runoff transformation and antecedent soil moisture conditions.

606 In parallel, the European Flood Alert System (EFAS) has proved to be a valuable
607 complementary tool for flood warning. It forecasted the consequences of the larger-scale
608 and long-lasting event of 15-16 February 2010 four days in advance. Although it did not
609 forecast the exact location of flooding and underestimated the magnitude of the event, it
610 provided useful information to prepare the emergency services to operate. However, EFAS
611 did not anticipate the event of 7 January 2010, for which GFWS showed a good
612 performance. We attribute this miss mainly to the inability of the NWP-EPS model to
613 depict the intense but very local precipitation system that produced the event. This kind of
614 events show the interest of rapid-updating and high-resolution FWSs to issue warnings at
615 resolutions that are closer to the scales at which flooding occurs in this basin (for the
616 analysed events most of the inundations occurred in secondary streams for which EFAS
617 does not produce flow forecasts).

618 The presented results illustrate the interest of using the GFWS for flood warning in the
619 Guadalhorce basin. However, there are a number of implicit hypotheses and limitations that
620 are worth discussing:

621 (1) The selection of thresholds for issuing warnings with GWFS is arbitrary according to
622 the usual practices in Spain (i.e. according to the MOPU, 1990 and 1999 for runoff and
623 rainfall respectively). This is so because long series of observations are inexistent in the
624 basin. In particular, the method used for setting flow warning thresholds uses historical
625 daily rainfall accumulations (implicitly assuming a very simple rainfall-runoff model to
626 estimate design peak flows). This results in some sort of inconsistency when the discharges
627 simulated with the rainfall-runoff model presented in section 3 are compared to the
628 thresholds established with an obviously different model. The availability of longer series
629 of hydrological records would allow establishing better thresholds (e.g. as suggested by
630 IACOW, 1982 and Reed et al., 2007). In any case, the used thresholds can still be
631 considered as indicators of the relative degree of severity of the events, despite the fact that
632 the associated return periods cannot be taken in absolute sense. For example the results
633 presented above show a clear correspondence between the issued warnings and the reported
634 inundations, and indicate relative significance of the events, but cannot be considered
635 extreme (the 100-years return period was certainly not exceeded).

636 (2) The number of hydrometeorological sensors (both rain and stream gauges) in the basin
637 poses an important challenge for the performance of the GFWS. The density of rain gauges
638 (in average, 1 every 180 km²) and its time resolution (1 hour) limit the ability of the system
639 to monitor the variability of the rainfall field at smaller scales, thus reducing the skill of the
640 system to forecast flooding due to very local precipitation, especially in convective
641 situations. However, this factor did not seem to be critical for the case of January 2010
642 presented above: although intense rainfall was mainly localized in the southern part of the
643 catchment and gauges recorded maximum accumulations of 40 mm in 2 hours (see section
644 5.1), the system was able to diagnose the magnitude of the event and useful warnings were
645 issued. On the other hand, the number of stream gauges and their location (around 40 km
646 from the outlet of the basin) implies that the calibration of the rainfall-runoff model is
647 mostly valid for the upper part of the basin. Consequently, the simulations obtained

648 downstream (for instance in the area near Málaga, more urbanized than the upper part) are
649 based on an extrapolation of the calibrated parameters, which are assumed to be valid for
650 the entire basin. The lack of flow measurements downstream does not allow any
651 quantitative validation of the simulations.

652 (3) As it has been implemented here, the GFWS has been run with rainfall observations,
653 and, consequently, the results presented above assess the ability of the GFWS to emulate
654 the response of the catchment for two case studies. However, from the operational point of
655 view, it is also fundamental to analyse the ability of the system to forecast the hydrological
656 response of the basin (and resulting warnings) upon all the knowledge available up to the
657 present (see Todini, 1988). By only using rainfall observations, the flow forecasting skill is
658 limited to the response time of the considered basin (Berenguer et al., 2005; Vivoni et al.,
659 2006). On top of that, the time resolution of rainfall records (1 hour for rain gauge records)
660 and the data collection time (about 20 minutes) are factors that reduce the time between the
661 forecasts/warnings are issued and the inundations occur. That means the current
662 configuration of the GFWS (using only rain gauge data) may provide valuable flood
663 warnings only for basins larger than 200 km², with response times over 1 hour. In other
664 words, the system evaluates what is happening in the smallest basins and has some
665 predictive skill for the largest ones thanks to the response time of the basin.

