# Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport

3

### 4 J. K. Koestel, J. Moeys and N. J. Jarvis

5 Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), PO Box
6 7014, 750 07 Uppsala, SWEDEN

7 Correspondence to: J. K. Koestel (john.koestel@slu.se)

8

#### 9 Abstract

10 Preferential flow is a widespread phenomenon that is known to strongly affect solute transport in 11 soil, but our understanding and knowledge is still poor of the site factors and soil properties that 12 promote it. To investigate these relationships, we assembled a database from the peer-reviewed 13 literature containing information on 733 breakthrough curve experiments under steady-state flow 14 conditions. Most of the collected experiments (585 of the 733 datasets) had been conducted on 15 undisturbed soil columns, although some experiments on repacked soil, clean sands, and glass 16 beads were also included. In addition to the apparent dispersivity, we focused attention on three 17 indicators of preferential solute transport, namely the 5%-arrival time, the holdback factor, and 18 the ratio of piston-flow and average transport velocities. Our results suggest that in contrast to 19 the 5%-arrival time and the holdback factor, the piston-flow to transport velocity ratio is not 20 related to preferential macropore transport but rather to the exclusion or retardation of the 21 applied tracer. Confirming that the apparent longitudinal dispersivity is positively correlated with 22 the travel distance of the tracer, our results also illustrate that this correlation is refined if the 23 normalized 5%-tracer arrival time is also taken into account. In particular, we found that the 24 degree of preferential solute transport increases with apparent dispersivity and decreases with 25 travel distance. A similar but weaker relationship was observed between apparent dispersivity, 26 5%-tracer arrival time, and lateral observation scale, such that the degree of preferential transport 27 increases with lateral observation scale. However, we also found that the travel distance and the 28 lateral observation scale in the investigated dataset are correlated which makes it difficult to

29 distinguish their influence on these transport characteristics. We observed that anionic tracers 30 exhibited larger apparent dispersivities than electrically neutral tracers under comparable 31 experimental conditions. We also found that the strength of preferential transport increased at 32 larger flow rates and water saturations, which suggests that macropore flow was a more 33 important flow mechanism than heterogeneous flow in the soil matrix. Nevertheless, our data 34 shows that heterogeneous flow in the soil matrix also occasionally leads to strong preferential 35 transport. Furthermore, we show that preferential solute transport under steady-state flow 36 depends on soil texture in a threshold-like manner: moderate to strong preferential transport was 37 found to occur only for undisturbed soils which contain more than 8% clay. Preferential flow 38 characteristics were also absent for columns filled with glass beads, clean sands, or sieved soil. 39 No clear effect of land use on the pattern of solute transport could be discerned, probably 40 because the available dataset was too small and too much affected by cross-correlations with 41 experimental conditions. Our results suggest that in developing pedotransfer functions for solute 42 transport properties of soils it is critically important to account for travel distance, lateral 43 observation scale, and water flow rate and saturation.

#### 44 **1** Introduction

45 During recent decades the number and quantity of man-made substances that are released onto 46 the soil has been increasing exponentially. Therefore it is becoming more and more important to 47 be able to quantify and predict water and solute fluxes through soil as knowledge of the latter is 48 fundamental to deciding on appropriate prevention or remediation strategies. Quantitatively 49 accurate estimation of water and solute fluxes in soils requires knowledge of hydraulic and solute 50 transport properties. However, their direct measurement is labour-intensive and costly. As they 51 are in most cases also spatially highly variable, it is not possible to measure them directly at a 52 sufficiently high spatial resolution at the relevant scales for management, such as the field, 53 region or landscape scale. Pedotransfer functions (PTFs) offer a way out of this dilemma 54 (Wösten et al., 2001). PTFs denote an approach in which soil properties that are difficult to 55 measure, e.g. the water retention properties, are estimated using other soil properties that are 56 easier to measure, e.g. the bulk density or texture, as proxy variables. Most work so far has 57 focused on soil hydraulic properties, and very little effort has been devoted to developing PTF's 58 for solute transport characteristics. Some approaches for identifying 'local' PTFs for parameters 59 of the convection-dispersion equation (CDE) or the mobile-immobile model (MIM) have been

60 published based on relatively small datasets (less than 25 samples in all cases) that had been 61 collected explicitly for the purpose (e.g. Goncalves et al. 2001; Perfect et al. 2002; Shaw et al., 62 2000; Vervoort et al., 1999). In other studies, data from peer-reviewed literature was assembled 63 to construct larger databases of solute breakthrough curve (BTC) experiments (e.g. Rose, 1977; 64 Beven et al. 1993; Griffioen et al. 1998; Oliver and Smettem, 2003). In these studies, the authors investigated correlations among CDE and MIM model parameters of between 50 and 359 BTC 65 66 experiments, but links to soil properties and experimental conditions were hardly discussed. In 67 contrast, such links were explicitly established in the study by Bromly et al. (2007), who focused 68 on the relationship of a CDE model parameter, the (longitudinal) dispersivity, to properties of 69 saturated repacked soil columns. Their database comprised 291 entries. Another large database 70 of BTC data was published by Vanderborght and Vereecken (2007). It contains 635 datasets of 71 flux and resident concentration BTC experiments with conservative tracers on undisturbed soil 72 and covers all scales between the small column-scale and the field-scale. Vanderborght and 73 Vereecken (2007) used the dataset to investigate how the longitudinal dispersivity is related to 74 scale, boundary conditions, soil texture, and measurement method. They confirmed that the 75 transport distance and the longitudinal dispersivity are generally positively correlated in soils. 76 The same observation had been previously reported for tracer experiments in groundwater 77 (Gelhar et al., 1992; Neuman, 1990).

78 All of the above discussed studies have 'a priori' assumed the validity of one solute transport 79 model, usually the CDE or the MIM. However, it seems likely that no single model is able to 80 properly characterize all of the contrasting flow regimes found in soils, including convective-81 dispersive transport, heterogeneous flow (funnel flow), non-equilibrium flow in soil macropores 82 or unstable finger flow (Jury and Flühler, 1992). Indeed, it is commonly found that the flow or 83 mixing regime may change one or more times along the travel path (e.g. Vanderborght et al., 84 2001), as soils are predominantly layered in the horizontal direction and solute transport 85 normally takes place in the vertical direction. In effect, a simple generally applicable model for 86 solute transport in soils that is at the same time consistent with the underlying physics is 87 presently not available. Therefore, model-independent (non-parametric) PTFs for solute transport 88 properties should be preferred to model-dependent ones. Some indicator of the strength of 89 preferential transport is then required in place of the model parameters. Several candidates for 90 such an indicator have been proposed during recent years. Among them are the skewness of the

BTC (e.g. Stagnitti et al., 2000), the pore volumes drained at the arrival of the peak concentration
(Ren et al., 1996; Comegna et al., 1999), the 'holdback factor', defined as the amount of original
water remaining in a column when one pore volume of displacing water has entered
(Danckwerts, 1953; Rose, 1973) and early quantiles of solute arrival times (Knudby and Carrera,
2005).

96 In this study, we expand and broaden earlier efforts (e.g. Vanderborght and Vereecken, 2007) to 97 develop a database of solute transport experiments derived from the published literature, which 98 comprises a larger number of BTCs (n=733) with accompanying information on soil properties, 99 site factors (e.g. land use and soil management) and experimental conditions. In contrast to 100 Vanderborght and Vereecken (2007) we only included BTC experiments with direct flux 101 concentration measurements to improve comparability of the collected data. Our main 102 motivation for this work was to create a dataset of transport experiments to enable the future 103 development of non-parametric PTFs for inert solute transport. In this paper, we present the 104 database and the results of initial analyses that relate derived BTC-shape measures to 105 experimental boundary conditions, soil properties and site factors.

#### 106 **2** Material and methods

107 We collected information on 733 BTCs for inert tracers in steady-state flow experiments on 108 undisturbed soil samples and from a smaller number of columns filled with glass beads, clean 109 sands, or sieved and repacked soil. The data was taken from 76 articles published in the peer-110 reviewed literature. Details on the data sources are given in Table 1. We deliberately excluded 111 BTCs consisting of resident concentration data (e.g. sampled by time-domain reflectometry) or 112 data from local sampling methods (e.g. suction samplers). Thus, all the considered BTCs were 113 obtained from measurements of flux concentrations in column or tile-drain effluents. Alongside 114 the BTCs, additional information on corresponding soil properties, site factors and experimental 115 conditions was gathered and stored in a relational MySQL database. Table 2 gives an overview on soil properties, site factors and experimental conditions collected in the database as well as 116 117 information on their completeness.

One difficulty in comparing experimental data is that several different soil texture classification systems were used in the 76 articles. All the classification systems have in common that they assign all particles with an equivalent diameter of less than two micrometers to the clay fraction, but the boundary between the silt and sand fraction varies. We standardized all texture data to the USDA classification system, which sets the silt/sand boundary at 50  $\mu$ m. We did this by loglinear interpolation (Nemes et al., 1999). For soil columns containing two or more soil layers, we derived an effective soil textural composition by calculating the layer-thickness-weighted average of the sand, silt and clay fractions, respectively. In addition, we computed the geometric mean grain diameter using the approach published in Shirazi et al. (2001).

127 Another difficulty in comparing the shapes of different BTCs arises from the fact that the pulse 128 length during which the tracer was applied varies with the corresponding source publication. It is 129 therefore necessary to normalize the BTCs to a standard tracer application. We chose a Dirac-130 like input as our standard. For this type of tracer application the travel-time probability density 131 function (PDF) of the tracer at the measurement location can be derived by simple scaling. This 132 process is denoted as BTC-deconvolution in the following. For the BTC-deconvolution, a pseudo-transfer-function  $f(d^{-1})$  is sought which describes the BTC, here denoted as  $C_{out}(-)$ , for a 133 given tracer application function  $C_{in}$  (-): 134

135 
$$C_{out} = \int_{0}^{\infty} C_{in}(t-\tau)f(\tau)d\tau.$$

136

137 The solute concentrations  $C_{out}$  and  $C_{in}$  were normalized to a reference concentration. They are 138 therefore dimensionless. We also standardized all time variables including t (d) and  $\tau$ (d) in eq. 1 139 to days. We denoted f as the "pseudo-transfer-function" because we do not attach any physical 140 meaning to it. It is important to note that f does not (necessarily) describe the evolution of the 141 BTC along the travel trajectory. Our study only requires that f fits eq. 1 at the location of the 142 measurement, namely at the outlet of the soil columns. This allows us to use arbitrary transfer 143 function types to estimate the PDF of the BTC, as long as it is able to fit the BTC data well 144 enough.

One advantage of this is that we can use CDE and MIM parameters-sets to reconstruct the pseudo-transfer-function, *f*. By using CDE and MIM parameter-sets, we were able to also include studies in which only MIM or CDE model parameters were reported rather than raw data of the actual BTCs. We only considered BTCs for which the corresponding model could be fitted with a coefficient of determination  $R^2 > 0.95$ . Note that for some BTCs, no measure of goodness of fit

(1)

150 is given. In these cases we assumed that the fit was sufficiently well if the MIM was used alone 151 or alongside with the CDE (as e.g. in Seyfried et al. 1987). Otherwise, we decided by visual 152 inspection whether the CDE fitted the BTC well enough to be included in our study. As a result 153 733 BTCs were investigated in the following.

154 The 733 BTCs in our database consist of 146 BTCs scanned from raw data, 399 BTCs for which 155 only MIM parameters were available and 188 BTCs for which CDE parameters were published. 156 For the 146 datasets for which the BTC raw data was available, MIM parameters were inversely 157 determined by fitting CXTFit 2.1 (Toride et al., 1999, command-line version published as part of 158 the STANMOD package, version 2.07). We included this step to make the 146 datasets with 159 BTC raw data more comparable to the remaining 587 BTCs for which only model parameters 160 were available. A drawback to this approach is that some PDFs are then only reconstructed in an 161 approximate manner due to the limited degrees of freedom of the MIM transfer-function and its 162 inability to fit some of the BTCs. Nevertheless, the MIM and CDE fitted the BTC very well in most cases, with a geometric mean coefficient of determination,  $R^2$ , of 0.99. Alternative methods 163 164 for PDF-reconstruction could be preferable in those few cases where the CDE or MIM did not fit 165 well. For example, the BTCs could be deconvoluted using a mixture of standard-type transfer 166 functions (see e.g. Koestel et al., 2011) or by imposing a smoothness constraint (Skaggs et al., 167 1998).

We used analytical solutions of the CDE and MIM for Dirac-pulse input, flux concentrations in input and effluent and a semi-infinite domain (Valocchi, 1985) to forward-model the pseudotransfer-functions which were then normalized to PDF's. We then derived four non-parametric shape-measures from the reconstructed pseudo-transfer-functions and PDFs (Koestel et al., 2011) to evaluate the respective solute transport properties. We especially focused on indicators of preferential solute transport.

According to (Hendrickx and Flury, 2001), preferential flow and transport processes comprise "all phenomena where water and solutes move along certain pathways while bypassing a fraction of the porous matrix". This is a rather vague definition as it remains unclear how the "porouos matrix" is defined or how large the "bypassed fraction" has to be. A more operational definition of preferential transport is a mixing regime that is not convective-dispersive which assumes complete mixing in the directions transverse to the flow (Flühler et al., 1996). For a convective-

180 dispersive mixing regime, the transport is described by the CDE. However, it is not possible to 181 test the validity of the CDE with the type of data collated in our study, comprising breakthrough 182 curves measured at one only travel distance (Jury and Roth, 1990). It is, therefore, more 183 applicable for us to define the strength of preferential transport as the deviation of a BTC-shape 184 from "piston-flow"-transport. The latter refers to the case of complete absence of any 185 heterogeneity in the transport process. This implies also that all the water in the porous medium 186 contributes equally to the solute transport. The shape of a BTC for piston-flow-transport is 187 clearly defined. Its shape is identical to the one of the tracer-input time-series at the upper 188 boundary of the soil column. The first, average and last tracer arrival times are identical and the 189 average transport velocity equals the piston-flow velocity. In the following we use the term 190 "preferential transport" to address BTCs with shape-measures indicating a large deviation from 191 piston-flow.

192 The first indicator we investigated is the ratio of the piston-flow velocity,  $v_q$  (cm d<sup>-1</sup>), to the 193 average transport velocity,  $v_n$  (cm d<sup>-1</sup>), denoted as  $\eta$  (-) and defined by

194 
$$\eta = \frac{v_q}{v_n}$$
195 (2)  
196 where  
197 
$$v_q = \frac{q}{\theta}$$
198 (3)  
199 and  
200 
$$v_n = \frac{L}{\mu_i}$$
(4)  
202 where  $q \pmod{d}$  is the vater flux.  $\theta$  is the (total) volumetric water content (c).  $L$  is the column

where q (cm/d) is the water flux,  $\theta$  is the (total) volumetric water content (-), *L* is the column length (cm) and  $\mu_{I}$  is the normalized first moment of the PDF,

204 
$$\mu_1 = \frac{m_1}{m_0}$$

where  $m_0$  and  $m_1$  are the zeroth and first moments of the pseudo-transfer-function, *f*, respectively, defined as

$$208 m_0 = \int_0^\infty f dt$$

209

210 and

211 
$$m_1 = \int_0^\infty tf dt \,.$$

212 (7)

The piston-flow to transport velocity ratio,  $\eta$ , is smaller than one if the solute is transported faster than the water and it is larger than one if the solute is retarded relative to the water. It is a non-parametric analogue to the retardation coefficient in the CDE and MIM. Vanderborght and Vereecken (2007) used the reciprocal of  $\eta$ , i.e.  $1/\eta$ , to investigate preferential transport. They suggested that  $\eta < 1$  indicates bypass flow.

The second shape-measure used in this study is the normalized arrival-time of the first five percent of the tracer,  $p_{0.05}$  (-). It can be derived from the normalized arrival times, *T* (-),

220 
$$T = \frac{t}{\mu_{1}}$$

221

and the PDF,  $f_n(-)$ ,

223

224

It is more easily obtained from the dimensionless cumulative distribution function (CDF),  $F_n$  (-),

 $f_n = f\mu'_1$ 

226 which is calculated by integrating  $f_n$ ,

8

(8)

(9)

(5)

(6)

$$F_n = \int_0^1 f_n dT$$

Figure 1 illustrates how  $p_{0.05}$  is derived for a BTC taken from Garré et al. (2010).  $p_{0.05}$  is bounded by zero and one, where a value of one indicates piston flow. According to the numerical studies carried out by Knudby and Carrera (2005),  $p_{0.05}$  is negatively correlated with the degree of preferential transport, since it indicates an early tracer arrival. The results of Koestel et al. (2011) indicate that early tracer arrivals are correlated with a long tailing. Note that these two BTC shape-features, early tracer arrival and a long tailing, are generally associated with preferential transport (see Brusseau and Rao, 1990).

