
We appreciate your interest in our work and thank you for your comments which touch 
on some very fundamental issues regarding soil moisture and its role for land surface modeling.  
The followings are your questions/comments and our responses. 

1) The climatology of models may not be right, and it is a very well known case (Koster et al. 
2009, J. Climate, 22, 4322–4335). As a part of GSWP2, Koster et al. studied 7 to 15 
participating models and concluded that “model-simulated soil moisture variables differ from 
each other and that these differences extend beyond those associated with model-specific layer 
thicknesses or soil texture”. They also add “LSM derived ‘soil moisture’ is not (as its name 
implies) a physical quantity that can be directly validated with field measurements”. Here the 
model based soil moisture values are only an index of wetness: when it rains it gets wetter and 
when it does not it gets drier. As Koster et al. tells “true information content and thus value of a 
model soil moisture product lies not in its absolute magnitudes but in its time variations”. 
Therefore, we do not trust the model climatology to start with. Briefly, could authors explain why 
correct the climatology of a model that we do not trust? 

 
The notion that “LSM derived ‘soil moisture’ is not (as its name implies) a 

physical quantity that can be directly validated with field measurements” may be true for 
some land surface models but not for all models.  For example, the prognostic variables 
in the NASA Catchment model (Koster et al. 2000) represent water excess and deficit 
relative to the hydrostatic condition and therefore are not directly comparable with real-
world states; as a result, soil moisture diagnosed from these variables may not be 
comparable with field measurements, except its temporal variability.  But for models that 
are based on the Richards equation such as Noah, CLM and VIC, the state variable, soil 
moisture, and parameters such as hydraulic conductivity, are physical quantities that can 
be measured in fields or laboratories.  There is no reason that simulated soil moisture 
from these models (Noah, CLM and VIC) cannot be compared to field or retrieved soil 
moisture values and, in fact, many studies compared these model outputs with in situ 
measurements (e.g., Mitchell et al., 2004; De Lannoy et al., 2007).  As illustrated in this 
study, model estimates may not match observations exactly which is due to uncertainty in 
input forcing, ET/runoff, and hydraulic parameters as well as deficiencies in model 
physics, not because the physical meaning of Noah soil moisture is inconsistent with that 
of field measurements.    
 The goal of our AMSR-E data assimilation was to nudge estimated soil moisture 
in its full magnitude (versus anomaly) towards the true soil moisture represented by 
AMSR-E retrievals.  Improving the full magnitude of soil moisture should lead to 
improved model climatology (or mean), but its impact goes beyond climatology as the 
temporal variability of soil moisture is also affected by data assimilation.  The anomaly 
correlation was not evaluated in the study because the simulation period is too short to 
generate meaningful climatology.  

The need to correct the mean of estimated soil moisture comes from the fact that 
flux estimates depend on the actual value of soil moisture as shown in Figure 7.  In 
addition, due to the non-linear relationship between soil moisture and other physical 



processes, there is no guarantee that inaccurate mean soil moisture will not impact the 
anomaly calculation (Mo, 2008).   

 
2) One way of correcting the model climatology could be done via scaling the soil moisture 
using the first moments as Koster et al. (2009) suggests. Why use complicated data assimilation 
methodologies to correct the climatology of a model that can be corrected via simple 
regressions? Is it any better? As we can see in the figures of this current study, the soil moisture 
values at 100cm depth of Control, DA, and DA MassCon never come close anywhere near 
SCAN datasets (Fig. 4). Could regression based correction do a better job? 
 

As we indicated in the above, our data assimilation affects the full magnitude of 
soil moisture estimates, not just the climatology.      

Koster et al. (2009) showed that soil moisture estimates from one model can be 
very similar to those by other models, after scaling which includes de-trending, mean-
removal and normalization (i.e. their equation (1)).  Scaling does not actually correct 
climatology; in fact, in order to restore the full magnitude of soil moisture, the 
climatology of the target model has to be used along with the scaled anomalies (their 
equation (2)).  We disagree with their view that the true value of model estimated soil 
moisture only lies in the temporal variability, not in the full magnitude of soil moisture.  
One obvious reason is that flux estimates are based on the full magnitude of soil moisture 
not on anomalous soil moisture values; consequently, improving the full magnitude of 
soil moisture should lead to improved flux estimates.  Using their Figure 3 as an example, 
had they used observed soil moisture (in its full magnitude) for their ecological model, 
they could have significantly improved the estimation of vegetation respiration rate.       

The issue with the Noah estimates at 100 cm is due to the boundary condition, the 
free drainage condition, whose performance varies from region to region depending on 
the climate condition and how deep the groundwater table is.  If there were soil moisture 
observations at the 200 cm depth (Noah’s lower boundary) around the globe, the problem 
could be fixed by using a prescribed boundary condition, without the need for regression.          

