Hydrol. Earth Syst. Sci. Discuss., 8, C5206-C5208, 2011

www.hydrol-earth-syst-sci-discuss.net/8/C5206/2011/ © Author(s) 2011. This work is distributed under the Creative Commons Attribute 3.0 License.

Interactive comment on "Comparing soil moisture retrievals from SMOS and ASCAT over France" by M. Parrens et al.

M. Parrens et al.

jean-christophe.calvet@meteo.fr

Received and published: 10 December 2011

Reviewer #2

The authors thank the anonymous reviewer #2 for his/her review of the manuscript and for the fruitful comments.

2.1 [It would be interesting to enhance that discussion with the use of different soil layer configurations of the model if they were available.]

Response 2.1

Indeed, the use of a multi-layer soil hydrology scheme could permit the analysis of the

C5206

soil sampling depth at L-band and C-band, and could be the subject of a next study.

2.2 [In some rare cases spelling mistakes should be corrected: p. 8568, line 24; p.8575, line 15; p.8580, line 10]

Response 2.2

It will be corrected in the next version of the manuscript.

2.3 [P. 8573, section 2.3: So, does the model include three soil layers for the soil moisture modelling (1 skin layer, one for the root zone and a deeper one)? Please clarify.]

Response 2.3

The land surface model used in this study represents two soil layers. The first layer includes the root-zone, represented by a bulk reservoir corresponding to the maximum rooting depth, and a representation of SSM associated to a skin soil top-layer. The latter is used for the computation of the soil evaporation. The second layer is a deep, sub-root soil layer contributing to evapotranspiration through capillarity rises (Boone et al., 1999).

2.4 [P. 8574, line 1: What is the atmospheric forcing produced by SAFRAN? E.g. Interpolated station data? Please add a sentence to clarify.]

Response 2.4

SAFRAN uses information from the automatic, synoptic and climatological networks of Météo- France and a first guess from large scale operational weather prediction models. An optimal interpolation method is used to analyse surface atmospheric variables (Durand et al., 1993,1999).

2.5 [Please discuss the applicability of this approach to other regions (especially the derivation of soil moisture from SMOS Tb data by the use of regressed empirical logarithmic equations).]

Response 2.5

The derivation of SSM from SMOS Tb data by the use of regressed empirical logarithmic equations is a simple statistical way to retrieve SSM. As shown in this study over France, the application of Eq. (2) over large areas requires additional information provided by a land surface model. A priori, there is no obstacle to the extension of this technique at a global scale. The LAI can be either computed by a land surface model or derived from satellite observations. It must be noted that the regression coefficients found over France cannot be directly extrapolated to other areas. Nevertheless, France presents a large variety of soils and vegetation types, various climatic regions, also, which permits the validation of the approach. Also, these regression coefficients may depend on the used SMOS-L1 version, and may have to be updated from one version to another.

REFERENCE:

Durand, Y., Giraud, G., Brun, E., Merindol, L., and Martin, E.: A computer-based system simulating snow-pack structures as a tool for regional avalanche forecasting, Ann. Glaciol., 45, 469–484,1999.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 8, 8565, 2011.

C5208