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Eq. 1 can be written as 1 
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bk is now traced back to the initial value b0: 4 
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The partial derivative of bk with respect to b0 is 10 
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For long time series: 16 
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Small errors in b0 cause an error in BFI of 2 

BFIb0
∆  = 0

0

b
b

BFI
∆

∂
∂  3 

 ≈ 0
max

1
)1(1 b

a
aBFI

y
∆

−
−  4 

The sensitivity index for b0 is 5 
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With y = b / BFI: 8 
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For long time series, b0 is much smaller than b and, hence, S(BFI | b0) ≈ 0. 10 