3) Here the implemented EnKF methodology is not consistent with its theory. Hence 
EnKF performance comparisons in its current form may not reflect the results that could 
be obtained using consistent methodology.  The theoretical background of land data 
assimilation comes from Kalman Filter, which solely is based on the goal of reducing the 
random error component of the model using observations (=the goal is not correcting the 
climatology). This theory explicitly requires the innovations to be white and non-biased. On the 
other hand, in this study authors have not performed a bias correction, because they claimed 
the mean soil moisture may have information that can be used. However, the presence of 
biased innovation clearly does not fit to the Kalman Filter theory.  I understand authors point that 
the model climatology can be wrong (and in fact it is in this study) and matching observations to 
a model with a wrong climatology may not be intuitive. However, this can be fixed by matching 
observations to model and then the assimilated soil moisture values can be climatologically 
corrected against the in-situ data once the assimilation of observations are completed.  If EnKF 
is not done properly, then not surprisingly any climatology correction methodology can beat 



EnKF, although correcting the climatology is not the real goal of EnKF.  Here the question is: 
can this new methodology produce smaller random errors than the standard EnKF that is 
climatologically corrected via a post-processing? 

You are correct that the use of EnKF in our study does not satisfy the fundamental 
assumption associated with EnKF (as we indicated in the Discussion session): the model 
and observation need to be unbiased.  As pointed out by Kalnay (2008) and illustrated in 
this study, this assumption is hardly satisfied in reality.  But, as we stated in the 
Discussion, without the unbiased assumption estimates may not be optimal, i.e., the 
estimation error is not minimized, but it is still a valid interpolation between observations 
and model forecasts.  The issue with applying EnKF in a biased model is the loss of water 
budget (as specified by the precipitation) which needs to be taken care of.    

Zero-mean innovations are guaranteed when models and observations are 
unbiased (relative to the truth).  But having zero-mean innovations does not mean an 
EnKF is optimal or satisfies the unbiased assumption of EnKF.  This is why matching the 
climatology of observations to that of the model, which produces zero-mean innovations, 
does not lead to an optimal EnKF, unless the model is unbiased (relative to the truth, field 
measurements).  When a model is biased, assimilating climatology-scaled observations is 
equally inconsistent with the underlying assumption of EnKF as that without scaling.   

Data assimilation studies using scaled AMSR-E retrievals (Reichle et al., 2007; 
Draper et al., 2009; Drape et al. 2011) have not shown any reduction in estimation errors.  
So it is questionable if we can compare our approach with that of the scaling approach in 
terms of reducing random errors.        
 Your suggestion of matching the climatology of assimilated soil moisture fields to 
that of in situ measurements may not be practical because there are simply not enough in 
situ soil moisture measurements for large-scale modeling.    

4) Updating the first two and the last two layers with an opposite sign creates an artificial vertical 
gradient between the 2nd and the 3rd layers. Any comments on the effect of this artificial 
vertical gradient?  These adjustments with opposite signs could be the cause of the high 
baseflow values we see in Fig 8. Since AMSRE is drier than the model, assimilation of AMSRE 
using DA MassCon persistently subtracts soil moisture from the top layers and this subtracted 
water will be persistently added to the lower layers. As a result of the added root-zone soil 
moisture, the baseflow of DA MassCon becomes higher than both the Control and the DA 
experiments. Accordingly, the baseflow increase in Fig. 8 perhaps is not related with the rainfall 
as authors claimed (-same rainfall is used in all experiments-), but it is related with the artificially 
added soil moisture. 

We do not consider the reversed vertical gradient artificial because it is a profile 
consistent with the observed soil moisture.  The change in profile may slow down the 
movement of soil moisture from the top layers to the lower layers, but does not 
necessarily induce upward soil moisture flux as moisture fluxes are determined by the 
combined impact of capillary force and gravity.  Regardless, its impact may be short 
lived depending on soil wetness since model physics (the free drainage condition) can 
smooth out the upward gradient easily, more quickly when it rains. 



 Yes, the increased base flow in DA MassCon was due to moving water down 
from the surface layer which we explained in line 27 of Page 8147.  We did not say it’s 
related to rainfall. 

  
5) Pan and Wood (2006) introduced a methodology that completely preserves the mass 
balance. Is there any reason why authors have not followed this solution? Is there a problem 
with it? Given DA MassCon has the artificial gradient (discussed above), the solution of Pan and 
Wood could be desirable as it redistributes the added soil moisture to all water balance 
elements rather than a single one. What additional benefits do we get by using DA MassCon 
when compared to the solution of Pan and Wood (2006)? 

  Pan and Wood’s approach relies on an error covariance matrix to distribute mass 
imbalances to states, fluxes and precipitation.  ET and runoff observations are not 
commonly assimilated in land surface models due to lack of gridded data sets.  In 
addition, their model was calibrated against in situ measurements, so it is unknown how 
well the approach would work when models are biased.  Redistributing mass imbalances 
(which are no longer anomalies for a biased model) directly to ET requires careful 
considerations in the assimilation algorithm to ensure that the estimated ET remains 
consistent with the seasonal cycle defined by the climatology of vegetation on which 
most models rely to obtain ET estimates.  In comparison, our approach directly 
distributes the mass imbalances to the lower layers with some of the water partitioned to 
base flow through model physics.  It is much simple to implement for large scale 
modeling.  More importantly, the mass conservation scheme avoids applying the 
conventional EnKF on the lower layers, which can be adversely impacted by deficiencies 
in model physics.  The mass imbalance from the mass conservation scheme is also 
considerably smaller because the AMSR-E related updates are limited to the top two thin 
layers.  

 We will add some of these comments to our revised manuscript.         
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