666 In part, (2) can be addressed with the use of radar-based QPE maps: these allow monitoring
667 the space and time variability of the rainfall field at resolutions fulfilling the requirements
668 of rainfall-runoff model for small- to medium-sized basins (see, among many others,
669 Sempere-Torres et al., 1999; Rossa et al., 2005; Cole and Moore, 2008; Corral et al., 2009;
670 Delrieu et al., 2009). However, it has been classically recognized that there are a number of
671 errors (listed, e.g. by Zawadzki, 1984; Austin, 1987; Joss and Waldvogel, 1990) that affect
672 radar-based QPE and that require the implementation of sophisticated algorithms to
673 mitigate their effect (also, the blending of radar QPE maps with rain gauge measurements
674 has shown significant improvements –see, e.g. Velasco-Forero et al., 2009 ; Schiemann et
675 al., 2010 and references therein-). An example of the use of radar-based QPE for a minor
676 event is shown in Appendix.

677 Radar rainfall products also allow generating very short-term rainfall forecasts (nowcasts)
678 that can be used to extend the time series of rainfall inputs to the rainfall-runoff model
679 [critical in point (3) above]. Previous works on this subject show significant improvements
680 in the quality of forecasted hydrographs (see Berenguer et al., 2005; Vivoni et al., 2006;
681 Versini, 2011; Zappa et al., 2011): The anticipation of flow peaks could be extended for up
682 to a few hours in small to medium basins and, when included in the GFWS, should enable
683 improving the skill of the system for flood forecasting. Beyond these time horizons (critical
684 for flood management and rescue services to prepare and plan their actions), rainfall
685 forecasts based on the combination of radar-based products with numerical weather
686 prediction (NWP) precipitation outputs (as suggested by Li and Lai, 2004; Lin et al., 2005;
687 Atencia et al., 2010) should be used. Also, other works (see Jasper et al., 2002; Zappa et al.,
688 2010 and references therein) have shown the interest of coupling NWP precipitation
689 outputs for flood forecasting in small and medium catchments. In our case, it represents an
690 opportunity to fulfil the gap between the lead-times provided by EFAS (several days in
691 advance) and those provided by the GFWS (few hours in the best case). The 2 or 3 hours
692 gained by this combination are critical in crisis management. They should be useful to
693 anticipate the direct consequences of the current event and to optimize emergency services
694 resources. It should also allow to better anticipate small-scale event and to deliver warning
695 on smaller watersheds.

696 In this sense, it should be noted that the GFWS is ready to use any gridded rainfall product.
697 In particular, the GFWS is currently using the radar-based QPE and QPF products
698 generated with the EHIMI packages using observations from the Málaga radar (not
699 available for the analysed events). As discussed above, with the inclusion of these high-
700 resolution precipitation products we expect a better performance of the system, especially
701 for issuing warnings at local scales.

702 **Acknowledgments**

703 The authors would like to thank Red HIDROSUR (Southern Andalusia Hydrological
704 Network) and the AEMET (Spanish Meteorological Agency) for providing historical
705 hydrometeorological data on the Guadalhorce basin. We would also like to thank the Joint
706 Research Centre (JRC) for providing preliminary EFAS outputs for the studied cases. This

707 work has been carried out within the European 7th FP project IMPRINTS
708 (<http://www.imprints-fp7.eu>) and the Spanish project FFGRad (CGL2009-13139), and has
709 been supported by the environmental management company EGMASA (currently, Agencia
710 de Medio Ambiente y Agua de Andalucía, Consejería de Medio Ambiente - Junta de
711 Andalucía).