We also investigated the holdback factor, H (-), as another indicator of early tracer arrival. This was introduced by Danckwerts (1953) to characterize the degree of mixing of two solutes in a vessel:

$$H = \int_{0}^{1} F_{n} dT$$

240

It corresponds to the 'amount of original fluid remaining in the column when one (water-filled) pore volume of displacing fluid has entered' (*Rose*, 1973). It follows that a large *H* should indicate preferential characteristics in a transport process. *H* is calculated as the integral of the dimensionless CDF between zero and one. The holdback factor, *H*, is also illustrated in Figure 1. *H* has the advantage over  $p_{0.05}$  that it samples a larger part of the CDF, but has the disadvantage that it is less robust to the type of pseudo-transfer-function chosen for the BTC-deconvolution (Koestel et al., 2011).

Finally, we also investigated the apparent dispersivity,  $\lambda_{app}$  (cm), which is defined as

249  $\lambda_{app} = \frac{\mu_2 L}{2}$ 

250

251 where  $\mu_2$  (-) is the second central moment of the PDF,

(12)

(10)

(11)

252 
$$\mu_2 = \int_0^{\infty} (T-1)^2 f_n dT$$

254 Note that  $\mu_2$ , as it is defined here, is identical to the squared coefficient of variation. The apparent dispersivity,  $\lambda_{app}$ , is generally thought to be an indicator of heterogeneity of the solute transport 255 256 process (Vanderborght and Vereecken, 2007). Koestel et al., (2011) found that  $\lambda_{app}$  is correlated 257 to  $p_{0.05}$  and H, but also carries additional information on the transport process and thus may 258 complement the above discussed shape-measures. Because the additional information contained 259 in  $\lambda_{app}$  stems from the late-arriving tracer it has the disadvantage that it is less robust to the type 260 of pseudo-transfer-function chosen for the BTC-deconvolution than  $p_{0.05}$  (Koestel et al., 2011), 261 i.e.  $\lambda_{app}$  is less well defined by the BTC-data than  $p_{0.05}$  and H. One advantage of  $\lambda_{app}$  as a shape 262 measure is that it has already been intensively investigated in the literature (Bromly et al., 2007; 263 Vanderborght and Vereecken, 2007; Hunt and Skinner, 2010).

#### **3 Results and discussion**

265 302 of the 733 experiments available in the database correspond to undisturbed soil samples 266 from arable land (Table 3). 219 of them are from conventionally-tilled fields, 6 from fields with 267 reduced or conservation tillage and 31 from fields with no tillage at all. For the remaining 46 268 samples, the soil management practices were not specified. Managed or natural grassland is the 269 second most common land use type represented in the database (n=104). Samples with arable 270 and grassland land use are distributed over most of the texture triangle with no apparent bias 271 towards any textural class (see Figure 2). In contrast, the 79 BTCs from samples from forest sites 272 are restricted to soil samples with less than 25% clay (Figure 2). Other land uses, like orchard 273 (n=19), grass ley (n=7) or heathland (n=2), are rare. 98 BTCs were measured on samples with 274 unspecified land use. Finally, the 733 datasets also contain 116 experiments on sieved and 275 repacked columns, 32 experiments on columns filled with clean sands or glass beads and 60 276 experiments on undisturbed samples taken from more than 1 m below the land surface (Table 3). 277 All studies were conducted on soil columns. Figure 2 illustrates that the majority of the solute 278 transport experiments had been performed on undisturbed but rather short soil columns which 279 had been sampled from one single soil horizon (see also Table 3).

(13)

280 An overview of Spearman rank correlations among the investigated soil properties, experimental 281 conditions, and BTC shape measures is given in Figure 3. The asterisks indicate p-values of less 282 than 0.001. Some correlations are unsurprising, such as the positive correlations between the 283 flux, q, the average transport velocity, v, the average pressure head, h, and the water content,  $\theta$ . 284 Other similar examples are the correlations between geometric mean grain diameter,  $d_g$ , bulk 285 density,  $\rho$ , and clay, silt, and sand fractions. Also, the positive correlation between average 286 sampling depth and the soil sample length (which is identical to the travel distance), L, is easily 287 explained, as sampling pits for larger soil columns must necessarily extend deeper into the 288 ground. Likewise, the column cross-section, A, is positively correlated with L (and the sampling 289 depth).

290 We found a positive correlation of the apparent dispersivity,  $\lambda_{app}$ , with travel distance, L, and 291 lateral observation scale, A. This confirms what has been in general found in already published 292 reviews on dispersivity (e.g. Gelhar et al., 1992; Vanderborght and Vereecken, 2007), although it 293 is hardly possible to separate the effects of L and A on  $\lambda_{app}$  due to their large mutual correlation. 294 Also consistent with previous studies, Figure 3 shows a positive correlation between the apparent 295 dispersivity,  $\lambda_{app}$ , and the water flux, q, as well as the pressure head, h. Furthermore, the 296 correlation coefficients with texture data show that  $\lambda_{app}$  was in general larger for finer textured 297 soil and smaller for coarse textures which also is in accordance with empirical knowledge and 298 has also been reported by Vanderborght and Vereecken (2007). Finally, we observed no 299 correlation between organic carbon content, OC, and apparent dispersivity,  $\lambda_{app}$ .

300 Two of the three investigated indicators of early tracer arrival, namely the normalized 5%-arrival 301 time,  $p_{0.05}$ , and the holdback factor, H, were strongly negatively correlated. This confirms the 302 findings of Koestel et al. (2011) on a smaller dataset. According to these two shape-measures, 303 the degree of preferential transport increased with flux, q, pressure head, h, and water content,  $\theta$ . 304 This is consistent with empirical findings that show that preferential flow and transport are more 305 likely to be observed under saturated and near-saturated conditions (Langner et al, 1999; 306 Sevfried and Rao, 1987). The correlation matrix indicates that the degree of preferential transport 307 was positively correlated with the lateral observation scale, A, but not with the transport distance, 308 L. An intuitive explanation for this is that increasing the lateral observation scale also increases 309 the probability of sampling preferential flow paths, whereas an increase in transport distance

decreases the probability of connected preferential flow paths in the transport direction. We consider it likely that a negative correlation between transport distance and preferential transport characteristics was masked by the strong mutual correlation between *L* and *A*. Both shapemeasures,  $p_{0.05}$  and *H*, indicate a positive correlation between the degree of preferential transport and the clay and silt fraction, and a negative correlation to the geometric mean grain diameter and the sand fraction. Also, a weak negative correlation between the strength of preferential transport and bulk density,  $\rho$ , was found, but no correlation to the organic carbon content, *OC*.

317 The fourth shape-measure, the piston-flow to transport velocity ratio,  $\eta$ , was not significantly 318 correlated to the normalized 5%-arrival time,  $p_{0.05}$ . A very weak positive correlation was found 319 between  $\eta$  and the holdback factor H and to the apparent dispersivity,  $\lambda_{app}$ . Moreover, we 320 observed that solute transport was increasingly retarded ( $\eta > 1$ ) with increasing water flow rate, 321 q, and pressure heads, h. We found no significant correlations between  $\eta$  and any of the 322 investigated soil properties (i.e. geometric mean grain diameter,  $d_g$ , bulk density,  $\rho$ , texture 323 fractions and organic carbon content, OC). It follows that the piston-flow to transport velocity 324 ratio,  $\eta$ , reflects different information on solute transport characteristics as compared to the other 325 indicators for early tracer arrival,  $p_{0.05}$  and H.

326 Figure 4a shows that strong correlation between the 5%-arrival time,  $p_{0.05}$ , and the holdback 327 factor, H, was weaker for small  $p_{0.05}$  (large H), i.e. for BTCs displaying strong preferential 328 transport. Figure 4a suggests that H offers a better discrimination between soils showing strong 329 preferential transport whereas  $p_{0.05}$  better resolves differences among soils with weaker 330 preferential transport characteristics. In Figure 4b and c, the piston-flow to transport velocity 331 ratio,  $\eta$ , is compared to  $p_{0.05}$  and H. Note that no value for  $\eta$  was available if no independent 332 water content measurement was published for the respective BTC (see Eq. 2). Therefore, the 333 range of  $p_{0.05}$  in Figure 4b appears to be different to the one in Figure 4a. Besides depicting the 334 minimal correlation of  $\eta$  to the other two indicators of early tracer arrival, these two figures also 335 illustrate that  $\eta$  was, in contrast to  $p_{0.05}$  and H, sensitive to the choice of tracer in the BTC 336 experiments. Anionic tracers like chloride and bromide were generally transported faster than the 337 water flux whereas the electrically neutral tracers deuterium and tritium only occasionally exhibited accelerated transport, namely when small  $p_{0.05}$  and medium H indicated preferential 338 characteristics. As we only considered experiments where the anionic tracers were applied on 339

soils with electrically neutral or predominantly negatively charged media, the generally accelerated solute transport for anionic tracers is well explained by anion exclusion (Rose et al., 2009; Thomas and Swoboda, 1970). Notably, for very strong preferential transport ( $p_{0.05} < 0.1$ and H > 0.4), the anionic tracers were retarded.

344 Figure 5a and b illustrate the impact of the choice of tracer on BTCs. The non-ionic tracers 345 tritium and deuterium were generally used on longer columns than chloride and bromide and 346 under similar water fluxes. Although longer columns should lead to larger apparent 347 dispersivities,  $\lambda_{app}$  (Figure 3), this was not observed for the BTCs obtained with tritium and 348 deuterium. This supports the validity of model approaches in which the solute dispersivity is not 349 only dependent on the pore-space geometry but also on the adsorptive properties of tracer and 350 soil matrix (Wels et al., 1997; Pot and Genty, 2007). In addition, the strength of preferential 351 transport, as expressed by  $p_{0.05}$ , was smaller for the non-ionic tracers than for the anions.

Figure 6a illustrates that for a given value of  $\lambda_{app}$ ,  $p_{0.05}$  increases with the column length, L. This 352 353 suggests that the strength of preferential transport decreases with travel distance. No significant 354 correlation was found between L and  $p_{0.05}$  (Fig. 2), probably because it was masked by the non-355 linearity of the ternary relationship between L,  $p_{0.05}$  and  $\lambda_{app}$ , especially for strong preferential 356 transport ( $p_{0.05} < 0.1$ ). Thus, including  $p_{0.05}$  into a scaling-scheme for the apparent dispersivity, 357  $\lambda_{app}$ , with travel distance, L, strongly increases the amount of explained variance. A principal 358 component analysis revealed that the first two principal components for the three measures  $\log_{10}$ 359 L,  $\log_{10} \lambda_{app}$  and  $p_{0.05}$  (normalized to a mean of zero and a standard deviation of one) explain 360 91.9% of the variance between the three shape-measures. In contrast, the first principal 361 component of just  $\log_{10} \lambda_{app}$  and  $\log_{10} L$  explains only 66.2 % of the variance, exhibiting a 362 Spearman rank correlation coefficient of 0.369 (p-value < 0.001). A very similar ternary 363 relationship was found between  $\log_{10} \lambda_{app}$ ,  $p_{0.05}$ , and the logarithm of the area of the breakthrough 364 plane, log<sub>10</sub> A (Figure 6b), which explained 88.7 % of the inherent variance. The first principal 365 component between only  $\lambda_{app}$  and A explains 70.3% of the variance. The corresponding 366 Spearman rank correlation coefficient is 0.5 (p-value < 0.001).

Figure 7a-d show the dependency of v,  $\lambda_{app}$ ,  $p_{0.05}$ , and  $\eta$  on water flow rates. Only undisturbed samples were considered. Figure 7a-c show that not only the medians of v and  $\lambda_{app}$  monotonously increase with the respective water flux class but also the strength of preferential transport (there 370 is negative relationship between  $p_{0.05}$  and q). Note that correlation effects between water flow 371 rate, q, and travel distance, L, and lateral observation scale, expressed by A, are ruled out since 372 these quantities were not correlated (Figure 3). For undisturbed samples only, we found a 373 significant but very weak positive correlation between the water flow rate, q, and the clay 374 content (Spearman rank correlation coefficient is 0.15, not shown). Therefore we conclude that 375 the water flow rate was the most important factor for the relationships shown in Figure 7a-c. This 376 suggests that, for this dataset, macropore transport overshadows preferential transport caused by 377 heterogeneities in matrix hydraulic properties. Nevertheless, Figure 7c also illustrates that 378 preferential transport cannot be completely ruled out for small water fluxes. Little dependence of 379 the piston-flow to transport velocity ratios,  $\eta$ , on the water flux, q, is observed (Figure 7c). This 380 suggests that  $\eta$  is not strictly related to preferential transport in soil macropores. Indeed,  $\eta$  is 381 smallest for the experiments with the lowest water fluxes. As most of the experiments included 382 in this analysis were conducted with anionic tracers, a possible explanation for this behavior is 383 that anion exclusion was amplified for experiments under small water flow rates which by trend 384 correspond to experiments under far from saturated conditions when only meso- and micropores 385 are water-filled.

386 Figure 8 depicts how the soil horizon from which the sample had been taken is related to  $\lambda_{app}$  and 387  $p_{0.05}$ . Firstly, Figure 8 illustrates that samples that contain both topsoil and subsoil exhibit larger 388 apparent dispersivities,  $\lambda_{app}$ , than samples from only topsoil or only subsoil. One obvious 389 explanation for this is that samples containing both topsoil and subsoil are generally longer, so 390 that  $\lambda_{app}$  is also larger due to its positive correlation with travel distance (see Figure 6a). 391 However, it is also plausible that features at the interfaces between topsoil and subsoil in these 392 columns, e.g. plow pans, enhance the spreading of a solute plume, such as observed for example 393 by Öhrström et al. (2002) and Koestel et al. (2009b). As samples taken from only the topsoil are 394 always restricted to lengths between 20 and 40 cm and because longer samples taken from only 395 the subsoil have seldom been investigated, it is not possible to appraise to what degree interfaces 396 between topsoil and subsoil add to the scaling effect of the apparent dispersivity,  $\lambda_{app}$ , with travel 397 distance. Furthermore, soil columns filled with clean sands or glass beads, which are tagged as 398 'irrelevant' in Figure 8, generated strictly non-preferential BTCs.

399 The relationship between  $\lambda_{app}$  and  $p_{0.05}$  and soil texture, characterized by the geometric mean 400 grain diameter,  $d_g$ , is somewhat more complicated (see Figure 9). Coarser-textured soils with large  $d_g$  are not at all restricted to a specific range of apparent dispersivities or 5%-arrival times, 401 402 or specific combinations of the two. In contrast, for fine-grained soils,  $p_{0.05}$  is always less than 403 0.6 and the apparent dispersivity always exceeds ca. 2 cm. Finally, the samples with an 404 intermediate  $d_g$  show low  $\lambda_{app}$ -to- $p_{0.05}$  ratios upon visual inspection (Figure 9). Such a ratio is also 405 typical for short transport distances (Figure 6a). A possible explanation may be that in our 406 dataset, experiments on soils with intermediate  $d_g$  were only carried out on short columns. In 407 summary, there are no smooth transitions apparent in Figure 9 and the geometric mean grain 408 diameter appears not to be a strong predictor for  $\lambda_{app}$  and  $p_{0.05}$ .

409 A clearer picture emerges if  $\lambda_{app}$  and  $p_{0.05}$  are plotted in relation to USDA texture classes. Figure 410 10a shows that BTCs showing strong preferential transport characteristics ( $p_{0.05} < 0.2$ ) are 411 restricted to samples containing at least 8 to 9% clay. This is similar to the clay content needed 412 for the formation of stable soil aggregates (Horn et al., 1994) and may also reflect an absence of 413 biopores in such soils, since both roots and earthworms avoid coarse single-grain soils. Also, 414 small  $p_{0.05}$  values are less common for samples with more than 50% silt. However, the latter may 415 possibly be an artifact caused by the scarcity of experiments on short columns sampled from just 416 one single soil horizon in silty soils (see Figure 10d). The apparent dispersivity,  $\lambda_{app}$ , roughly 417 follows the distribution of  $p_{0.05}$  on the texture triangle diagram (Figure 10b) which is not 418 surprising given the strong correlation between the two (see Figure 6). However, extreme  $\lambda_{app}$ 419 values were less clearly constrained to specific regions on the texture triangle diagram. They 420 mostly occurred for undisturbed samples containing more than one soil horizon. Finally, Figure 421 10c shows the distribution of the piston-flow to transport velocity ratio,  $\eta$  on the texture triangle. 422 Small piston-flow to transport velocity ratios ( $\eta \ll 1$ ), were predominantly found for loamy soils 423 and were absent for soils in which one of the three fractions (silt, sand or clay) dominates. The 424 complete absence of  $\eta < 1$  for soils of clayey texture may be related to anion exclusion as all 425 these experiments were conducted with anionic tracers (see Figure 4b and discussion above). 426 Small  $\eta$  occur exclusively in loamy soils which are characterized by a broader particle (and thus 427 pore) size distribution than soils from other texture classes. As a broader pore size spectrum 428 should enhance heterogeneous transport in the soil matrix, it is possible that, in addition to anion 429 exclusion,  $\eta$  reflects heterogeneous transport in the matrix rather than macropore flow.

