

1 Eq. 1 can be written as

2 $b_k = A b_{k-1} + B y_k$

3 with $A = \frac{(1 - BFI_{\max})a}{1 - a BFI_{\max}}$ and $B = \frac{(1 - a)BFI_{\max}}{1 - a BFI_{\max}}$.

4 b_k is now traced back to the initial value b_0 :

5 $b_k = A b_{k-1} + B y_k$

6 $= A (A b_{k-2} + B y_{k-1}) + B y_k$

7 $= A^2 b_{k-2} + A B y_{k-1} + B y_k$

8 $= \dots$

9 $= A^k b_0 + B \sum_{i=1}^k A^{i-1} y_{k-i+1}$

10 The partial derivative of b_k with respect to b_0 is

11 $\frac{\partial b_k}{\partial b_0} = A^k$

12 The partial derivative of BFI with respect to b_0 is

13 $\frac{\partial BFI}{\partial b_0} = \frac{\partial}{\partial b_0} \frac{b}{y}$

14 $= \frac{1}{y} \sum_{k=1}^n \frac{\partial b_k}{\partial b_0}$

15 $= \frac{1}{y} \sum_{k=1}^n A^k$

16 For long time series:

17 $\frac{\partial BFI}{\partial b_0} \approx \frac{1}{y} \lim_{n \rightarrow \infty} \sum_{k=1}^n A^k$

18 Because of $|A| < 1$, the limit of the geometric series $\sum_{k=1}^n A^k$ for $n \rightarrow \infty$ is $\frac{A}{1 - A}$:

19 $\frac{\partial BFI}{\partial b_0} \approx \frac{1}{y} \frac{A}{1 - A}$

$$1 \quad = \frac{1}{y} \frac{(1 - BFI_{\max})a}{1 - a}$$

2 Small errors in b_0 cause an error in BFI of

$$3 \quad \Delta_{b_0} BFI = \frac{\partial BFI}{\partial b_0} \Delta b_0$$

$$4 \quad \approx \frac{1}{y} \frac{(1 - BFI_{\max})a}{1 - a} \Delta b_0$$

5 The sensitivity index for b_0 is

$$6 \quad S(BFI | b_0) = \frac{\Delta_{b_0} BFI}{BFI} \Big/ \frac{\Delta b_0}{b_0}$$

$$7 \quad \approx \frac{1}{y} \frac{(1 - BFI_{\max})a}{1 - a} \Delta b_0 \frac{b_0}{BFI \Delta b_0}$$

8 With $y = b / BFI$:

$$9 \quad S(BFI | b_0) \approx \frac{(1 - BFI_{\max})a}{1 - a} \frac{b_0}{b}$$

10 For long time series, b_0 is much smaller than b and, hence, $S(BFI | b_0) \approx 0$.