712

713 **Appendix. Example of GFWS performance using radar-based QPE**

714 Since the GFWS is operational, no major events have occurred other than the 2 cases
715 presented in Sections 5 and 6 in the Guadalhorce basin. During those, the C-band radar of
716 the Spanish Meteorological Agency (AEMET) located near Málaga was not operating..
717 However, radar data were available for some minor events. Here we present a case study
718 for a minor event that occurred on 21 April 2011 as an example to illustrate the use of radar
719 rainfall estimates within the GFWS.

720 **A1. Rainfall inputs: processing of radar data**

721 The very-high resolution of radar QPE products both in space and time (for the case of the
722 Málaga radar, 1km and 10 minutes) fits very well the requirements of flood monitoring in
723 fast response basins such as the Guadalhorce basin, as it allows an accurate representation
724 of the variability of the rainfall field and capture local intensities that could be missed by
725 rain gauge networks. However, radar measurements require a thorough processing to
726 convert them into Quantitative Precipitation Estimates.

727 In our case, we have implemented the chain of algorithms of the EHIMI package (Corral et
728 al., 2009), which includes: (i) reduction of the effects of beam blockage by the orography
729 using the approach of Delrieu et al. (1995), (ii) clutter elimination with the technique of
730 Sánchez-Diezma et al. (2001), (iii) identification of the type of precipitation and
731 extrapolation of elevated reflectivity measurements to the surface according to a double
732 Vertical Profile of Reflectivity as described by Franco et al. (2006, 2008), and (iv)
733 conversion of reflectivity into rain rate using a double Z-R relationship for stratiform and
734 convective rain. Hourly accumulations were generated from instantaneous rainfall maps
735 with an algorithm similar to that of Fabry et al. (1995).

736 **A2. Description of the rainfall event**

737 The river rise of 21 April 2011 is the result of a widespread system that crossed Andalusia
738 from west to east. Over the basin, 10 mm of rainfall were accumulated in 10 hours
739 (approximately from 14:00 UTC to 24:00 UTC), with totals locally reaching up to 25 mm
740 near Málaga and on the southern portion of the Guadalhorce basin (see Figure A1-a). The
741 most intense precipitation was concentrated at about 17:00 UTC with local hourly
742 intensities around 20 mm/h.

743 The event accumulation based on radar measurements does not show the artefacts that
744 frequently affect radar rainfall products (due to e.g. sub-estimation “corridors” due to beam
745 blockage or systematic holes from ground clutter filters). It is also noticeable that radar-
746 based QPE values at gauge locations reasonably matches rain gauge records inside the
747 basin (the differences can be attributed to remaining errors in radar QPE, errors in rain
748 gauge measurements and representativeness errors, since the two systems measure rainfall
749 at different scales).

750 **A3. Performance of the GFWS**

751 During 21 April 2011, the GFWS did not deliver any warnings whatever the type (based on
752 point rainfall, spatially aggregated rainfall or simulated flows). Despite some intense
753 precipitation, no significant increase in discharge was noticed and no alert thresholds were
754 exceeded. The propagation of rainfall through the drainage network reduced the magnitude
755 of the hazard, which was already low in terms of point rainfall.

756 However, the benefit of using radar-based QPE is illustrated by the location of intense
757 precipitation (about 20 mm/h) around Málaga and in the central part of the basin at 17:00
758 UTC. As shown in Figure A1, there is no rain gauge at the location where the most intense
759 precipitation occurred, and the field interpolated from rain gauges did not reproduce these
760 local rainfall intensities (or any warning, see Fig. A1-c). Despite some possible
761 overestimation of the radar-based QPE, this proves the use of weather radar may provide a
762 better understanding of intense rainfall away from the rain gauge network. These
763 differences could have been even more significant for more convective situations
764 characterized by very intense local rainfall.