Finally, we also investigated the relationships of the BTC shape-measures  $\lambda_{app}$  and  $p_{0.05}$  with land 430 431 use and soil management practices. Figure 11a and b illustrate that the 585 undisturbed soil 432 samples exhibited a median apparent dispersivity of 6.72 cm and a median normalized 5%-433 arrival time of 0.3 corresponding to steady state flow conditions with a median flux of 12.7 cm/d 434 and a median travel distance of 20 cm. Much smaller  $p_{0.05}$  values were only found for samples 435 from arable sites with reduced tillage and grass leys (Figure 11a). However, the number of 436 samples for these land use classes was very small, while Figure 11b reveals that the experiments 437 were conducted on relatively short columns and large water fluxes, both of which promote low 438  $p_{0.05}$ . Similarly, the experimental conditions were also not representative for the bulk of the 439 experiments on undisturbed samples for the 'forest' sites. For these samples, the experimental 440 conditions promoted larger  $p_{0.05}$  values (Figure 11b). Figure 11a and b show that sieved and repacked soil samples resulted in clearly larger  $p_{0.05}$  values than samples of undisturbed soil, 441 442 even though the experimental conditions favored small values. A lack of preferential transport 443 for the disturbed samples is consistent with the destruction of natural well-connected pore-444 structures by sieving. This furthermore underlines the importance of conducting leaching studies 445 on undisturbed samples (see also Elrick and French, 1966; Cassel et al., 1974; McMahon and 446 Thomas, 1974). Furthermore, no sign of preferential transport was found for the BTCs collected from artificial porous media like clean sand or glass beads. They exhibited extremely large  $p_{0.05}$ 447 448 and extremely small  $\lambda_{app}$ , although the experimental conditions should have acted in the opposite 449 direction. Of the natural soils, only the two samples from heathland sites consisting almost of 450 pure sand (Seuntjens et al. 2001) show similar features (Figure 11a). We conclude that, with a 451 few exceptions, a complete absence of preferential characteristics in solute transport is only 452 observed in artificial homogeneous porous media. Apart from this, our data does not show any 453 clear relationship between land use and degree of preferential transport and solute dispersion. 454 However, such relationships cannot be ruled out, since in our dataset they may have been 455 obscured by a lack of comparable experimental conditions.

#### 456 **4 Conclusions**

We investigated the controls on inert solute transport based on 733 breakthrough curve experiments collected from the peer-reviewed literature, mostly conducted on undisturbed soil columns. We focused especially on four breakthrough curve shape-measures, namely the normalized 5%-arrival time, the holdback factor, the apparent longitudinal dispersivity and the 461 ratio of piston-flow and average transport velocities. The normalized 5%-arrival time, the 462 apparent dispersivity and the holdback factor were strongly correlated, while only weak 463 correlations were found between these shape-measures and the piston-flow to transport velocity 464 ratio, suggesting that the latter contains complementary information on solute transport. In 465 particular, our results suggest that the piston-flow to transport velocity ratio is more strongly 466 related to exclusion or retardation of the applied tracer and preferential transport in the soil 467 matrix, rather than to the degree of preferential solute transport in macropores.

468 Our results indicate that not only the transport velocity but also the apparent dispersivity is 469 dependent on the choice of tracer. Anionic tracers exhibited larger apparent dispersivities than 470 electrically neutral ones. Moreover, our results confirm the findings of previous studies that the 471 apparent longitudinal dispersivity is positively correlated with the travel distance of the tracer. 472 We found that this relationship is refined if the normalized 5% tracer arrival time is also taken 473 into account as a measure of the degree of preferential solute transport. In particular, we found 474 that the degree of preferential solute transport increases with apparent dispersivity and decreases 475 with travel distance. A similar relationship was found between the apparent dispersivity and the 476 lateral observation scale. However, the effects of travel distance and lateral observation scale on 477 these two measures are difficult to separate as travel distance and breakthrough plane cross-478 sectional area were positively correlated.

479 The strength of preferential transport increased at larger flow rates and water saturations, which 480 suggests that macropore flow was a dominant cause of non-equilibrium conditions for the 481 experiments in our database. Nevertheless, our data shows that heterogeneous flow in the soil 482 matrix also occasionally leads to strong preferential transport characteristics, especially in loamy 483 soils. It should also be noted here that most of the studies included in the database were 484 conducted under relatively high intensity and steady-state irrigation boundary conditions and 485 saturated or near-saturated initial conditions. Therefore, the general relevance of transport 486 processes that are triggered under different initial and/or boundary conditions cannot be 487 investigated with our database. Examples are unstable finger flow (Scheidegger, 1960; Raats, 488 1973; Hendrickx et al., 1993) and preferential transport due to soil hydrophobicity (Thomas et 489 al., 1973; Ritsema and Dekker, 1996) or air-entrapment (Debacker, 1967; Sněhota et al., 2008). 490 These flow and transport phenomena have been frequently investigated, but mostly with aid of 491 dye tracers and only occasionally by means of BTC experiments. The lack of appropriate studies

492 to quantify the importance of these preferential transport processes as compared to the here493 investigated BTC experiments should be addressed in the future.

494 Preferential solute transport was shown to depend on soil texture in a threshold-like manner: 495 moderate to strong preferential transport was only found in soils with a texture consisting of 496 more than 8 to 9% clay. As expected, columns filled with glass beads, clean sands, or sieved soil 497 exhibited no preferential transport. No clear effect of land use on the pattern of solute transport 498 could be discerned. However, we suspect that the dataset was too small and also too strongly 499 influenced by cross-correlations with soil type and experimental conditions to allow any firm 500 conclusions to be drawn on this.

The database opens up the possibility to develop pedotransfer functions for solute transport properties in soil. Whilst they are generally encouraging, the results of the initial analyses presented in this paper suggest that this will be a challenging task. In particular, it will be critically important to distinguish the effects of experimental conditions (column dimensions, initial and boundary conditions) from the effects of soil and site characteristics. Some initial attempts in this direction are underway.

#### 507 References

Akhtar, M. S., Richards, B. K., Medrano, P. A., deGroot, M., and Steenhuis, T. S.: Dissolved
phosphorus from undisturbed soil cores: Related to adsorption strength, flow rate, or soil
structure? Soil Sci. Soc. Am. J., 67, 458-470, 2003.

- 511 Anamosa, P. R., Nkedi-Kizza, P., Blue, W. G., and Sartain, J. B.: Water-movement through an 512 aggregated, gravelly oxisol from Cameroon, Geoderma, 46, 263-281, 1990.
- Bedmar, F., Costa, J. L., and Gimenez, D.: Column tracer studies in surface and subsurface
  horizons of two typic argiudolls, Soil Sci., 173, 237-247, 2008.
- 515 Beven, K. J., Henderson, D. E., and Reeves, A. D.: Dispersion parameters for undisturbed 516 partially saturated soil, J. Hydrol., 143, 19-43, 1993.
- 517 Bromly, M., and Hinz, C.: Non-Fickian transport in homogeneous unsaturated repacked sand, 518 Water Resour. Res., 40, W07402, doi: 10.1029/2003WR002579, 2004.
- 519 Bromly, M., Hinz, C., and Aylmore, L. A. G.: Relation of dispersivity to properties of 520 homogeneous saturated repacked soil columns, Eur. J. Soil Sci., 58, 293-301, 2007.

- 521 Candela, L., Álvarez-Benedí, J., Condesso de Melo, M. T., and Rao, P. S. C.: Laboratory studies
  522 on glyphosate transport in soils of the Maresme area near Barcelona, Spain: Transport model
  523 parameter estimation, Geoderma, 140, 8-16, 2007.
- 524 Cassel, D. K., Krueger, T. H., Schroer, F. W., and Norum, E. B.: Solute movement through 525 disturbed and undisturbed soil cores, Soil Sci. Soc. Am. J., 38, 36-40, 1974.
- 526 Coats, K. H., and Smith, B. D.: Dead-end pore volume and dispersion in porous media, Society of
- 527 Petroleum Engineers Journal, 4, 73-84, 1964.
- 528 Comegna, V., Coppola, A., and Sommella, A: Nonreactive solute transport in variously
- 529 structured soil materials as determined by laboratory-based time domain reflectometry (TDR),
- 530 Geoderma, 92, 167-184, 1999.
- 531 Comegna, V., Coppola, A., and Sommella, A.: Effectiveness of equilibrium and physical non-
- 532 equilibrium approaches for interpreting solute transport through undisturbed soil columns, J.
- 533 Contam. Hydrol., 50, 121-138, 2001.
- de Smedt, F. d., and Wierenga, P. J.: Solute transfer through columns of glass beads, Water
  Resour. Res., 20, 225-232, 1984.
- 536 Danckwerts, P. V.: Continuous flow systems distribution of residence times, Chemical
  537 Engineering Science, 2, 1-13, 1953.
- 538 Debacker, L. W.: Measurement of entrapped gas in study of unsaturated flow phenomena, Water
  539 Resour. Res., 3, 245-&, 1967.
- Dousset, S., Chauvin, C., Durlet, P., and Thevenot, M.: Transfer of hexazinone and glyphosate
  through undisturbed soil columns in soils under Christmas tree cultivation, Chemosphere, 57,
  265-272, 2004.
- 543 Dufey, J. E., Sheta, T. H., Gobran, G. R., and Laudelout, H.: Dispersion of chloride, sodium, and 544 calcium-ions in soils as affected by exchangeable sodium, Soil Sci. Soc. Am. J., 46, 47-50, 1982.
- 545 Dyson, J. S., and White, R. E.: A comparison of the convection-dispersion equation and transfer
- 546 function model for predicting chloride leaching through an undisturbed, structured clay soil, Eur.
- 547 J. Soil Sci., 38, 157-172, 1987.

- 548 Dyson, J. S., and White, R. E.: The effect of irrigation rate on solute transport in soil during 549 steady state water-flow, J. Hydrol., 107, 19-29, 1989.
- Elrick, D. E., and French, L. K.: Miscible displacement patterns of disturbed and undisturbed soil
  cores, Soil Science Society of America Proceedings, 30, 153-156, 1966.
- 552 Ersahin, S., Papendick, R. I., Smith, J. L., Keller, C. K., and Manoranjan, V. S.: Macropore
- transport of bromide as influenced by soil structure differences, Geoderma, 108, 207-223, 2002.
- 554 Flühler, H., Durner, W., and Flury, M.: Lateral solute mixing processes A key for understanding
- 555 field-scale transport of water and solutes, Geoderma, 70(2-4), 165-183, 1996.
- 556 Gaber, H. M., Inskeep, W. P., Comfort, S. D., and Wraith, J. M.: Nonequilibrium transport of
- atrazine through large intact soil cores, Soil Sci. Soc. Am. J., 59, 60-67, 1995.
- 558 Garré, S., Koestel, J., Günther, T., Javaux, M., Vanderborght, J., and Vereecken, H.: Comparison
- of heterogeneous transport processes observed with electrical resistivity tomography in two toils,
- 560 Vadose Zone J, 9, 336-349, 2010.
- 561 Gaston, L. A., and Locke, M. A.: Bentazon mobility through intact, unsaturated columns of 562 conventional and no-till Dundee soil, J. Environ. Qual., 25, 1350-1356, 1996.
- Gaston, L. A., and Locke, M. A.: Acifluorfen sorption, degradation, and mobility in a Mississippi
  delta soil, Soil Sci. Soc. Am. J., 64, 112-121, 2000.
- Gaston, L. A., Locke, M., McDonald, J., Dodla, S., Liao, L., Putnam, L., and Udeigwe, T.:
  Effects of tillage on norflurazon sorption, degradation and mobility in a mississippi delta soil,
  Soil Sci., 172, 534-545, 2007.
- Gelhar, L. W., Welty, C., and Rehfeldt, K. R.: A critical-review of data on field-scale dispersion
  in aquifers, Water Resour. Res., 28, 1955-1974, 1992.
- 570 Goncalves, M. C., Leij, F. J., and Schaap, M. G.: Pedotransfer functions for solute transport 571 parameters of Portuguese soils, Eur. J. Soil Sci., 52, 563-574, 2001.
- 572 Green, J. D., Horton, R., and Baker, J. L.: Crop residue effects on leaching of surface-applied
- 573 chemicals, J. Environ. Qual., 24, 343-351, 1995.
- 574 Griffioen, J. W., Barry, D. A., and Parlange, J. Y.: Interpretation of two-region model parameters,
- 575 Water Resour. Res., 34, 373-384, 1998.

- 576 Gwo, J. P., Jardine, P. M., Wilson, G. V., and Yeh, G. T.: A multiple-pore-region concept to
- 577 modeling mass-transfer in subsurface media, J. Hydrol., 164, 217-237, 1995.
- Haws, N. W., Das, B. S., and Rao, P. S. C.: Dual-domain solute transfer and transport processes:
  evaluation in batch and transport experiments, J. Contam. Hydrol., 75, 257-280, 2004.
- 580 Hendrickx, J. M. H., Dekker, L. W., and Boersma, O. H.: Unstable wetting fronts in water-581 repellent field soils, J. Environ. Qual., 22, 109-118, 1993.
- Helmke, M. F., Simpkins, W. W., and Horton, R.: Fracture-controlled nitrate and atrazine
  transport in four Iowa till units, J. Environ. Qual., 34, 227-236, 2005.
- Horn, R., Taubner, H., Wuttke, M., and Baumgartl, T.: Soil physical properties related to soil
  structure, Soil Tillage Res., 30, 187-216, 1994.
- Hunt, A. G., and Skinner, T. E.: Predicting Dispersion in Porous Media, Complexity, 16, 43-55,2010.
- Jacobsen, O. H., Leij, F. J., and van Genuchten, M. T.: Parameter determination for chloride and
  tritium transport in undisturbed lysimeters during steady state flow, Nord. Hydrol., 23, 89-104,
  1992.
- Javaux, M., and Vanclooster, M.: Scale- and rate-dependent solute transport within an
  unsaturated sandy monolith, Soil Sci. Soc. Am. J., 67, 1334-1343, 2003.
- Jensen, K. H., Destouni, G., and Sassner, M.: Advection-dispersion analysis of solute transport in
  undisturbed soil monoliths, Ground Water, 34, 1090-1097, 1996.
- Jensen, M. B., Hansen, H. C. B., Hansen, S., Jorgensen, P. R., Magid, J., and Nielsen, N. E.:
  Phosphate and tritium transport through undisturbed subsoil as affected by ionic strength, J.
  Environ. Qual., 27, 139-145, 1998.
- Jorgensen, P. R., Helstrup, T., Urup, J., and Seifert, D.: Modeling of non-reactive solute transport
  in fractured clayey till during variable flow rate and time, J. Contam. Hydrol., 68, 193-216, 2004.
- Jury, W. A., and Flühler, H.: Transport of chemicals through soil mechanisms, models, and
  field applications, Adv. Agron., 47, 141-201, 1992.
- 602 Kamra, S. K., Lennartz, B., van Genuchten, M. T., and Widmoser, P.: Evaluating non-
- equilibrium solute transport in small soil columns, J. Contam. Hydrol., 48, 189-212, 2001.

- Kasteel, R., Vogel, H. J., and Roth, K.: From local hydraulic properties to effective transport in
  soil, Eur. J. Soil Sci., 51, 81-91, 2000.
- Kim, S. B., On, H. S., Kim, D. J., Jury, W. A., and Wang, Z.: Determination of bromacil transport
  as a function of water and carbon content in soils, Journal of Environmental Science and Health

608 Part B-Pesticides Food Contaminants and Agricultural Wastes, 42, 529-537, 2007.

- 609 Kjaergaard, C., Poulsen, T. G., Moldrup, P., and de Jonge, L. W.: Colloid mobilization and
- 610 transport in undisturbed soil columns: 1. Pore structure characterization and tritium transport.
- 611 Vadose Zone J., 3, 413-423, 2004.
- Knudby, C., and Carrera, J.: On the relationship between indicators of geostatistical, flow and
  transport connectivity, Advances in Water Resources, 28, 405-421, 2005.
- 614 Koestel, J., Vanderborght, J., Javaux, M., Kemna, A., Binley, A., and Vereecken, H.:
- 615 Noninvasive 3-D transport characterization in a sandy soil using ERT: 1. Investigating the
- validity of ERT-derived transport parameters, Vadose Zone J., 8, 711-722, 2009a.
- Koestel, J., Vanderborght, J., Javaux, M., Kemna, A., Binley, A., and Vereecken, H.:
  Noninvasive 3-D transport characterization in a sandy soil using ERT: 2. Transport process
  inference, Vadose Zone J., 8, 723-734, 2009b.
- Koestel, J. K., Moeys, J., Jarvis, N. J.: Evaluation of non-parametric shape-measures for solute
  breakthrough curves, Vadose Zone J., 10(4), 1261-1275.
- Krupp, H. K., and Elrick, D. E.: Miscible displacement in an unsaturated glass bead medium,
  Water Resour. Res., 4, 809-815, 1968.
- Langner, H. W., Gaber, H. M., Wraith, J. M., Huwe, B., and Inskeep, W. P.: Preferential flow
  through intact soil cores: Effects of matric head, Soil Sci. Soc. Am. J., 63, 1591-1598, 1999.
- 626 Lee, J., Horton, R., and Jaynes, D. B.: A time domain reflectometry method to measure immobile
- water content and mass exchange coefficient, Soil Sci. Soc. Am. J., 64, 1911-1917, 2000.
- Lee, J., Horton, R., Noborio, K., and Jaynes, D. B.: Characterization of preferential flow in undisturbed, structured soil columns using a vertical TDR probe, J. Contam. Hydrol., 51, 131-144, 2001.

