Equation 1: number of fissures

Assumptions:

- $\quad F_{f i s}$ is the fraction of the cell are covered with fissures
- the cell is a square: $\Delta x=\Delta y$
- fissures are evenly distributed throughout the cell and they are perpendicular to each other
- the number of fissures in x direction is equal the number of fissure in y direction: $N_{f i s, x}=N_{f i s, y}$
- fissure length is equal the length of the cell: $L_{f i s}=\Delta x=\Delta y$
$N_{f i s, x} \cdot \Delta x \cdot a_{f i s}+N_{f i s, y} \cdot \Delta x \cdot a_{f i s}-N_{f i s, x} \cdot N_{f i s, y} \cdot a_{f i s}{ }^{2}=F_{f i s} \Delta x^{2}$
$2 N_{f i s, x} \cdot \Delta x \cdot a_{f i s}-N_{f i s, x}{ }^{2} \cdot a_{f i s}{ }^{2}=F_{f i s} \Delta x^{2}$
$\underline{N_{f i s, x}=N_{f s, y}=\left(1-\sqrt{1-F_{f i s}}\right) \frac{\Delta x}{a_{f i s}}}$

Equation 2: length of matrix block

Assumptions:

- all fissures in the cell are bounded by matrix blocks
- the number of matrix blocks in x and y direction is the same and equal:

$$
\mathrm{N}_{\mathrm{mat}, \mathrm{x}}=\mathrm{N}_{\mathrm{mat}, \mathrm{y}}=\mathrm{N}_{\mathrm{fis}, \mathrm{x}}+1=\mathrm{N}_{\mathrm{fis}, \mathrm{y}}+1
$$

- the total number of matrix blocks within the cell is:

$$
\left(\mathrm{N}_{\mathrm{fis}, \mathrm{x}}+1\right)^{*}\left(\mathrm{~N}_{\mathrm{fis}, \mathrm{y}}+1\right)
$$

$L_{\text {mat }} \cdot L_{\text {mat }} \cdot\left(N_{f i s, x}+1\right) \cdot\left(N_{f s, x}+1\right)=\left(1-F_{f i s}\right) \cdot \Delta x^{2}$
$L_{\text {mat }}=\sqrt{1-F_{f i s}} \frac{\Delta x}{N_{f s, x}+1}$