765 It has to be noticed that no flooding occurred during this event. This is also a satisfactory
766 result for the GFWS, which can be interpreted as follows: First, spatial distribution of
767 precipitation represented by radar-based QPE indicate the location and timing of the highest
768 intensities, which can identify the possible consequences caused by direct rainfall as it may
769 be the case of local floodings in urban areas. Second, the absence of warning in the river
770 network shows there was no significant consequence in terms of discharges, showing that,
771 for this particular case, the rainfall-runoff model did not overestimate the discharges
772 produced by moderate rainfall.

773

774

775

776

777

778 **References**

779 Alfieri, L., Velasco, D. and Thielen, J., 2011. Flash flood detection through a multi-stage
780 probabilistic warning system for heavy precipitation events. *Advances in Geosciences*, 29:
781 69-75.

782 Atencia, A., Rigo, T., Sairouni, A., Moré, J., Bech, J., Vilaclara, E., Cunillera, J., Llasat,
783 M.C. and Garrote, L., 2010. Improving QPF by blending techniques at the Meteorological
784 Service of Catalonia. *Natural Hazards and Earth System Sciences*, 10(7): 1443-1455.

785 Austin, P.M., 1987. Relation between measured radar reflectivity and surface rainfall.
786 *Monthly Weather Review*, 115: 1053-1070.

787 Ben-Zvi, A., 2009. Rainfall intensity-duration-frequency relationships derived from large
788 partial duration series. *Journal of Hydrology*, 367(1-2): 104-114.

789 Berenguer, M., Corral, C., Sánchez-Diezma, R. and Sempere-Torres, D., 2005.
790 Hydrological Validation of a Radar-Based Nowcasting Technique. *Journal of
791 Hydrometeorology*, 6(4): 532-549.

792 Berne, A., ten Heggeler, M., Uijlenhoet, R., Delobbe, L., Dierickx, P. and de Wit, M.,
793 2005. A preliminary investigation of radar rainfall estimation in the Ardennes region and a
794 first hydrological application for the Ourthe catchment. *Natural Hazards and Earth System
795 Sciences*, 5: 267-274.

796 Blöschl, G. and Sivapalan, M., 1995. Scale issues in hydrological modelling: A review.
797 *Hydrological Processes*, 9(3-4): 251-290.

798 Borga, M., 2008. Realtime guidance for flash flood risk management, FLOODsite research
799 project report T16-08-02.

800 Borga, M., Boscolo, P., Zanon, F. and Sangati, M., 2007. Hydrometeorological analysis of
801 the August 29, 2003 flash flood in the eastern Italian Alps. *Journal of Hydrometeorology*,
802 8(5): 1049-1067.

803 Borga, M., Degli Esposti, S. and Norbiato, D., 2006. Influence of errors in radar rainfall
804 estimates on hydrological modeling prediction uncertainty. *Water Resources Research*,
805 42(8): 1-14.

806 Carpenter, T.M. and Georgakakos, K.P., 2006. Intercomparison of lumped versus
807 distributed hydrologic model ensemble simulations on operational forecast scales. *Journal*
808 of *Hydrology*, 329(1-2): 174-185.

809 Cole, S.J. and Moore, R.J., 2008. Hydrological modelling using raingauge-and radar-based
810 estimators of areal rainfall. *Journal of hydrology* 358(3-4): 159-181.

811 Collier, C.G., 2007. Flash flood forecasting: what are the limits of predictability ? *Quarterly*
812 *Journal of the Royal Meteorological Society*, 133: 3-23.

813 Corral, C., Berenguer, M., Sempere-Torres, D. and Escaler, I., 2002. Evaluation of a
814 conceptual distributed rainfall-runoff model in the Besòs catchment in Catalunya using
815 radar information, *Second European Conference on Radar Meteorology*. European
816 Meteorological Society, Delft, Netherlands, pp. 409-415.