- Lennartz, B., Haria, A. H., and Johnson, A. C.: Flow regime effects on reactive and non-reactive
  solute transport, Soil and Sediment Contamination, 17, 29-40, 2008.
- Luo, L., Lin, H., and Schmidt, J.: Quantitative relationships between soil macropore
  characteristics and preferential flow and transport, Soil Sci. Soc. Am. J., 74, 1929-1937, 2010.
- Maraqa, M. A., Wallace, R. B., and Voice, T. C.: Effects of degree of water saturation on dispersivity and immobile water in sandy soil columns, J. Contam. Hydrol., 25, 199-218, 1997.
- 637 Mayes, M. A., Jardine, P. M., Mehlhorn, T. L., Bjornstad, B. N., Ladd, T., and Zachara, J. M.:
- 638 Transport of multiple tracers in variably saturated humid region structured soils and semi-arid
- region laminated sediments, J. Hydrol., 275, 141-161, 2003.
- 640 McIntosh, J., McDonnell, J. J., and Peters, N. E.: Tracer and hydrometric study of preferential
- flow in large undisturbed soil cores from the Georgia Piedmont, USA, Hydrol. Process., 13, 139-155, 1999.
- 643 McMahon, M. A., and Thomas, G. W.: Chloride and tritiated water flow in disturbed and 644 undisturbed soil cores, Soil Sci. Soc. Am. J., 38, 727-732, 1974.
- Montoya, J. C., Costa, J. L., Liedl, R., Bedmar, F., and Daniel, P.: Effects of soil type and tillage
  practice on atrazine transport through intact soil cores, Geoderma, 137, 161-173, 2006.
- Mooney, S. J., and Morris, C.: A morphological approach to understanding preferential flow
  using image analysis with dye tracers and X-ray Computed Tomography, Catena, 73, 204-211,
  2008.
- Nemes, A., Wösten, J. H. M., Lilly, A., and Voshaar, J. H. O.: Evaluation of different procedures
  to interpolate particle-size distributions to achieve compatibility within soil databases, Geoderma,
  90, 187-202, 1999.
- Neuman, S. P.: Universal scaling of hydraulic conductivities and dispersivities in geologic media,
  Water Resour. Res., 26, 1749-1758, 1990.
- 655 Nkedi-Kizza, P., Biggar, J. W., van Genuchten, M. T., Wierenga, P. J., Selim, H. M., Davidson,
- 656 J. M., and Nielsen, D. R.: Modeling tritium and chloride-36 transport through an aggregated
- 657 oxisol, Water Resour. Res., 19, 691-700, 1983.

- 658 Öhrström, P., Persson, M., Albergel, J., Zante, P., Nasri, S., Berndtsson, R., and Olsson, J.: Field-
- scale variation of preferential flow as indicated from dye coverage, J. Hydrol., 257, 164-173,2002.
- 661 Oliver, Y. M., and Smettem, K. R. J.: Parameterisation of physically based solute transport 662 models in sandy soils, Aust. J. Soil Res., 41, 771-788, 2003.
- Pang, L., McLeod, M., Aislabie, J., Simunek, J., Close, M., and Hector, R.: Modeling transport of
- 664 microbes in ten undisturbed soils under effluent irrigation, Vadose Zone J., 7, 97-111, 2008.
- Perfect, E., Sukop, M. C., and Haszler, G. R.: Prediction of dispersivity for undisturbed soil
  columns from water retention parameters, Soil Sci. Soc. Am. J., 66, 696-701, 2002.
- Pot, V., Simunek, J., Benoit, P., Coquet, Y., Yra, A., and Martinez-Cordon, M. J.: Impact of
  rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores, J.
  Contam. Hydrol., 81, 63-88, 2005.
- Pot, V., and Genty, A.: Dispersion dependence on retardation in a real fracture geometry using
  lattice-gas cellular automaton, Advances in Water Resources, 30, 273-283, 2007.
- Poulsen, T. G., Moldrup, P., de Jonge, L. W., and Komatsu, T.: Colloid and bromide transport in
  undisturbed soil columns: Application of two-region model, Vadose Zone J., 5, 649-656, 2006.
- Prado, B., Duwig, C., Escudey, M., and Esteves, M.: Nitrate sorption in a mexican allophanic
  andisol using intact and packed columns, Communications in Soil Science and Plant Analysis,
  37, 2911-2925, 2006.
- Prado, B., Duwig, C., Marquez, J., Delmas, P., Morales, P., James, J., and Etchevers, J.: Image
  processing-based study of soil porosity and its effect on water movement through andosol intact
  columns, Agric. Water Manage., 96, 1377-1386, 2009.
- Raats, P. A. C.: Unstable wetting fronts in uniform and nonuniform soils, Soil Sci. Soc. Am. J.,37, 681-685, 1973.
- Raturi, S., Hill, R. L., and Carroll, M. J.: Modeling dicamba sorption and transport through
  zoysiagrass thatch and soil, Soil & Sediment Contamination, 10, 227-247, 2001.
- 684 Ren, G. L., Izadi, B., King, B., and Dowding, E.: Preferential transport of bromide in undisturbed
- 685 cores under different irrigation methods, Soil Sci., 161, 214-225, 1996.

- 686 Reungsang, A., Moorman, T. B., and Kanwar, R. S.: Transport and fate of atrazine in midwestern
- riparian buffer strips, J. Am. Water Resour. Assoc., 37, 1681-1692, 2001.
- 688 Ritsema, C. J., and Dekker, L. W.: Water repellency and its role in forming preferred flow paths
- 689 in soils, Aust. J. Soil Res., 34, 475-487, 1996.
- 690 Rose, D. A.: Some aspects of hydrodynamic dispersion of solutes in porous materials, Journal of
- 691 Soil Science, 24, 285-295, 1973.
- Rose, D. A.: Hydrodynamic dispersion in porous materials, Soil Sci., 123, 277-283, 1977.
- Rose, D. A., Abbas, F., and Adey, M. A.: The effect of surface-solute interactions on the transport of solutes through porous materials, Eur. J. Soil Sci., 60, 398-411, 2009.
- 695 Scheidegger, A. E.: Growth of instabilities on displacement fronts in porous media, Physics of696 Fluids, 3, 94-104, 1960.
- 697 Scherr, F.: Sorption, degradation and transport of estrogens and estrogen sulphates in agricultural
- 698 soils, Ph. D. thesis, Lincoln University, Lincoln, New Zealand, 2009.
- Schoen, R., Gaudet, J. P., and Elrick, D. E.: Modelling of solute transport in a large undisturbed
  lysimeter, during steady-state water flux, J. Hydrol., 215, 82-93, 1999.
- Schulin, R., Wierenga, P. J., Flühler, H., and Leuenberger, J.: Solute transport through a stony
  soil, Soil Sci. Soc. Am. J., 51, 36-42, 1987.
- Segal, E., Shouse, P., and Bradford, S. A.: Deterministic analysis and upscaling of bromide
  transport in a heterogeneous vadose zone., Vadose Zone J., 8, 601-610, 2009.
- Selim, H. M., and Amacher, M. C.: A 2nd-order kinetic approach for modeling solute retention
  and transport in soils, Water Resour. Res., 24, 2061-2075, 1988.
- Seo, Y., and Lee, J.: Characterizing preferential flow of nitrate and phosphate in soil using time
  domain reflectometry, Soil Sci., 170, 47-54, 2005.
- 709 Seuntjens, P., Tirez, K., Simunek, J., van Genuchten, M. T., Cornelis, C., and Geuzens, P.: Aging
- 710 effects on cadmium transport in undisturbed contaminated sandy soil columns, J. Environ. Qual.,
- 711 30, 1040-1050, 2001.

- 712 Seyfried, M. S., and Rao, P. S. C.: Solute transport in undisturbed columns of an aggregated
- tropical soil preferential flow effects, Soil Sci. Soc. Am. J., 51, 1434-1444, 1987.
- Shaw, J. N., West, L. T., Radcliffe, D. E., and Bosch, D. D.: Preferential flow and pedotransfer
  functions for transport properties in sandy kandiudults, Soil Sci. Soc. Am. J., 64, 670-678, 2000.
- 716 Shirazi, M. A., Boersma, L., and Johnson, C. B.: Particle-size distributions: Comparing texture
- systems, adding rock, and predicting soil properties, Soil Sci. Soc. Am. J., 65, 300-310, 2001.
- Singh, P., and Kanwar, R. S.: Preferential solute transport through macropores in large
  undisturbed saturated soil columns, J. Environ. Qual., 20, 295-300, 1991.
- 720 Skaggs, T. H., Kabala, Z. J., and Jury, W. A.: Deconvolution of a nonparametric transfer function
- 721 for solute transport in soils, J. Hydrol., 207, 170-178, 1998.
- Smettem, K. R. J., Trudgill, S. T., and Pickles, A. M.: Nitrate loss in soil drainage waters in
  relation to by-passing flow and discharge on an arable site, Journal of Soil Science, 34, 499-509,
  1983.
- Smettem, K. R. J.: Soil-water residence time and solute uptake. 3: Mass-transfer under simulated
  winter rainfall conditions in undisturbed soil cores, J. Hydrol., 67, 235-248, 1984.
- Sněhota, M., Sobotkova, M., and Císlerová, M.: Impact of the entrapped air on water flow and
  solute transport in heterogeneous soil: Experimental setup, Journal of Hydrology and
  Hydromechanics, 56, 247-256, 2008.
- 730 Stagnitti, F., Allinson, G., Morita, M., Nishikawa, M., Ii, H., and Hirata, T.: Temporal moments
- analysis of preferential solute transport in soils, Environ. Model. Assess., 5, 229-236, 2000.
- Thomas, G. W., and Swoboda, A. R.: Anion exclusion effects on chloride movement in soils, SoilSci., 110, 163-&,1970.
- Thomas, G. W., Blevins, R. L., Phillips, R. E., and McMahon, M. A.: Effect of a killed sod mulch
  on nitrate movement and corn yield, Agronomy Journal, 65, 736-739, 1973.
- 736 Toride, N., Leij, F. J., and van Genuchten, M. T.: The CXTFit code for estimating transport
- 737 parameters from laboratory or field tracer experiments. Version 2.1. USDA Research Report.
- 738 Riverside, CA, U.S. Salinity Laboratory, USDA. 137, 1999.

- Tyler, D. D., and Thomas, G. W.: Chloride movement in undisturbed soil columns, Soil Sci. Soc.
  Am. J., 45, 459-461, 1981.
- Unold, M., Simunek, J., Kasteel, R., Groeneweg, J., and Vereecken, H.: Transport of manurebased applied sulfadiazine and its main transformation products in soil columns, Vadose Zone J.,
  8, 677-689, 2009.
- Valocchi, A. J.: Validity of the local equilibrium assumption for modeling sorbing solute transport
  through homogeneous soils, Water Resour. Res., 21, 808-820, 1985.
- 746 Vanderborght, J., Vanclooster, M., Timmerman, A., Seuntjens, P., Mallants, D., Kim, D.-J.,
- 747 Jacques, D., Hubrechts, L., Gonzalez, C., Feyen, J., Diles, J., and Deckers, J.: Overview of inert
- 748 tracer experiments in key Belgian soil types: relation between transport and soil morphological
- and hydraulic properties. Water Resour. Res. 37: 2873-2888, 2001.
- Vanderborght, J., and Vereecken, H.: Review of dispersivities for transport modeling in soils,
  Vadose Zone J., 6, 29-52, 2007.
- 752 Vanderborght, J., Gähwiller, P., and Flühler, H.: Identification of transport processes in soil cores
- using fluorescent tracers, Soil Sci. Soc. Am. J., 66, 774-787, 2002.
- Vervoort, R. W., Radcliffe, D. E., and West, L. T.: Soil structure development and preferential
  solute flow, Water Resour. Res., 35, 913-928, 1999.
- 756 Vincent, A., Benoit, P., Pot, V., Madrigal, I., Delgado-Moreno, L., and Labat, C.: Impact of
- different land uses on the migration of two herbicides in a silt loam soil: unsaturated soil column
  displacement studies, Eur. J. Soil Sci., 58, 320-328, 2007.
- Vogeler, I., Horn, R., Wetzel, H. and Krümmelbein, J.: Tillage effects on soil strength and solute
  transport, Soil and Tillage Research, 88, 193-204, 2006.
- Wels, C., Smith, L., and Beckie, R.: The influence of surface sorption on dispersion in parallel
  plate fractures, J. Contam. Hydrol., 28, 95-114, 1997.
- 763 Wilson, G. V., Yunsheng, L., Selim, H. M., Essington, M. E., and Tyler, D. D.: Tillage and cover
- rop effects on saturated and unsaturated transport of fluometuron, Soil Sci. Soc. Am. J., 62, 46-
- 765 55, 1998.

- 766 Wösten, J. H. M., Pachepsky, Y. A., and Rawls, W. J.: Pedotransfer functions: bridging the gap
- between available basic soil data and missing soil hydraulic characteristics, J. Hydrol., 251, 123-150, 2001.
- 769 Zurmühl, T.: Capability of convection-dispersion transport models to predict transient water and
- solute movement in undisturbed soil columns, J. Contam. Hydrol., 30, 101-128, 1998.
- 771