817 Corral, C., Sempere-Torres, D., Revilla, M. and Berenguer, M., 2000. A semi-distributed
818 hydrological model using rainfall estimates by radar. Application to Mediterranean basins.
819 *Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere*, 25(10-
820 12): 1133-1136.

821 Corral, C., Velasco, D., Forcadell, D., Sempere-Torres, D. and Velasco, E., 2009. Advances
822 in radar-based flood warning systems. The EHIMI system and the experience in the Besos
823 flash-flood pilot basin. In: P. Samuels, S. Huntington, W. Allsop and J. Harrop (Editors),
824 *Flood Risk Management: Research and Practice*. Taylor & Francis Group, London.

825 Costa, J.E. and Jarett, R.D., 2008. An evaluation of selected extraordinary floods in the
826 United States reported by the US, Geological Survey and implications for future
827 advancement of flood science, Report 2008-5160, Reston, Virginia.

828 Creutin, J.-D. and Borga, M., 2003. Radar hydrology modifies the monitoring of flash flood
829 hazard. *Hydrological Processes*, 17(7): 1453-1456.

830 Creutin, J.D., Borga, M., Lutoff, C., Scolobig, A., Ruin, I. and Créton-Cazanave, L., 2009.
831 Catchment dynamics and social response during flash floods: the potential of radar rainfall
832 monitoring for warning procedures. *Meteorological Applications*, 16(1): 115-125.

833 Delrieu, G., Braud, I., Berne, A., Borga, M., Boudevillain, B., Fabry, F., Freer, J., Gaume,
834 E., Nakakita, E., Seed, A., Tabary, P. and Uijlenhoet, R., 2009. Weather radar and
835 hydrology. *Advances in Water Resources*, 32(7): 969-974.

836 Delrieu, G., Creutin, J.D. and Andrieu, H., 1995. Simulation of Radar Mountain Returns
837 Using a Digitized Terrain Model. *Journal of Atmospheric and Oceanic Technology*, 12(5):
838 1038-1049.

839 Fabry, F. and Zawadzki, I., 1995. Long-Term Radar Observations of the Melting Layer of
840 Precipitation and Their Interpretation. *Journal of the Atmospheric Sciences*, 52(7): 838-
841 851.

842 Francés, F. and Benito, J., 1995. La modelización ditribuida con pocos parametros de las
843 crecidas. *Ingineria del Agua*, 2(4): 7-24.

844 Franco, M., 2008. Estimación cuantitativa de la lluvia mediante radar meteorológico.
845 Corrección del error asociado a la variación vertical de la reflectividad, Universitat
846 Politécnica de Catalunya, Barcelona, Spain, 251 pp.

847 Franco, M., Sanchez-Diezma, R. and Sempere-Torres, D., 2006. Improvements in weather
848 radar rain rate estimates using a method for identifying the vertical profile of reflectivity
849 from volume radar scans. *Meteorologische Zeitschrift*, 15(5): 521-536.

850 Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A.,
851 Blaskovicov, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J.,
852 Irimescu, A., Kohnova, S., Koutoulis, A., Marchi, L., Matreata, S., Medina, V., Preciso,
853 E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D. and Viglione, A.,
854 2009. A compilation of data on European flash floods. *Journal of Hydrology*, 367(1-2): 70-
855 78.

856 Georgakakos, K.P., 2006. Analytical results for operational flash flood guidance. *Journal of*
857 *Hydrology*, 317(1-2): 81-103.

858 Germann, U., Berenguer, M., Sempere-Torres, D. and Zappa, M., 2009. REAL - Ensemble
859 radar precipitation estimation for hydrology in a mountainous region. *Quarterly Journal of*
860 *the Royal Meteorological Society*, 135(639): 445-456.

861 IACOW, 1982. Guidelines for determining flood flow frequency. *Bulletin 17B of the*
862 *Hydrology Subcommittee*. US Geological Survey, Reston, VA.

863 Jasper, K., Gurtz, J. and Lang, H., 2002. Advanced flood forecasting in Alpine watersheds
864 by coupling meteorological observations and forecasts with a distributed hydrological
865 model. *Journal of Hydrology*, 267(1-2): 40-52.

866 Javelle, P., Fouchier, C., Arnaud, P. and Lavabre, J., 2010. Flash flood warning at
867 ungauged locations using radar rainfall and antecedent soil moisture estimations. *Journal of*
868 *Hydrology*, 394(1-2): 267-274.

869 Joss, J. and Waldvogel, A., 1990. Precipitation measurement and hydrology. In: D. Atlas
870 (Editor), *Radar in Meteorology*. Ed., American Meteorological Society, Boston (USA), pp.
871 577-606.

872 Lavabre, J. and Gregoris, Y., 2006. AIGA: un dispositif d'alerte des crues. Application à la
873 région méditerranéenne française, Fifth FRIEND World Conference. IAHS, Havana, Cuba,
874 pp. 214-219.

875 Li, P.W. and Lai, E.S.T., 2004. Short-range quantitative precipitation forecasting in Hong
876 Kong. *Journal of Hydrology*, 288(1-2): 189-209.

877 Lin, C., Vasi, S., Kilambi, A., Turner, B. and Zawadzki, I., 2005. Precipitation forecast skill
878 of numerical weather prediction models and radar nowcasts. *Geophys. Research Letters*,
879 32(14): L14801.

880 Meon, G., 2006. Past and present challenges in flash flood forecasting, First International
881 Workshop on Flash Flood Forecasting, San Jose, Costa Rica, pp. 2.

882 Merz, R. and Blöschl, G., 2009. A regional analysis of event runoff coefficients with
883 respect to climate and catchment characteristics in Austria. *Water Resources Research*,
884 45(1): W01405.

885 Michel, C., AndrÈassian, V. and Perrin, C., 2005. Soil Conservation Service Curve Number
886 method: How to mend a wrong soil moisture accounting procedure? *Water Resour. Res.*,
887 41(2): W02011.

888 Mockus, V., 1957. Use of storm and watersheds characteristics in synthetic hydrograph
889 analysis and application. Soil Conservation Service. U.S. Dept. of Agriculture, Washington
890 (USA).

891 MOPU, 1990. Norma 5.2-IC, drenaje superficial: instrucción de carreteras. Ministerio de
892 Obras Públicas y Urbanismo, Dirección General de Carreteras, Madrid.

893 MOPU, 1999. Máximas Lluvias de la España peninsular. Ministerio de Obras Públicas y
894 Urbanismo, Dirección General de Carreteras, Madrid.

895 Moulin, L., Gaume, E. and Obled, C., 2009. Uncertainties on mean areal precipitation:
896 assessment and impact on streamflow simulations. *Hydrology and Earth System Sciences*,
897 13(2): 99-114.

898 Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part
899 I — A discussion of principles. *Journal of Hydrology*, 10(3): 282–290.

900 Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E. and Anquetin, S., 2008. Flash flood
901 warning based on rainfall thresholds and soil moisture conditions: An assessment for
902 gauged and ungauged basins. *Journal of Hydrology*, 362(3-4): 274-290.

903 Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D.-J. and Participants, D.,
904 2004. Overall distributed model intercomparison project results. *Journal of Hydrology*,
905 298(1-4): 27-60.

906 Reed, S., Schaake, J. and Zhang, Z., 2007. A distributed hydrologic model and threshold
907 frequency-based method for flash flood forecasting at ungauged locations. *Journal of*
908 *Hydrology*, 337(3-4): 402-420.

909 Rossa, A., Bruen, M., Fruehwald, D., Macpherson, B., Holleman, I., Michelson, D. and
910 Michaelides, S., 2005. Use of Radar Observations in Hydrology and NWP models,
911 Brussels.