## 772 Table 1: Primary source publication and other information on the BTC experiments collected in the meta-database.

| primary reference               | # of BTCs | tracer                    | PDF estimated<br>from      | median R <sup>2</sup> | type of soil or porous<br>medium                                                                                                                                                    | USDA texture<br>class                                                         | undist.<br>sample? | land use             |
|---------------------------------|-----------|---------------------------|----------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------|----------------------|
| Akhtar et al., 2003             | 9         | chloride                  | MIM and<br>CDE param.      | 0.98                  | lamellic hapludalf <sup>‡</sup> ,<br>glossaquic hapludalf <sup>‡</sup> ,<br>fluventic eutrudept <sup>‡</sup> ,<br>glossic hapludalf <sup>‡</sup> ,<br>typic fragiudept <sup>‡</sup> | loamy sand,<br>loam,<br>silt loam                                             | yes                | unknown              |
| Anamosa et al., 1990            | 6         | tritium                   | MIM param.                 | unknown               | typic gibbsiorthox <sup>‡</sup>                                                                                                                                                     | unknown                                                                       | yes                | arable               |
| Bedmar et al., 2008             | 6         | bromide                   | MIM param.                 | 0.97                  | unknown                                                                                                                                                                             | silt loam,<br>silty clay loam                                                 | yes                | arable               |
| Bromly and Hinz, 2004           | 14        | lissamine FF              | MIM param.                 | unknown               | clean sand                                                                                                                                                                          | sand                                                                          | no                 | irrelevant           |
| Candela et al., 2007            | 7         | bromide                   | CDE param.                 | unknown               | typic xerorthent <sup>*</sup>                                                                                                                                                       | silt loam                                                                     | no                 | unknown              |
| Coats and Smith, 1964           | 2         | calcium                   | MIM param.                 | unknown               | alundum                                                                                                                                                                             | unknown                                                                       | no                 | irrelevant           |
| Comegna et al., 1999            | 3         | chloride                  | CDE param.<br>and raw data | unknown               | entisol <sup>†</sup> ,<br>vertisol <sup>†</sup> ,<br>andosol <sup>†</sup>                                                                                                           | sand,<br>clay loam,<br>sandy loam                                             | yes                | arable               |
| Comegna et al., 2001            | 17        | chloride                  | CDE param.                 | 0.996                 | orchard,<br>arable                                                                                                                                                                  | silt loam,<br>silty clay loam                                                 | yes                | unknown              |
| de Smedt and Wierenga,<br>1984  | 13        | chloride                  | MIM and<br>CDE param.      | unknown               | glassbeads                                                                                                                                                                          | sand                                                                          | no                 | irrelevant           |
| Dousset et al., 2004            | 6         | bromide                   | raw data                   | 0.99                  | gleyic luvisol <sup>†</sup>                                                                                                                                                         | silty clay loam                                                               | yes,<br>no         | grass ley            |
| Dufey et al., 1982              | 10        | chloride                  | CDE param.                 | unknown               | unknown                                                                                                                                                                             | sandy loam                                                                    | no                 | unknown              |
| Dyson and White, 1987           | 1         | chloride                  | raw data                   | 0.999                 | calcaric cambisol <sup>†</sup>                                                                                                                                                      | sandy clay loam                                                               | yes                | managed<br>grassland |
| Dyson and White, 1989           | 17        | chloride                  | raw data                   | 0.999                 | calcaric cambisol <sup>†</sup>                                                                                                                                                      | sandy clay loam                                                               | yes                | managed<br>grassland |
| Elrick and French, 1966         | 2         | chloride                  | CDE param.                 | unknown               | unknown                                                                                                                                                                             | loam,<br>silt loam                                                            | yes, no            | unknown              |
| Ersahin et al., 2002            | 12        | bromide                   | MIM param.                 | 0.988                 | mollic planosol <sup>†</sup>                                                                                                                                                        | silt loam                                                                     | yes                | natural<br>grassland |
| Gaber et al., 1995              | 4         | tritium                   | MIM param.                 | 0.98                  | typic haploboroll <sup>‡</sup>                                                                                                                                                      | silty clay loam                                                               | yes                | unknown              |
| Garré et al., 2010              | 2         | chloride                  | raw data                   | 0.996                 | orthic luvisol <sup>†</sup>                                                                                                                                                         | silt loam                                                                     | yes                | arable               |
| Gaston et al., 2007             | 4         | bromide                   | MIM param.                 | unknown               | thermic ochraqualf <sup>‡</sup>                                                                                                                                                     | clay loam                                                                     | yes                | arable               |
| Gaston and Locke, 1996          | 4         | bromide                   | MIM param.                 | unknown               | thermic ochraqualf <sup>‡</sup>                                                                                                                                                     | clay loam                                                                     | yes                | arable               |
| Gaston and Locke, 2000          | 4         | bromide                   | MIM param.                 | unknown               | thermic ochraqualf <sup>‡</sup>                                                                                                                                                     | clay loam                                                                     | yes                | arable               |
| Goncalves et al., 2001          | 16        | chloride                  | MIM param.                 | 0.992                 | dystric fluvisol <sup>†</sup> ,<br>calcic vertisol <sup>†</sup> ,<br>calcaric cambisol <sup>†</sup> ,<br>vertic luvisol <sup>†</sup>                                                | loam,<br>clay,<br>clay loam,<br>sandy clay loam,<br>sandy loam,<br>sandy clay | yes                | arable,<br>orchard   |
| Gwo et al., 1995                | 3         | bromide                   | MIM and<br>CDE param.      | unknown               | unknown                                                                                                                                                                             | unknown                                                                       | yes                | forest               |
| Haws et al., 2004               | 5         | bromide                   | raw data                   | 0.999                 | mesic typic<br>endoquoll <sup>‡</sup>                                                                                                                                               | silt loam                                                                     | yes                | arable               |
| Helmke et al., 2005             | 24        | bromide<br>PFBA,<br>PIPES | MIM and<br>CDE param.      | unknown               | typic hapludoll <sup>‡,</sup><br>typic hapludalf <sup>‡</sup>                                                                                                                       | loam,<br>clay loam,<br>sandy loam                                             | yes                | irrelevant           |
| Jacobsen et al., 1992           | 10        | tritium,<br>chloride      | MIM param.                 | 0.99                  | orthic haplohumod <sup>‡</sup>                                                                                                                                                      | loamy sand                                                                    | yes                | unknown              |
| Javaux and Vanclooster,<br>2003 | 9         | chloride                  | CDE param.                 | unknown               | unconsolidated<br>bedrock                                                                                                                                                           | sand                                                                          | yes                | irrelevant           |
| Jensen et al., 1996             | 19        | chloride                  | MIM param.                 | 0.998                 | unknown                                                                                                                                                                             | sandy loam                                                                    | yes                | arable               |
| Jensen et al. 1998              | 2         | tritium                   | raw data                   | 0.995                 | aeric glossaqualf <sup>‡</sup>                                                                                                                                                      | sandy loam                                                                    | yes                | arable               |
| Jorgensen et al., 2004          | 4         | bromide                   | MIM param.                 | unknown               | unknown                                                                                                                                                                             | sandy loam,<br>sandy clay loam                                                | yes                | arable               |
| Kamra et al., 2001              | 45        | bromide                   | MIM and<br>CDE param.      | unknown               | unknown                                                                                                                                                                             | sandy loam,                                                                   | yes                | arable,<br>forest    |
| Kasteel et al., 2000            | 1         | bromide                   | MIM param.                 | unknown               | orthic luvisol <sup>*</sup>                                                                                                                                                         | silt loam                                                                     | yes                | arable               |
| Kim et al., 2007                | 7         | bromide                   | MIM and                    | 0.999                 | unknown                                                                                                                                                                             | unknown                                                                       | no                 | unknown              |