912 Rozalis, S., Morin, E., Yair, Y. and Price, C., 2010. Flash flood prediction using an
913 uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under
914 changing hydrological conditions. *Journal of Hydrology*, 394(1-2): 245-255.

915 Sánchez-Diezma, R., Sempere-Torres, D., Delrieu, G. and Zawadzki, I., 2001. An
916 improved methodology for ground clutter substitution based on a pre-classification of
917 precipitation types, 30th Int. Conf. on Radar Meteorology. Amer. Meteor Soc., Munich,
918 Germany, pp. 271-273.

919 Schiemann, R., Liniger, M.A. and Frei, C., 2010. Reduced space optimal interpolation of
920 daily rain gauge precipitation in Switzerland. *J. Geophys. Res.*, 115(D14): D14109.

921 Sempere-Torres, D., Corral, C., Raso, J. and Malgrat, P., 1999. Use of weather radar for
922 combined sewer overflows monitoring and control. *Journal of Environmental Engineering*,
923 125: 372-380.

924 Siccardi, F., Boni, G., Ferraris, L. and Rudari, R., 2005. A hydrometeorological approach
925 for probabilistic flood forecast. *Journal of Geophysical Research*, 110: D05101.

926 Szymkiewicz, R., 2002. An alternative IUH for the hydrological lumped models. *Journal of*
927 *Hydrology*, 259(1-4): 246-253.

928 Tanguy, J.-M., Carriere, J.-M., le Trionnaire, Y. and Schoen, R., 2005. Réorganisation de
929 l'annonce des crues en France. *La Houille Blanche*, 2: 44-48.

930 Thielen, J., Bartholmes, J., Ramos, M.-H. and de Roo, A., 2009. The European Flood Alert
931 System - Part 1: Concept and development. *Hydrology and Earth System Sciences*, 13(2):
932 125-140.

933 Todini, E., 1988. Rainfall-runoff modeling ,Â Past, present and future. *Journal of*
934 *Hydrology*, 100(1-3): 341-352.

935 Van Der Knijff, J.M., Younis, J. and De Roo, A.P.J., 2010. LISFLOOD: a GIS-based
936 distributed model for river basin scale water balance and flood simulation. *International*
937 *Journal of Geographical Information Science*, 24(2): 189-212.

938 Velasco-Forero, C.A., Sempere-Torres, D., Cassiraga , E.F. and Gómez-Hernández, J.J.,
939 2009. A non-parametric automatic blending methodology to estimate rainfall fields from
940 rain gauge and radar data. *Advances in Water Resources*, 32: 986-1002.

941 Versini, P.-A., 2011. Evaluation of radar rainfall estimates and forecasts to prevent flash
942 flood in real time by using a road inundation warning system. Submitted to *Journal of*
943 *Hydrology*.

944 Versini, P.-A., Gaume, E. and Andrieu, H., 2010. Application of a distributed hydrological
945 model to the design of a road inundation warning system for flash flood prone areas.
946 *Natural Hazards Earth System Sciences*, 10(4): 805-817.

947 Vivioli, D., Zappa, M., Gurtz, J. and Weingartner, R., 2009. An introduction to the
948 hydrological modelling system PREVAH and its pre- and post-processing-tools.
949 *Environmental Modelling and Software*, 24(10): 1209-1222.

950 Vivoni, E.R., Entekhabi, D., Bras, R.L., Ivanov, V.Y., Van Horne, M.P., Grassotti, C. and
951 Hoffman, R.N., 2006. Extending the Predictability of Hydrometeorological Flood Events
952 Using Radar Rainfall Nowcasting. *Journal of Hydrometeorology*, 7(4): 660-677.

953 Weeks, W.D. and Boughton, W.C., 1987. Tests of ARMA model forms for rainfall-runoff
954 modelling. *Journal of Hydrology*, 91(1-2): 29-47.