| Signergaard et al., 2004         33         tnium         raw data<br>(D)         0.922         stagnic luvison<br>(city)<br>(city)         sandy loam,<br>sandy loam,<br>(city)         yes         arable<br>(city)           Goestel et al., 2003         4         chloride         CDE param.         0.992         stagnic luvison         loam yes,<br>sandy loam,<br>(city)         yes         Arable           Goestel et al., 2003         3         chloride         MM and<br>CDE param.         0.989         stagnosci         unknown         yes         arable<br>grassland           Gee et al., 2001         3         chloride         MIM param.         0.999         stagnosci         unknown         yes         arable<br>grassland           Gee et al., 2001         4         bromide<br>bromide         raw data         0.998         stagnosci         unknown         yes         arable<br>grassland           Guo et al., 1997         33         thrium         MIM and<br>CDE param.         0.972         fremidk leptosol         silt loarn,<br>uncoscolidati         sandy loam         yes         arable<br>grassland           Mdorag et al., 2006         23         bromide<br>chloride         raw data         0.993         thermit typic<br>dystractrept,<br>thermit         sandy loam,<br>clay loam         yes         arable<br>grassland           Mdorag et al., 2006 <td< th=""><th></th><th></th><th></th><th>CDE param.</th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |    |           | CDE param.  |           |                                       |                  |            |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----|-----------|-------------|-----------|---------------------------------------|------------------|------------|------------|
| Genetaria L, 2009a         4         Chloride         CDE param.         0.99         Jepric cambial         Loamy sand         yes         Arabie           Goestaria CL, 2009a         4         Chloride         CDE param.         0.99         Jepric cambial         Loamy sand         yes         Arabie           Garger et al., 2009         18         PFBA         Mill and         0.88         bypic hapbboroli         unknown         yes         managed           Gee et al., 2000         3         chloride         Mill and         0.999         stagnosofi         unknown         yes         arable           Gee et al., 2003         3         bromide         raw data         0.999         stagnosofi         unknown         yes         arable           Gee et al., 2003         28         bromide         raw data         0.999         rendxi lengtosi         stilt ann         yes         arable           Gue et al., 2003         28         bromide         raw data         0.997         rendxi lengtosi         stilt ann         yes         arable           Gue et al., 2003         28         bromide         raw data         0.997         addid inceptosi         stilt ann         yes         arable           Gue et al., 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kjaergaard et al., 2004  | 33 | tritium   | raw data    | 0.992     | stagnic luvisol <sup>†</sup>          | sandy loam,      | ves        | arable     |
| Cost of et al., 2003         4         Chionde         CDE param.         0.99         gleyic cambias         Ioamy sand         yes         Anable           Group and Erick, 1968         5         chiorde         CDE param.         0.999         stagnosof         Ioamy sand         yes         managed           Group and Erick, 1968         5         chiorde         MM and         0.988         typic haploboroli         anknown         yes         managed           Ger et al., 2001         3         chiorde         MM and         0.998         stagnosof         unknown         yes         arable           Cer et al., 2003         4         bromide         raw data         0.998         stagnosof         unknown         yes         arable           Core param.         COE param.         0.998         mesic typic hapludalf         sill loam         yes         arable           Marge et al., 2003         28         bromide         raw data         0.993         themic typic hapludalf         sand         no         unknown           Marge et al., 2005         23         bromide         raw data         0.993         themic typic hapludalf         sandy loam         yes         arable           Marlot et al., 2006         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |    |           |             |           | 5                                     | sandy clay loam, | ,          |            |
| Goester Ld, 2003         4         Chloride         CDE param.<br>CDE param.         0.99         Jeptic cambiod <sup>1</sup> Ioamy sand         yes         Arabie<br>Arabie           Graup and Elick, 1968         5         chloride         Mith and<br>CDE param.         0.988         typic haplobroli <sup>1</sup> unknown         yes         arable<br>grassland           Graup and Elick, 1968         5         chloride         Mith and<br>CDE param.         0.988         typic haplobroli <sup>1</sup> unknown         yes         arable<br>grassland           Eve et al., 2000         3         chloride         Mith and<br>CDE param.         0.988         tagnossi <sup>1</sup> linam         yes         arable<br>grassland           Uso et al., 2010         8         bromide<br>row data         0.998         mesic typic hapludal <sup>1</sup> sald         no         unknown<br>grassland           Marage et al., 2003         28         bromide<br>cPifes         raw data         0.997         rendik Roptol,<br>sandy clavinom         sand y clavinom         yes         arable<br>grassland           Morege et al., 2003         28         bromide<br>cPifes         raw data         0.993         Thermic typic<br>dystochregin,<br>sandy clavinom         sandy clavinom         yes         arable<br>grassland           Morege et al., 2006         23         bromide<br>chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |    |           |             |           |                                       | clay             |            |            |
| Grupp and Elrick, 1968         5         chloride         Mith and<br>CCE param.         unknown         glassbeads         sand         no         irrelevant           Lingger et al., 1999         18         PFBA         MIM and<br>CCE param.         0.388         typic haploborali         unknown         yes         managed<br>grassland           Lice et al., 2001         3         chloride         MIM param.         0.399         stagnosoil         unknown         yes         arable           Lee et al., 2001         4         bromide         raw data         0.998         stagnosoil         sand         no         unknown           Lee et al., 2001         8         bromide         raw data         0.998         mesic typic hapludalf         sand         no         unknown           Marage et al., 1997         33         tritium         MIM and<br>CCE param.         0.977         addic inceptool',<br>dystocringt, sandy loam         yes         forest           Mintosh et al., 1999         4         bromide         raw data         0.992         typic ragludalf         sandy loam         yes         arable           Montosh et al., 1999         4         bromide         raw data         0.992         typic ragludalf         sandy loam,<br>cambiol,<br>sandy loam,<br>clavic arable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Koestel et al., 2009a    | 4  | chloride  | CDE param.  | 0.99      | glevic cambisol <sup>†</sup>          | loamy sand       | ves        | Arable     |
| Construction         Construction<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Krupp and Elrick, 1968   | 5  | chloride  | MIM and     | unknown   | glassbeads                            | sand             | no         | irrelevant |
| Dangmer et al., 1999         18         PFBA<br>CDE param.         0.988         typic haploborolit         unknown         yes         managed<br>grassland           Lee et al., 2001         3         chioride         MM param.         0.999         stagnosol         unknown         yes         arable           Lee et al., 2001         4         bromide         raw data         0.999         stagnosol         Gaam         yes         arable           Lee et al., 2010         8         bromide         raw data         0.999         mendix lipiton         yes         arable           Marga et al., 1997         33         tritium         MIM and         0.970         metric haplaquod <sup>+</sup> sand         no         unknown           Mayes et al., 2003         28         bromide         MM and         0.973         actick inplaquod <sup>+</sup> sandy loam         yes         forest           Michtosh et al., 1999         4         bromide         raw data         0.992         typic aquidolit         clay loam         yes         forest           Montoyn et al., 2006         22         bromide         raw data         0.992         glypic lubit/viol , clay         sandy loam         yes         arable         arable           Montoyn et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | -  |           | CDE param.  |           | 8                                     |                  |            |            |
| CDE param.         CDE param. <thcde param.<="" th="">         CDE param.         CDE para</thcde>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lananer et al., 1999     | 18 | PFBA      | MIM and     | 0.988     | typic haploboroll <sup>‡</sup>        | unknown          | ves        | managed    |
| Lee et al., 2000         3         chioride<br>raw data         0.999         stagnosol<br>stagnosol         unknown         yes         arable<br>arable           Lee et al., 2001         4         bromide         raw data         0.999         stagnosol         loam         yes         arable           Lee et al., 2001         3         bromide         raw data         0.972         rrendak leptosol         loam         yes         arable           Lue et al., 2010         8         bromide         raw data         0.972         rrendak leptosol         sill loam         yes         arable           Marage et al., 2023         28         bromide         riftium         MIM and<br>CDE param.         0.972         acidic Inception <sup>1</sup> ,<br>unconsolidated         sandy loam         forest           Markown         PIPES         bromide,<br>chioride         raw data         0.993         thermic typic<br>kanablaultit         sandy loam, loam         yes         forest           Monoey and Morris,<br>2008         3         chioride         raw data         0.992         glepci/<br>cabi loam         clay loam, loam         yes         arable           Wiked-Kizza et al., 2008         16         bromide         MM and<br>CDE param.         0.972         typic alpludolit         clay loam, loam         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Langher et any 1999      | 10 |           | CDF param.  | 0.000     | cypic napieseren                      | unaroun          | ,          | grassland  |
| Lee et al., 2001         4         bromide         raw data         0.099         stagnosol         Joam         yes         arable           Lew et al., 2008         3         bromide         raw data         0.992         rendrik keptosol         silt loam         yes         arable,<br>managed           Marage et al., 2007         23         tritium         MIM and<br>DPFAA,         unknown         typic udipsamment',<br>entic haplaquod'         sand         no         unknown           Marage et al., 2003         28         bromide         MIM and<br>PFAA,         0.972         actic inception',<br>unconsolidated         sandy loam         yes         unknown           Marage et al., 2003         28         bromide,<br>pPFAA,         raw data         0.973         actic inception',<br>sandy loam         yes         forest           Marintor et al., 2006         23         bromide,<br>chloride         raw data         0.982         thermic vant<br>sandy loam,         yes         arable,<br>geysol         arable,<br>sandy loam,         yes         arable           Marony and Morris,<br>2008         3         chloride         raw data         0.982         gleycl (uiviol),<br>sandy loam,         yes         arable           Marony and Morris,<br>2008         3         tritium,<br>chloride         MMM param.         0.992 <td>Lee et al. 2000</td> <td>3</td> <td>chloride</td> <td>MIM param</td> <td>0 999</td> <td>stagnosol<sup>†</sup></td> <td>unknown</td> <td>Ves</td> <td>arable</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lee et al. 2000          | 3  | chloride  | MIM param   | 0 999     | stagnosol <sup>†</sup>                | unknown          | Ves        | arable     |
| Cale Control 2007         Participation         Paritipation         Paritipation         Partic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lee et al. 2000          | 1  | bromide   | raw data    | 0.999     | stagnosol                             | loam             | Ves        | arable     |
| Line et al., 2000         3         Dinimite         Faw data         0.998         Testic typic hapiudarif         Sait loam         yes         arable,<br>managed<br>grassland           Marage et al., 2003         28         bromide         Tritium         MIM and<br>CDE param.         0.972         sait data         no         unknown           Mayes et al., 2003         28         bromide         MIM and<br>CDE param.         0.97         acidic Inceptisol<br>unconsildated<br>bedrock         saindy loam         yes         unknown,<br>forest           McIntosh et al., 1999         4         bromide<br>chloride         raw data         0.993         thermic typic<br>dystrochrepit,<br>saindy loam         yes         arable<br>dystrochrepit,<br>saindy loam         yes         arable           Montoya et al. 2006         23         bromide<br>chloride         raw data         0.993         thermic typic<br>dystrochrepit,<br>saindy loam         yes         arable           2008         2008         24         thtium,<br>chloride         raw data         0.992         typic yes         saindy loam,<br>clay down,<br>gergatest         yes         arable           2008         13         bromide         raw data         0.999         gleycid         clay         yes         arable           2008         13         bromide         MIM para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lennartz et al 2008      | 2  | bromido   | raw data    | 0.558     | rondzik lontocol <sup>†</sup>         | cilt loom        | yes<br>voc | arable     |
| Lad Je du, 2010       a       bronnide       Faw data       0.998       mesk typic hapitulani       sait tolami       yes       arable, managed grassland         Maraga et al., 1997       33       tritium       MilM and CDE param.       unknown       typic ulpisamment <sup>1</sup> , sait tolami       sait data       no       unknown         Mayes et al., 2003       28       bronnide, PIPES       CDE param.       0.97       actific inceptisol <sup>1</sup> , sait tolami       yes       arable for sait to lamino in the pipe and loani       sandy loan       yes       forest         Martoya et al., 2006       23       bronnide, raw data       0.992       typic argiudoll <sup>1</sup> clay loan, loam       yes       arable forest         Monoy and Morris, 2006       23       bronnide       raw data       0.982       typic argiudoll <sup>1</sup> clay loan, loam       yes       arable forest         Morey and Morris, 2006       3       chloride       raw data       0.989       gleycol <sup>1</sup> clay loan, loam       yes       arable forest         Mikedr-Kizza et al., 1983       34       tritium, MIM param.       unknown       oxisol (sieved asmdy loan       no       irrelevant         2008       16       bromide       MIM and unknown       unknown       typic dytrudepr <sup>1</sup> , typic dytrudepr <sup>1</sup> , typic dytrudepr <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | 3  | bromide   | Taw uata    | 0.972     |                                       | silt loom        | yes        | arable     |
| Marage et al., 1997         33         tritium         MIM and<br>CDE param.<br>CDE param.         unknown         typic udipsamment <sup>1</sup> ,<br>actific inceptisol <sup>1</sup> ,<br>sandy loam         sand,<br>with loam         o         unknown,<br>forest           Marage et al., 2003         28         bromide<br>bromide,<br>chloride         Taw data         0.97         actific inceptisol <sup>1</sup> ,<br>unconsilidated<br>bedrock         silt loam,<br>with loam         ves         infonom,<br>forest           McIntosh et al., 1999         4         bromide,<br>chloride         raw data         0.993         thermic<br>wanapludut <sup>1</sup> sandy loam         ves         forest           Montoya et al., 2006         23         bromide,<br>chloride         raw data         0.993         thermic typic<br>dystrochrepit,<br>cambiol <sup>1</sup> sandy loam,<br>gleysol <sup>1</sup> ves         arable           2008         34         tritium,<br>chloride         raw data         0.992         typic argudol <sup>11</sup> clay loam,<br>clay loam,<br>gleysol <sup>1</sup> clay loam,<br>clay loam,<br>gleysol <sup>1</sup> sandy loam         no         irrelevant           2008         13         bromide         MIM param.<br>vitre dubarment         oxinom         ypic karget pissing <sup>1</sup> sandy loam,<br>clay loam,<br>gleysol <sup>1</sup> clay,<br>silt clay,<br>sind clay, 2005         2         chloride         raw data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Luo et ul,. 2010         | 0  | bronnide  | raw uala    | 0.998     | mesic typic napiudali                 | SILLIOATT        | yes        | arable,    |
| Maraga et al., 1997         33         tritium<br>(DE param.         MIM and<br>(DE param.         unknown<br>(whown<br>entic haplaquod <sup>1</sup> sand<br>entic haplaquod <sup>1</sup> sand<br>sandy loam         no         unknown<br>unknown<br>forest           Marges et al., 2003         28         bromide<br>PIPES         raw data<br>(biorde         0.97         acidic inceptiso <sup>1</sup> ,<br>unconsolidated         silt loam,<br>yes         sinthoum,<br>forest           McIntosh et al., 1999         4         bromide,<br>chloride         raw data         0.992         typic argiudoll <sup>1</sup> clay loam, loam         yes         arable           Montoya et al., 2006         23         bromide         raw data         0.992         typic argiudoll <sup>1</sup> clay loam, loam         yes         arable           2008         33         Chloride         raw data         0.992         typic argiudoll <sup>1</sup> clay loam, loam         yes         arable           2008         34         tritium,<br>chloride         MIM and<br>CDE param.         unknown         typic dystordept <sup>2</sup> ,<br>sandy loam,         sandy loam,         no         irrelevant           2008         16         bromide         MIM and<br>CDE param.         unknown         typic dystordept <sup>2</sup> ,<br>sardy loam,         clay,<br>sardy loam,         yes         managed<br>grassland           Perfect et al., 2002         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |    |           |             |           |                                       |                  |            | managed    |
| Multiple Lat., 1997       33       Unitality       Other and Decision       Unitality       Unitality       Unitality       Unitality         Mayes et al., 2003       28       bromide<br>PPEB,<br>PPEB,<br>PPEB,<br>PPES       MM mand<br>CDE param.       0.97       acidic inception <sup>1</sup> ,<br>unconsolidated<br>bedrock       sind y loam,<br>bedrock       yes       unknown,<br>forest         McIntosh et al., 2006       23       bromide,<br>chloride       raw data       0.992       typic angle giveloan,<br>gerysolity       sandy loam,<br>dystrochrept <sup>1</sup> ,<br>thermic typic<br>dystrochrept <sup>1</sup> ,<br>dystrochrept <sup>1</sup> ,<br>can biosi,<br>cap loan,<br>cap loan,                                                                                                                                                                                                                                                                                                                                                                                              | Maraga at al 1007        | 22 | +======   | MINA and    | unlinouun | tunia udin commont <sup>‡</sup>       | cond             |            | grassianu  |
| Mayes et al., 2003         28         bromide<br>PTBA,<br>PIPES         CDE param.<br>(CDE param.<br>PIPES         Silt loam,<br>unconsolidated         Silt loam,<br>sandy loam         yes         unknown,<br>forest           McIntosh et al., 1999         4         bromide,<br>chloride         raw data         0.993         thermic typic<br>dystrochrept',<br>typic argudoll'         clay loam, loam         yes         arable           Montoyo et al., 2006         23         bromide         raw data         0.992         typic argudoll'         clay loam, loam         yes         arable           2008         34         tritium,<br>chloride         Tritium,<br>MIM param.         unknown         typic argudoll'         clay loam, loam         no         irrelevant           2008         16         bromide         MIM param.         unknown         typic argudoll'         clay loam, loam,<br>clay         no         unknown           2019         arable         bromide         MIM param.         0.975         typic dystudget',<br>fluventic eutrudget',<br>silt clay, sandy loam,<br>vertic endoaquet         clay, silt clay,<br>silt clay, sandy loam,<br>vertic endoaquet         sandy loam,<br>vertic endoaquet         sandy loam,<br>vertic endoaquet         sandy loam,<br>sandy loam,<br>vertic endoaquet         sandy loam,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | waraga et al., 1997      | 55 | tritium   |             | unknown   | typic utipsamment,                    | Sanu             | no         | unknown    |
| Milly Set Dir, 2003       26       Dirinitie Minite Minite Dir Minite Minit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mayos at al 2002         | 20 | bromido   | CDE parani. | 0.07      |                                       | silt loom        |            | unknown    |
| Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pipesa,<br>Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iviayes et al., 2003     | 28 | bromue    |             | 0.97      | acidic inceptisor,                    | Silt IOam,       | yes        | unknown,   |
| McIntosh et al., 1999       4       bromide, chloride, ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |    | PFBA,     | CDE param.  |           | unconsolidated                        | sandy loam       |            | torest     |
| Automatical, 1999       4       bromide, chloride       raw data       0.993       Thermic typic sandy loam, loan sandy loam, loan yes       rorest         Montoy et al., 2006       23       bromide       raw data       0.992       typic arguidoli*       clay loam, loan yes       arable         2008       3       chloride       raw data       0.992       typic arguidoli*       clay loam, loan yes       arable         2008       34       chloride       raw data       0.992       typic arguidoli*       clay loam, loan yes       arable         2008       34       tritium, chloride       MIM param.       unknown       oxisof (sieved agregates)       sandy loam, non       irrelevant         2008       13       bromide       MIM param.       0.975       typic dytsudept, sith loam, sind, sand, sand, loam, no       unknown       no       unknown       no       unknown       no       unknown       no       unknown       sand, loam, sith clay, sith loam, sith clay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14-1-1                   |    | PIPES     |             | 0.000     | Dedrock                               |                  |            | (          |
| ChiondeChiondeChiondeChiondeSandy loamMontoya et al., 200623bromideraw data0.992typic argueditclay loam, loamyesarableMoney and Morris,<br>20083Chionderaw data0.989gleyic luvisol*,<br>cambisol*,<br>gleyic luvisol*,<br>cambisol*,<br>clay loam,<br>olaysandy loam,<br>clay loam,<br>olayyesarableMked-Kizza et al., 198334tritium,<br>chiondeMIM param.<br>CDE param.unknownoxiol* (sieved<br>aggregates)sandy loam,<br>olaynoirrelevant200316bromideMIM param.<br>CDE param.0.975typic dystrudept*,<br>reprint registrand*,<br>typic udipsamment*,<br>typic udipsamment*,<br>typic udipsamment*,<br>typic udipsamment*,<br>sandy loam,<br>sandy loam,<br>silt loam,<br>sandy loam,<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ivicintosn et al., 1999  | 4  | bromide,  | raw data    | 0.993     | thermic typic                         | sandy clay loam  | yes        | torest     |
| Montoya et al., 200623bromideraw data0.992typic argiudoliclay loam, oamyesarable20083chlorideraw data0.989gleyclussl', cambisol', cambisol', clay loam, oamyesarable200834tritium, chlorideMIM param.unknownoxisol' (sleved aggregates)sandy loam, orayesarable200813bromideMIM param.unknowntypic xeric pasmment'unknownnoirrelevant200316bromideMIM param.unknowntypic dytsrudept', typic dytsrudept', typic dytsrudept', typic dytsrudept', typic dytsrudept', typic dutivrand', typic dutivran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |    | chioride  |             |           | dystrochrept,                         | sandy loam       |            |            |
| Montoya et al., 200623bromideraw data0.992typic argueditclay loam, loamyesarableMooney and Morris,<br>20083chlorideraw data0.989gleyic luvisol',<br>cambisol',<br>gleysol'sandy loam,<br>clay loam,<br>loam,noirritevant<br>irretevantMkedi-Kizza et al., 198334tritium,<br>chlorideMIM param.<br>chlorideunknown<br>vertic param.typic arguests)nounknown<br>irretevantDig et al., 200816bromideMIM param.<br>coli param.0.975typic digturdept',<br>loamclay,<br>sitl clay,<br>sitl cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |    |           |             |           | thermic                               |                  |            |            |
| Montoy at di., 20062.3bromide<br>bromideraw data0.992<br>raw dataTypic argudoliClay loam, loam, loam, yes<br>clay loam, clay loam,<br>clay loam,<br>loam,<br>clay loam,<br>loam,<br>loam,<br>loam,<br>loam,vinchown<br>loam<br>loam,<br>loam,<br>loam,<br>loam, <b< td=""><td></td><td></td><td></td><td></td><td></td><td>kanhapludult</td><td></td><td></td><td></td></b<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |    |           |             |           | kanhapludult                          |                  |            |            |
| Mooney and Morris,<br>20083chloride<br>raw dataraw data<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>collogic<br>coll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Montoya et al., 2006     | 23 | bromide   | raw data    | 0.992     | typic argiudoll                       | clay loam, loam  | yes        | arable     |
| 2008       Image: Cambisol , clay loam, gleysol , clay loam, clay clay       Image: Clay clay , clay loam, clay loam, clay loam, clay loam, clay loam, clay loam, clay clay clay , aggregates)         Oliver and Smettem, 2003       13       bromide       MIM and CDE param.       unknown       typic dystrudept <sup>1</sup> , silt loam, sand, sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mooney and Morris,       | 3  | chloride  | raw data    | 0.989     | gleyic luvisol ,                      | sandy loam,      | yes        | arable     |
| Nkedi-Kizza et al., 198334Intium,<br>chlorideImage of the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2008                     |    |           |             |           | cambisol <sup>°</sup> ,               | clay loam,       |            |            |
| Nikedi-Kizza et al., 1983       34       tritium,<br>chloride       MIM param.       unknown       oxisol (sieved)<br>aggregates)       sandy loam       no       irrelevant         Oliver and Smettem,<br>2003       13       bromide       MIM param.       unknown       typic veric psamment <sup>1</sup><br>aeric fragiaquept <sup>1</sup> ,<br>silty clay,<br>sandy loam,<br>typic udipsamment <sup>1</sup> ,<br>sandy loam,<br>sandy loam,<br>yes       managed<br>grassland<br>grassland         Porte et al., 2005       4       bromide       MIM param.       0.988       stagnosol       silt loam       yes       managed<br>grassland         Poutset al., 2006       33       tritium       MIM param.       0.988       stagnosol       silt loam       yes       arable         Prado et al., 2006       6       bromide       MIM param.       0.99       antroposol       loamy sand<br>(unkrown)       yes       arable         Reutri et al., 1996       20       bromide       MIM param.       0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |    |           |             |           | gleysol                               | clay             |            |            |
| Oliver and Smettern,<br>200313bromide<br>bromideMIM and<br>CDE param.unknown<br>typic xeric psammentunknown<br>unknownnounknown<br>unknown200316bromideMIM param.<br>CDE param.0.975typic dystrudept <sup>1</sup> ,<br>fluventic eutrudept <sup>2</sup> ,<br>typic udjisament <sup>1</sup> ,<br>sand,<br>sand,<br>sand,<br>loam(clay,<br>silt loam,<br>sand,<br>sand,<br>loamyesmanaged<br>grasslandPerfect et al., 20022chlorideraw data0.988typic udjisament <sup>1</sup> ,<br>typic udjisament <sup>1</sup> ,<br>sand,<br>sand,<br>loamsandy loam,<br>grasslandyesmanaged<br>grasslandPot et al., 20054bromideMIM param.<br>CDE param.0.988stagnosol <sup>1</sup> silt loamyesmanaged<br>grasslandPoulsen et al., 200633tritiumMIM param.<br>CDE param.unknowntypic hapludalf <sup>1</sup> sandy loamyesmanaged<br>grasslandPrado et al., 20063deuteriumCDE param.<br>CDE param.unknowntypic hapludalf <sup>1</sup> sandy loamyesarablePrado et al., 20063deuteriumMIM param.0.99antroposol <sup>1</sup> loamy sandyesarableRaturi et al., 199620bromideMIM param.0.99antroposol <sup>1</sup> loamy sandyesgrassland,<br>grassland,<br>arableReungsong et al., 20092bromideMIM param.0.99antroposol <sup>1</sup> loamy sandyesgrassland,<br>grassland,<br>arableScherr, 20092bromideMIM param.unknownunknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nkedi-Kizza et al., 1983 | 34 | tritium,  | MIM param.  | unknown   | oxisol' (sieved                       | sandy loam       | no         | irrelevant |
| Oliver and Smettern,<br>200313bromideMIM and<br>CDE param.unknown<br>CDE param.typic xeric psammentunknownnounknownPang et al., 200816bromideMIM param.0.975typic dystrudept <sup>1</sup> ,<br>aeric fragiaquept <sup>1</sup> ,<br>sitly clay,<br>sitly clay,<br>sand, loam,<br>vertic endoaquept <sup>1</sup> vertic<br>endoaquept <sup>1</sup> ,<br>sand, loam,<br>vertic endoaquept <sup>1</sup> vertic<br>endoaquept <sup>1</sup> ,<br>sand, loam,<br>vertic endoaquept <sup>1</sup> wertic<br>endoaquept <sup>1</sup> ,<br>sand, loam,<br>vertic endoaquept <sup>1</sup> managed<br>grassland<br>grassland<br>grassland<br>product endoaquept <sup>1</sup> wertic<br>endoaquept <sup>1</sup> wertic<br>endoaquept <sup>1</sup> wertic<br>endoaquept <sup>1</sup> wertic<br>endoaquept <sup>1</sup> managed<br>grassland<br>grassland<br>grasslandPoulsen et al., 200633deuteriumMIM param.0.988stagnosolsilt loamvesarable<br>grassland<br>grasslandPrado et al., 20063deuteriumMIM param.unknownpachic andosolsilt loamvesarable<br>grasslandRaturi et al., 20016bromideMIM param.0.99antroposolloamy sandyesmanaged<br>grasslandRen et al., 199620bromideMIM param.unknownunknownsilt loamyesmanaged<br>grasslandScherr, 20092bromideMIM param.unknown <td></td> <td></td> <td>chloride</td> <td></td> <td></td> <td>aggregates)</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |    | chloride  |             |           | aggregates)                           |                  |            |            |
| 2003       CDE param.       CDE param.       CDE param.       CDE param.       CDE param.       Class       Class       Class       Class       Paraget al., 2008       Lass       Lass       Class       Class       Class       Class       Paraget al., 2008       Lass       Lass       Class       Silty clay, sandy loam, typic udifuvent <sup>1</sup> , typicuent <sup>1</sup> , typic udifuvent <sup>1</sup> , typic udifuvent <sup>1</sup> , typic udifuvent <sup></sup> | Oliver and Smettem,      | 13 | bromide   | MIM and     | unknown   | typic xeric psamment <sup>*</sup>     | unknown          | no         | unknown    |
| Pang et al., 200816bromideMIM param.0.975typic dytrudept*,<br>aeric fragiaquept*,<br>typic udivitrand*,<br>typic udivit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2003                     |    |           | CDE param.  |           | 1                                     |                  |            |            |
| Perfect et al., 20022chloride<br>chloride,<br>deuteriumraw data<br>raw data0.998<br>0.998typic udipsamment <sup>1</sup> ,<br>typic udipsamment <sup>1</sup> ,<br>typic udipsamment <sup>1</sup> ,<br>typic udipsamment <sup>1</sup> ,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand,<br>sand, <br< td=""><td>Pang et al., 2008</td><td>16</td><td>bromide</td><td>MIM param.</td><td>0.975</td><td>typic dystrudept<sup>*</sup>,</td><td>clay,</td><td>yes</td><td>managed</td></br<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pang et al., 2008        | 16 | bromide   | MIM param.  | 0.975     | typic dystrudept <sup>*</sup> ,       | clay,            | yes        | managed    |
| Perfect et al., 20022chlorideraw data0.998typic udivirand*,<br>typic udivirand*,<br>sandy loam<br>typic udivirand*,<br>silt loamyes<br>typic udivirand*,<br>typic udivirand*,<br>sandy loam<br>typic udivirand*,<br>sandy loamyes<br>typic udivirand*,<br>typic udivirand*,<br>typic udivirand*,<br>typic udivirand*,<br>unknownsandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |    |           |             |           | aeric fragiaquept <sup>+</sup> ,      | silty clay,      |            | grassland  |
| Perfect et al., 20022chloride<br>raw dataraw data<br>0.9980.998<br>typic udivirand*,<br>typic udivirand*,<br>urtic endoaquept*unknown<br>sandy loam,<br>loamyes<br>grasslandPot et al., 20054bromideMIM param.<br>MIM param.0.988stagnosol*silt loamyes<br>grasslandPoulsen et al., 200633tritiumMIM param.<br>CDE param.unknown<br>unknowntypic hapludalf*sandy loam,<br>silt loamyes<br>grasslandPrado et al., 20063deuteriumCDE param.<br>CDE param.unknown<br>cDE param.pachic andosol*silt loamyes<br>silt loamarablePrado et al., 20016bromideMIM param.<br>CDE param.0.999antroposol*loamy sandyes<br>grasslandRaturi et al., 20016bromideMIM param.<br>MIM param.0.99antroposol*loamy sandyes<br>grasslandRen et al., 199620bromideMIM param.<br>chloride,<br>chloride,<br>deuteriumunknowntypic haploaquol*,<br>cumulic haploaquol*,<br>sandy loamyes<br>sandy loammanaged<br>grassland,<br>arableSchoen et al., 19992bromide,<br>chloride,<br>deuteriumMIM param.<br>chloride,<br>deuteriumunknownrendzik leptosol*loamyes<br>silt loamyes<br>grassland,<br>arableSchoen et al., 198723tritium,<br>chloride,<br>deuteriumMIM param.<br>unknownunknownrendzik leptosol*loamyes<br>silt loamgrassland,<br>grassland,<br>arableSchoen et al., 198723tritium,<br><td></td> <td></td> <td></td> <td></td> <td></td> <td>fluventic eutrudept<sup>*</sup>,</td> <td>silt loam,</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |    |           |             |           | fluventic eutrudept <sup>*</sup> ,    | silt loam,       |            |            |
| Perfect et al., 20022Chlorideraw data0.998typic hapludand <sup>†</sup> IoamPerfect et al., 20022Chlorideraw data0.998typic udifituvent <sup>†</sup> ,<br>vertic endoaquept <sup>†</sup> unknownyesmanaged<br>grasslandPot et al., 20054bromideMIM param.0.988stagnosol <sup>†</sup> silt loamyesmanaged<br>grasslandPoulsen et al., 200633tritiumMIM param.unknowntypic hapludalf <sup>4</sup> sandy loamyesarablePrado et al., 20063deuteriumCDE param.unknownpachic andosol <sup>†</sup> silt loamnoarablePrado et al., 20099deuteriumCDE param.unknownpachic andosol <sup>†</sup> silt loamnoarableRaturi et al., 20016bromideMIM param.0.99antroposol <sup>†</sup> loamy sandyesmanaged<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |    |           |             |           | typic udipsamment <sup>*</sup> ,      | sand,            |            |            |
| Perfect et al., 20022chlorideraw data0.998typic udifluvent <sup>†</sup> ,<br>vertic endoaquept <sup>‡</sup> unknownyesmanaged<br>grasslandPot et al., 20054bromideMIM param.0.988stagnosol <sup>†</sup> silt loamyesmanaged<br>grasslandPoulsen et al., 200633tritiumMIM param.unknowntypic hapludalf <sup>‡</sup> sandy loamyesarablePrada et al., 20063deuteriumCDE param.unknownpachic andosol <sup>†</sup> silt loamnoarablePrada et al., 20063deuteriumCDE param.unknownpachic andosol <sup>†</sup> silt loamyesarablePrado et al., 20016bromideMIM param.0.99antroposol <sup>†</sup> loamy sandyesmanaged<br>grasslandRaturi et al., 20016bromideMIM param.0.99antroposol <sup>†</sup> loamy sandyesmanaged<br>grasslandReungsang et al., 200112bromideMIM param.0.99durixerollic<br>calciorthid <sup>‡</sup> silt loamyesmanaged<br>grasslandSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt yclay loamyesarableSchulin et al., 198723tritium,<br>bromideMIM param.unknownunknownsilt loamyesarableSchulin et al., 198723tritium<br>bromideMIM param.unknownunknownunknownyesarableSegal et al., 20091bromid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |    |           |             |           | typic udivitrand <sup>*</sup> ,       | sandy loam,      |            |            |
| Perfect et al., 20022chlorideraw data0.998Upic udifluent,<br>vertic endoaqueptunknownyesmanaged<br>grasslandPot et al., 20054bromideMIM param.0.988stagnosolsilt loamyesmanaged<br>grasslandPoulsen et al., 200633tritiumMIM param.unknowntypic hapludalf*sandy loamyesarablePrado et al., 20063deuteriumCDE param.unknownpachic andosol*silt loamnoarablePrado et al., 20099deuteriumCDE param.unknownpachic andosol*silt loamyesmanaged<br>grasslandRaturi et al., 20016bromideMIM param.0.99antroposol*loamy sandyesmanaged<br>grasslandRen et al., 199620bromideMIM param.0.99durixerollic<br>calciorthid*silt loamyesmanaged<br>grasslandReungsang et al., 200112bromideMIM param.unknowntypic haploaquoll*,<br>cumulic haploaquoll*,<br>cumulic haploaquoll*silt yesmanaged<br>grassland,<br>arableSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt yesarable<br>grasslandSchulin et al., 198723tritium,<br>bromideMIM param.unknownunknownunknownsilt loamyesarable<br>grasslandSelin and Amacher,<br>19883tritiumMIM param.unknownunknownunknownsilt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |    |           |             |           | typic hapludand <sup>+</sup>          | loam             | ļ          |            |
| Pot et al., 20054bromideMIM param.0.988stagnosol*silt loamyesmanaged<br>grasslandPoulsen et al., 200633tritiumMIM param.unknowntypic hapludalf*sandy loamyesarablePrado et al., 20063deuteriumCDE param.unknownpachic andosol*silt loamnoarablePrado et al., 20099deuteriumMIM and<br>CDE param.unknownpachic andosol*silt loamyesarableRaturi et al., 20016bromideMIM param.0.99antroposol*loamy sandyesgrasslandRen et al., 199620bromideMIM param.0.99durixerollic<br>calciorthid*silt loamyesarableReungsang et al., 200112bromideMIM param.unknowntypic haploaquoll*,<br>cumulic haploaquoll*sandy loamyesmanaged<br>grasslandSchoen et al., 19993bromide,<br>chloride,<br>deutriumMIM param.unknownunknownsilt loamyesmanaged<br>grassland,<br>arableSchoen et al., 198723tritium,<br>bromideMIM param.unknownunknownunknownsilt loamyesarable<br>grassland,<br>arableSchulin et al., 198723tritium,<br>bromideMIM param.unknownunknownunknownunknownyesarable<br>grasslandSegal et al., 20091bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownunknownunkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Perfect et al., 2002     | 2  | chloride  | raw data    | 0.998     | typic udifluvent <sup>+</sup> ,       | unknown          | yes        | managed    |
| Pot et al., 20054bromideMIM param.0.988stagnosolsilt loamyesmanaged<br>grasslandPoulsen et al., 200633tritiumMIM param.unknowntypic hapludalf <sup>3</sup> sandy loamyesarablePrado et al., 20063deuteriumCDE param.unknownpachic andosol <sup>3</sup> silt loamnoarablePrado et al., 20099deuteriumMIM and<br>CDE param.unknownpachic andosol <sup>3</sup> silt loamyesarableRaturi et al., 20016bromideMIM param.0.99antroposol <sup>3</sup> loamy sandyesgrasslandRen et al., 199620bromideMIM param.0.99durixerollic<br>calciorthid <sup>4</sup> silt loamyesarableReungsang et al., 200112bromideMIM param.unknowntypic haploaquoll <sup>4</sup> ,<br>cumulic haploaquoll <sup>4</sup> sandy loamyesmanaged<br>grassland0Scherr, 20092bromide,<br>chloride,<br>deuteriumMIM param.0.983unknownsilt y clay loamyesarableSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt loamyesarable<br>grasslandSchulin et al., 20091bromide,<br>strutMIM param.unknownunknownunknownyesarableSegal et al., 20091bromideMIM param.unknownunknownunknownunknownunknownyesarableSelim and Amacher,<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |    |           |             |           | vertic endoaquept                     |                  | ļ          | grassland  |
| Poulsen et al., 200633tritiumMIM param.unknowntypic hapludalf*sandy loamyesarablePrado et al., 20063deuteriumCDE param.unknownpachic andosol*silt loamnoarablePrado et al., 20099deuteriumMIM and<br>CDE param.unknownpachic andosol*silt loamyesarableRaturi et al., 20016bromideMIM param.0.99antroposol*loamy sandyesmanaged<br>grasslandRen et al., 199620bromideMIM param.0.99durixerollic<br>calciorthid*silt loamyesmanaged<br>grasslandReungsang et al., 200112bromideMIM param.unknowntypic haploaquoll*,<br>cumulic haploaquoll*sandy loamyesmanaged<br>grasslandSchoen et al., 19992bromideMIM param.unknownunknownsilt yei haploaquoll*,<br>cumulic haploaquoll*sandy loamyesmanaged<br>grassland,<br>arableSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt loamyesarableSchoen et al., 198723tritium,<br>bromideMIM param.unknownrendzik leptosol*loamyesarableSegal et al., 20091bromideMIM param.unknownunknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.unknownunknownunknownun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pot et al., 2005         | 4  | bromide   | MIM param.  | 0.988     | stagnosol                             | silt loam        | yes        | managed    |
| Poulsen et al., 200633tritiumMIM param.unknowntypic hapludalfsandy loamyesarablePrado et al., 20063deuteriumCDE param.unknownpachic andosol*silt loamnoarablePrado et al., 20099deuteriumMIM and<br>CDE param.unknownpachic andosol*silt loamyesarableRaturi et al., 20016bromideMIM param.0.99antroposol*loamy sandyesmanaged<br>grasslandRen et al., 199620bromideMIM param.0.99durixerollic<br>calciorthid*silt loamyesarableReungsang et al., 200112bromideMIM param.unknowntypic haploaquoll*,<br>cumulic haploaquoll*sandy loamyesmanaged<br>grassland,<br>arableOScherr, 20092bromideMIM param.unknownunknownsilty clay loamyesmanaged<br>grassland,<br>arableSchoen et al., 19973bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt loamyesarableSchulin et al., 198723tritium,<br>bromideMIM param.unknownunknownrendzik leptosol*loamyesarableSegal et al., 20091bromideMIM param.unknownunknownarguic fragiudalf*,<br>typic hapludaldf*,<br>typic hapludalf*,<br>typic hapludalf*,<br>typic hapludalf*,<br>typic hapludalf*,<br>typic hapludalf*,<br>typic hapludalf*,<br>typic hapludalf*,<br>typic hapludalf*,<br>typic hapludalf*,<br>typic hapludal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |    |           |             |           | · · · · · · · · · · · · · · · · · · · |                  | ļ          | grassland  |
| Prado et al., 20063deuteriumCDE param.unknownpachic andosol*silt loamnoarablePrado et al., 20099deuteriumMIM and<br>CDE param.unknownpachic andosol*silt loamyesarableRaturi et al., 20016bromideMIM param.0.99antroposol*loamy sandyesarable<br>grasslandRen et al., 199620bromideMIM param.0.99durixerollic<br>calciorthid*silt loamyesarableReungsang et al., 200112bromideMIM param.unknowntypic haploaquoll*,<br>cumulic haploaquoll*sandy loamyesmanaged<br>grassland,<br>arableSchoen et al., 19992bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilty clay loamyesmanaged<br>grasslandSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt loamyesarableScholin et al., 198723tritium,<br>bromideMIM param.unknownunknownunknownunknownyesarableSegal et al., 20091bromideMIM param.unknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.unknownunknownunknownunknownunknownyesarableUnknowntritiumMIM param.unknownunknownunknownunknownunknownyesarable<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Poulsen et al., 2006     | 33 | tritium   | MIM param.  | unknown   | typic hapludalf <sup>*</sup>          | sandy loam       | yes        | arable     |
| Prado et al., 20099deuteriumMIM and<br>CDE param.unknownpachic andosolsilt loamyesarableRaturi et al., 20016bromideMIM param.0.99antroposol*loamy sandyesmanaged<br>grasslandRen et al., 199620bromideMIM param.0.99durixerollic<br>calciorthid*silt loamyesarableReungsang et al., 200112bromideMIM param.unknowntypic haploaquoll*<br>cumulic haploaquoll*sandy loamyesmanaged<br>grasslandOScherr, 20092bromideMIM param.0.983unknownsilty clay loamyesmanaged<br>grasslandSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt loamyesmanaged<br>grasslandSchoen et al., 198723tritium,<br>bromideMIM param.unknownrendzik leptosol*loamyesforestSegal et al., 20091bromideMIM param.unknownarabicunknownunknownunknownyesarableSegal et al., 20091bromideMIM param.unknownarabicunknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.unknownunknownunknownunknownunknownunknownyestritiumMIM param.unknownunknownarabicunknownunknownunknownunknown<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prado et al., 2006       | 3  | deuterium | CDE param.  | unknown   | pachic andosol                        | silt loam        | no         | arable     |
| Raturi et al., 20016bromideMIM param.0.99antroposol*loamy sandyesmanaged<br>grasslandRen et al., 199620bromideMIM param.0.99durixerollic<br>calciorthid*silt loamyesarableReungsang et al., 200112bromideMIM param. $unknown$ typic haploaquoll*,<br>cumulic haploaquoll*sandy loamyesmanaged<br>grassland,<br>arableOScherr, 20092bromide,<br>chloride,<br>deuteriumMIM param. $0.983$ $unknown$ silt paloaquoll*<br>cumulic haploaquoll*yesmanaged<br>grassland,<br>arableSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param. $unknown$ $unknown$ silt paloaquoll*<br>cumulic haploaquoll*yesarableSchulin et al., 198723tritium,<br>bromideMIM param. $unknown$ $unknown$ $unknown$ $unknown$ $unknown$ yesarableSegal et al., 20091bromideMIM param. $unknown$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prado et al., 2009       | 9  | deuterium | MIM and     | unknown   | pachic andosol'                       | silt loam        | yes        | arable     |
| Raturi et al., 20016bromideMIM param.0.99antroposol'loamy sandyesmanaged<br>grasslandRen et al., 199620bromideMIM param.0.99durixerollic<br>calciorthid <sup>‡</sup> silt loamyesarableReungsang et al., 200112bromideMIM param.unknowntypic haploaquoll <sup>‡</sup> ,<br>cumulic haploaquoll <sup>‡</sup> sandy loamyesmanaged<br>grassland,<br>arable05cherr, 20092bromide,<br>chloride,<br>deuteriumMIM param.0.983unknownsilty clay loamyesmanaged<br>grassland,<br>arableSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt loamyesarableSchulin et al., 198723tritium,<br>bromideMIM param.unknownrendzik leptosol <sup>†</sup> loamyesarableSegal et al., 20091bromideMIM param.unknownunknownunknownunknownunknownyesarableSegal et al., 20091bromideMIM param.unknownarableunknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.unknownunknownunknownunknownunknownunknownunknown19884tritiumMIM param.unknownarableunknownunknownunknownunknownunknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |    |           | CDE param.  |           |                                       |                  |            |            |
| Image: Constraint of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Raturi et al., 2001      | 6  | bromide   | MIM param.  | 0.99      | antroposol                            | loamy sand       | yes        | managed    |
| Ren et al., 199620bromideMIM param.0.99durixerollic<br>calciorthid*silt loamyesarableReungsang et al., 200112bromideMIM param.unknowntypic haploaquoll*,<br>cumulic haploaquoll*sandy loamyesmanaged<br>grassland,<br>arableOScherr, 20092bromideMIM param.0.983unknownsilty clay loamyesmanaged<br>grassland,<br>arableSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt loamyesmanaged<br>grasslandSchulin et al., 198723tritium,<br>bromideMIM param.unknownrendzik leptosol*loamyesforestSegal et al., 20091bromideMIM param.unknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.unknownarguic fragiudalf*,<br>typic udipsamment*unknownnounknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |    |           |             |           |                                       |                  |            | grassland  |
| Reungsang et al., 200112bromideMIM param.unknowntypic haploaquoll*sandy loamyesmanaged<br>grassland,<br>arableOScherr, 20092bromideMIM param.0.983unknownsilty clay loamyesmanaged<br>grassland,<br>arableOScherr, 20092bromide,<br>chloride,<br>deuteriumMIM param.0.983unknownsilty clay loamyesmanaged<br>grassland.<br>arableSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt loamyesarableSchulin et al., 198723tritium,<br>bromideMIM param.unknownrendzik leptosol*loamyesforestSegal et al., 20091bromideMIM param.unknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.unknownarguic fragiudalf*,<br>typic udipsamment*unknownnounknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ren et al., 1996         | 20 | bromide   | MIM param.  | 0.99      | durixerollic                          | silt loam        | yes        | arable     |
| Reungsang et al., 200112bromideMIM param.unknowntypic haploaquoll*,<br>cumulic haploaquoll*sandy loamyesmanaged<br>grassland,<br>arableOScherr, 20092bromideMIM param.0.983unknownsilty clay loamyesmanaged<br>grassland,<br>arableSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilty clay loamyesmanaged<br>grasslandSchulin et al., 198723tritium,<br>bromideMIM param.unknownrendzik leptosol*loamyesforestSegal et al., 20091bromideMIM param.unknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.unknownarguic fragiudalf*,<br>typic hapludalf*,<br>typic udipsamment*unknownnounknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |    |           |             |           | calciorthid <sup>‡</sup>              |                  |            |            |
| Image: second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reungsang et al., 2001   | 12 | bromide   | MIM param.  | unknown   | typic haploaquoll <sup>‡</sup> ,      | sandy loam       | yes        | managed    |
| Image: Construct of the systemImage: Construct of the systemIm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |    |           |             |           | cumulic haploaquoll <sup>™</sup>      |                  |            | grassland, |
| OScherr, 20092bromideMIM param.0.983unknownsilty clay loamyesmanaged<br>grasslandSchoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt loamyesarableSchulin et al., 198723tritium,<br>bromideMIM param.unknownrendzik leptosol*loamyesforestSegal et al., 20091bromideMIM param.unknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.unknownarguic fragiudalf*,<br>typic hapludalf*,<br>typic udipsamment*unknownnounknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |    |           |             |           |                                       |                  |            | arable     |
| Schoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.<br>unknownunknownunknownsilt loamyesarableSchulin et al., 198723tritium,<br>bromideMIM param.<br>bromideunknownrendzik leptosol*loamyesforestSegal et al., 20091bromideMIM param.<br>unknownunknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.<br>unknownunknownarguic fragiudalf*,<br>typic hapludalf*,<br>typic udipsamment*unknownnounknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OScherr, 2009            | 2  | bromide   | MIM param.  | 0.983     | unknown                               | silty clay loam  | yes        | managed    |
| Schoen et al., 19993bromide,<br>chloride,<br>deuteriumMIM param.unknownunknownsilt loamyesarableSchulin et al., 198723tritium,<br>bromideMIM param.unknownrendzik leptosol <sup>†</sup> loamyesforestSegal et al., 20091bromideMIM param.unknownunknownunknownunknownyesarableSegal et al., 20091bromideMIM param.unknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.unknownarguic fragiudalf <sup>‡</sup> ,<br>typic hapludalf <sup>‡</sup> ,<br>typic udipsamment <sup>‡</sup> nounknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |    |           |             |           |                                       |                  |            | grassland  |
| chloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>deuteriumchloride,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Schoen et al., 1999      | 3  | bromide,  | MIM param.  | unknown   | unknown                               | silt loam        | yes        | arable     |
| deuteriumdeuteriumdeuteriumSchulin et al., 198723tritium,<br>bromideMIM param.<br>unknownunknownrendzik leptosol*loamyesforestSegal et al., 20091bromideMIM param.<br>unknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.<br>unknownunknownarguic fragiudalf*,<br>typic hapludalf*,<br>typic udipsamment*unknownnounknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |    | chloride, |             |           |                                       |                  | Í          |            |
| Schulin et al., 198723tritium,<br>bromideMIM param.<br>unknownunknownrendzik leptosol*IoamyesforestSegal et al., 20091bromideMIM param.<br>unknownunknownunknownunknownyesarableSelim and Amacher,<br>19883tritiumMIM param.<br>MIM param.unknownarguic fragiudalf*,<br>typic hapludalf*,<br>typic udipsamment*unknownnounknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |    | deuterium |             |           |                                       |                  |            |            |
| bromidebromideand the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Schulin et al., 1987     | 23 | tritium,  | MIM param.  | unknown   | rendzik leptosol <sup>†</sup>         | loam             | yes        | forest     |
| Segal et al., 2009     1     bromide     MIM param.     unknown     unknown     unknown     yes     arable       Selim and Amacher,     3     tritium     MIM param.     unknown     arguic fragiudalf <sup>‡</sup> ,<br>typic hapludalf <sup>‡</sup> ,<br>typic udipsamment <sup>‡</sup> unknown     no     unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |    | bromide   |             |           |                                       |                  |            |            |
| Selim and Amacher,3tritiumMIM param.unknownarguic fragiudalf <sup>‡</sup> ,<br>typic hapludalf <sup>‡</sup> ,<br>typic udipsamment <sup>‡</sup> unknownnounknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Segal et al., 2009       | 1  | bromide   | MIM param.  | unknown   | unknown                               | unknown          | yes        | arable     |
| 1988 typic hapludalf <sup>‡</sup> ,<br>typic udipsamment <sup>‡</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Selim and Amacher,       | 3  | tritium   | MIM param.  | unknown   | arguic fragiudalf <sup>‡</sup> ,      | unknown          | no         | unknown    |
| typic udipsamment <sup>‡</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988                     |    |           |             |           | typic hapludalf <sup>‡</sup> ,        |                  |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |    |           |             |           | typic udipsamment <sup>*</sup>        |                  |            |            |