955 Zappa, M., Beven, K.J., Bruen, M., Cofiño, A.S., Kok, K., Martin, E., Nurmi, P., Orfila, B.,
956 Roulin, E., Schröter, K., Seed, A., Szturc, J., Vehviläinen, B., Germann, U. and Rossa, A.,
957 2010. Propagation of uncertainty from observing systems and NWP into hydrological
958 models: COST-731 Working Group 2. *Atmospheric Science Letters*, 11(2): 83-91.

959 Zappa, M., Jaun, S., Germann, U., Walser, A. and Fundel, F., 2011. Superposition of three
960 sources of uncertainties in operational flood forecasting chains. *Atmospheric Research*,
961 100(2-3): 246-262.

962 Zawadzki, I., 1984. Factors affecting the precision of radar measurements of rain
963 Conference on Radar Meteorology, 22nd. American Meteorological Society, Zurich,
964 Switzerland, pp. 251-256.

965

966

967

968 **Figure captions**

969

970 Figure 1. The Guadalhorce basin and its hydro-meteorological sensors

971

972 Figure 2. Comparison between observed (black line) and simulated (red line) discharges on
973 Bobadilla basin. The left vertical axis represents the discharge (in m³/s). The right vertical
974 axis represents the rainfall intensity (in mm/h).

975

976 Figure 3. Total estimated precipitation accumulation estimated from rain gauges for (a) 6-7
977 January 2010, and (b) 15-16 February 2010.

978

979 Figure 4. Flood warnings issued on 7 January 2010 based on: (a) point rainfall at 9:00
980 UTC, (b) aggregated rainfall at 10:00 UTC, and (c) simulated discharges at 10:00 UTC.
981 This area around Málaga is the one defined by the dotted square in Fig. 3. The circles
982 indicate the presence of the rain gauges. The solid red ellipses correspond to the effective
983 flooding

984

985 Figure 5. Flood warnings issued on 16 February 2010 based on: (a) Aggregated rainfall at
986 6:00, and (b) and simulated discharge at 7:00. Flooded locations are surrounded in red. The
987 solid red ellipses correspond to the forecasted flooding and the dotted ellipses to the missed
988 flooding. The black ellipse corresponds to the false alarm at Conde Guadalhorce dam.

989

990 Figure A1. Results obtained for the 21 April 2011 event: (a) total precipitation accumulated
991 from radar-based estimates, (b) hourly rainfall field at 17:00 UTC computed by using radar-
992 based estimates, (c) hourly rainfall field at 17:00 UTC interpolated from rain gauges. The
993 circles represent the rain gauges and their observed values.

994

995 **Table captions**

996 Table 1

	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Qmax [m ³ /s]	44.4	80.7	81.2	27.2	20.8	42.6	22.7	84.3
Rainfall [mm]	59.6	78.6	82.3	57.1	34.4	23.3	24.5	97.5
NE	-0.49	0.70	0.84	-1.80	-0.24	0.76	0.57	0.06

997

998 Table 1. Characteristics of the events selected for the calibration of the rainfall-runoff
999 model in the Bobadilla watershed. In the table, Qmax is the maximum measured peak flow,
1000 Rainfall the total amount of precipitation on the sub-catchment, and NE the Nash efficiency
1001 characterizing the calibration assessment.

1002

1003 Table 2

Event	Bobadilla		Teba		Ardales	
	Qmax [m ³ s ⁻¹]	NE	Qmax [m ³ s ⁻¹]	NE	Qmax [m ³ s ⁻¹]	NE
6-7 January 2010	100	0.69	60	0.53	-	-
15-16 February 2010	80	0.62	65	0.57	33	0.35

1004

1005 Table 2. Characteristics of test case studies and results obtained with the rainfall-runoff
1006 model at the gauged watersheds. In the table, Qmax is the maximum measured peak flow,
1007 and NE the Nash efficiency characterizing the calibration assessment. Note that, as
1008 explained in Section 3.3, Teba and Ardales gauges were not used in the calibration of the
1009 rainfall-runoff model.

1010