| Seo and Lee, 2005            | 3  | chloride             | MIM param.            | unknown | typic hapludult <sup>‡</sup>                                                                            | sandy loam                                             | yes | unknown                                    |
|------------------------------|----|----------------------|-----------------------|---------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----|--------------------------------------------|
| Seuntjens et al., 2001       | 2  | chloride             | MIM param.            | 0.99    | podsol <sup>†</sup>                                                                                     | sand                                                   | yes | heathland                                  |
| Seyfried and Rao, 1987       | 14 | tritium              | MIM and<br>CDF param. | unknown | typic distropept <sup>‡</sup>                                                                           | unknown                                                | yes | arable,<br>orchard                         |
| Shaw et al., 2000            | 13 | bromide              | MIM param.            | unknown | kandiudult <sup>‡</sup>                                                                                 | sand,<br>sandy loam,<br>loamy sand,<br>sandy clay loam | yes | arable                                     |
| Singh and Kanwar, 1991       | 6  | chloride             | raw data              | 0.997   | mesic hapludoll <sup>‡</sup>                                                                            | unknown                                                | yes | arable                                     |
| Smettem et al., 1983         | 3  | tritium              | raw data              | 0.973   | unknown                                                                                                 | clay loam                                              | yes | arable                                     |
| Smettem, 1984                | 12 | tritium              | MIM and<br>CDE param. | unknown | 'well structured<br>brown calcareous<br>earth'                                                          | silt loam                                              | yes | forest                                     |
| Stagnitti et al., 2000       | 1  | chloride             | MIM param.            | unknown | unknown                                                                                                 | unknown                                                | yes | managed<br>grassland                       |
| Tyler and Thomas, 1981       | 1  | chloride             | raw data              | 0.981   | fluventic haplodoll <sup>‡</sup> ,<br>typic udifluvent <sup>‡</sup> ,<br>vertic haplaquept <sup>‡</sup> | silt loam,<br>silty clay loam,<br>sandy loam           | yes | arable                                     |
| Unold et al., 2009           | 4  | chloride             | raw data              | 0.996   | orthic luvisol <sup>†</sup> ,<br>gleyic cambisol <sup>†</sup>                                           | silt loam,<br>sandy loam                               | yes | arable                                     |
| Vanderborght et al.,<br>2002 | 2  | chloride             | MIM param.            | unknown | stagnic cambisol <sup>†</sup>                                                                           | clay loam                                              | yes | forest                                     |
| Vervoort et al., 1999        | 7  | bromide,<br>chloride | MIM param.            | unknown | typic kandiudult <sup>‡</sup>                                                                           | sandy loam,<br>sandy clay loam,<br>clay,<br>sandy clay | yes | managed<br>grassland                       |
| Vincent et al., 2007         | 8  | bromide              | raw data              | 0.994   | stagnosol <sup>†</sup>                                                                                  | loam,<br>silt loam                                     | yes | arable,<br>managed<br>grassland,<br>forest |
| Vogeler et al., 2006         | 12 | bromide,<br>chloride | CDE param.            | unknown | stagnic luvisol <sup>†</sup>                                                                            | sandy loam                                             | yes | arable                                     |
| Wilson et al., 1998          | 2  | bromide              | raw data              | 0.972   | typic paleudalf <sup>‡</sup>                                                                            | silt loam                                              | yes | arable                                     |
| Zurmühl, 1998                | 2  | tritium              | MIM param.            | unknown | unknown                                                                                                 | sand                                                   | yes | forest                                     |

<sup>†</sup>Classification according to the World Reference Base (WRB).

<sup>‡</sup>Classification according to the system of the United States Department of Agriculture (USDA).

## 775 Table 2: Inventory of the data available in the database.

| Data                                                                               | Available | Missing |
|------------------------------------------------------------------------------------|-----------|---------|
| Explicit information on water content, $	heta$ (cm <sup>3</sup> cm <sup>-3</sup> ) | 487       | 246     |
| Explicit information on water flux, $q$ (cm d <sup>-1</sup> )                      | 551       | 182     |
| Travel distance, <i>L</i> (cm)                                                     | 733       | 0       |
| Area of breakthrough plane, A (cm <sup>2</sup> )                                   | 733       | 0       |
| Information on tracer detection method                                             | 733       | 0       |
| Information on initial conditions                                                  | 731       | 2       |
| Pressure head at upper boundary, $h_{UB}$ (cm)                                     | 333       | 400     |
| Pressure head at lower boundary, $h_{LB}$ (cm)                                     | 429       | 304     |
| Average pressure head, <i>h<sub>ave</sub></i> (cm)                                 | 466       | 267     |
| Hydraulic gradient, <i>dH/L</i> (-)                                                | 406       | 327     |
| Information on Irrigation device                                                   | 708       | 25      |
| Information on outlet construction                                                 | 694       | 39      |

| Information on tracer                                | 733 | <sub>0</sub> 776 |
|------------------------------------------------------|-----|------------------|
| Information on tracer application method             | 733 | 0                |
| BTC raw data                                         | 146 | 587              |
| Information on land use                              | 635 | 98               |
| Information on cropping                              | 454 | 279              |
| Information on soil management practices             | 388 | 345              |
| Depth from which soil sample was collected (cm)      | 508 | 225              |
| Texture data                                         | 618 | 115              |
| Bulk density, $\rho$ (g cm <sup>-3</sup> )           | 605 | 128              |
| Organic carbon content, OC (-)                       | 488 | 245              |
| Porosity, $\phi$ (cm <sup>3</sup> cm <sup>-3</sup> ) | 611 | 122              |

## 778 Table 3: Land use and soil management for the 733 datasets in the database.

| Land use                                 | # of entries in the database |
|------------------------------------------|------------------------------|
| arable (all)                             | 302                          |
| arable (conventional tillage)            | 219                          |
| arable (reduced tillage)                 | 6                            |
| arable (no tillage)                      | 31                           |
| arable (no further information)          | 46                           |
| forest                                   | 79                           |
| managed grassland                        | 92                           |
| natural grassland                        | 12                           |
| grass ley                                | 7                            |
| heathland                                | 2                            |
| orchard                                  | 19                           |
| unknown land use                         | 98                           |
| sieved and repacked samples $^{\dagger}$ | 116                          |
| unconsolidated bedrock                   | 60                           |
| clean sand or glass beads                | 32                           |

<sup>†</sup>note that for some of the sieved samples the land use was known



782

783 784 Figure 1: The PDF (a) and CDF (b) of an example BTC taken from Garré et al. (2010) illustrating how the normalized first temporal moment,  $\mu'_1$ , the normalized 5%-arrival time,  $p_{0.05}$ , and the holdback, H, are derived.



785

786 Figure 2: Land uses corresponding to the soil samples on which the 733 considered BTC experiment had been carried out. 787 788 Note that in most publications only average values are published for several soil samples and that several experiments are often conducted on one and the same soil sample under different hydraulic boundary conditions. Therefore, the number of 789 datasets visible in the texture triangle is less than 733.

33





Figure 3: Spearman rank correlation coefficients between various BTC-shape measures and soil and site as well as experimental properties. The boxes marked by an asterisk indicate significant correlations with p-values of smaller than 0.001. The correlations were carried out for the travel distance, *L*, the area of the breakthrough plane, *A*, the water flux, *q*, the suction head, *h*, the water content,  $\theta$ , the transport velocity, *v*, the apparent dispersivity,  $\lambda_{app}$ , the normalized 5%-arrival time,  $p_{0.05}$ , the holdback, *H*, the piston-flow to transport velocity ratio,  $\eta$ , the geometric mean grain diameter,  $d_g$ , the soil bulk density,  $\rho$ , the clay fraction, *clay*, the silt fraction, *silt*, the sand fraction, *sand*, the organic carbon content, *OC*, the average sampling depth, and *depth*.





Figure 4: Comparison between the shape-measures related to early tracer arrival: a) comparison between the holdback, H, and the normalized 5%-arrival time,  $p_{0.05}$ ; b) comparison of the piston-flow to transport velocity ratio,  $\eta$ , and the normalized 5%-arrival time,  $p_{0.05}$ ; c) comparison of the piston-flow to transport velocity ratio,  $\eta$ , and the holdback, H. In addition, the type of applied tracer is depicted. The symbol size corresponds to the water fluxes, q, under which the experiment was conducted, small symbols indicating small water fluxes, large symbols denoting large water fluxes.





Figure 5: The median apparent dispersivity,  $\lambda_{app}$ , and normalized 5%-arrival time,  $p_{0.05}$ , in dependence of the applied tracer (a) and the corresponding median experimental conditions (b). The center of each circle depicts the respective median value and the error bounds indicate the corresponding interquartile range. The size of each circle corresponds to the number of BTC conducted with the respective tracer.





Figure 6: Comparison of the apparent dispersivity,  $\lambda_{app}$ , and normalized 5%-arrival time,  $p_{0.05}$ , with (a) the travel distance, *L*, and (b) the area of the breakthrough plane, *A*. The symbol size corresponds to the water fluxes, *q*, under which the respective experiment was conducted, small symbols indicating small water fluxes, large symbols denoting large water fluxes. The meaning of the symbol shape is explained in Figure 4.





816 Figure 7: Boxplots (a) transport velocity, v, (b) apparent dispersivity,  $\lambda_{app}$ , (c) normalized 5%-arrival time,  $p_{0.05}$ , and (d) piston-

817 flow to transport velocity ratio,  $\eta$  according to the respective water flux class. Note that this figure is based on BTCs from

818 undisturbed soil samples, only.



819

820 Figure 8: Comparison of the apparent dispersivity,  $\lambda_{app}$ , and normalized 5%-arrival time,  $p_{0.05}$ , with sampling location of the 821 respective soil sample. The symbol size corresponds to the water fluxes, q, under which the respective experiment was 822 conducted, small symbols indicating small water fluxes, large symbols denoting large water fluxes.





824 825 826 827 Figure 9: Comparison of the apparent dispersivity,  $\lambda_{app}$ , and normalized 5%-arrival time,  $p_{0.05}$ , with the geometric mean grain diameter,  $d_a$ , of the respective soil sample. The symbol size corresponds to the water fluxes, q, under which the respective experiment was conducted, small symbols indicating small water fluxes, large symbols denoting large water fluxes. The meaning of the symbol shape is explained in Figure 4.



830 Figure 10: The (a) normalized 5%-arrival time,  $p_{0.05}$ ; (b) apparent dispersivity,  $\lambda_{app}$ ; (c) the piston-flow to transport velocity



833 834 Figure 11: a) Comparison of the apparent dispersivity,  $\lambda_{app}$ , and normalized 5%-arrival time,  $p_{0.05}$ , with the respective land

use; b) comparison of the water flux, q, and column length, L, with the respective land use. The center of each circle depicts

835 the respective median value and the error bounds indicate the corresponding interquartile range. The size of each circle

836 corresponds to the number of samples within each land use class.