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Responses to Referee #3 
[Note: All original comments by the referee are reproduced in their entirety below in 
regular black text.  Our responses to these comments are shown immediately after the 
comment in blue text.] 
 
The paper presents a multi step approach to generate ensemble streamflow forecasts 
where multiple sources of uncertainties are taken into account and merged into one 
ensemble: forcing errors, optimized model parameters and errors (ISURF), and initial 
conditions errors via SWE assimilation, all merged with an EnKF. In particular, each 
uncertainty type (mostly model parameters and initial conditions here) is individually 
characterized and merged into one "big ensemble" via an EnKF. The approach is 
evaluated with respect to an EnKF without the individual characterization of the 
uncertainties (blend of undifferentiated sources of errors) and standard operational 
performance (removing the human forecaster’s adjustment skill). The approach is 
validated over the American River Basin, CA. 
 
The paper is very well written with a great and extensive literature review and 
justification of choices. The approach is a great contribution to the scientific community 
effort; characterize individual uncertainties of different sources and merge them in a 
single but meaningful ensemble in an effort to assess modeling uncertainties in a more 
accurate way.  
 
We thank Dr. Voisin’s for her comments on the value of our work.  
 
The analysis currently assesses if the simulations are more accurate which allows a 
comparison with the deterministic NWS forecasts. But it does not assess if the 
uncertainty is better assessed. I would recommend accepting the paper with major 
revisions. The paper would benefit from a couple of additional explanation 
of the performance and limitations of the approach, and most important a schematic 
diagram for clarity. Also, it is presently difficult to isolate the performance of the data 
assimilation with the overall water-year long approach performance. The results analysis 
would benefit from using another measure than the dispersion only – it needs to 
be the dispersion with respect to the observation (is the ensemble representative?) in 
order to assess if the uncertainty is better assessed than a blended uncertainty (ICEA vs 
EnKF analysis only). See specific comments below. 
 
We appreciate Dr. Voisin’s insightful comments for us to further improve the manuscript. 
We detailed the responses to these comments as follows. 
 
Specific comments 
1/ add a schematic diagram that explains the chain of models and processes, and the 
variables being transferred (single value, or ensemble), the time scale of the analysis 
etc. For example: Observed precipitation, temperature, PET -> SNOW17; i)ISURF–
optimized parameters and uncertainty), ii) EnKF for SWE assimilation and merging 
parameters uncertainties ->precip and snowmelt ensemble, PET (single value?)-
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>SACMA -> ensemble streamflow forecast to be verified with respect to observed flow, 
for several days after the assimilation. The assimilation is performed every 7 days. Etc.  
We have described the modeling and assimilation procedures in detail in Section 3.2. 
However, we agree with the referee that diagrams showing the processes would be 
further illustrative. We thus added the following figures to the manuscript.  
 
 

 
Fig. 2. Flowchart of the EnKF applied in ICEA to recursively update SNOW17 model 
states with the uncertainty of sensitive model parameters considered. N and p indicate the 
ensemble size and the number of sensitive parameters, respectively; y0 and µ represent 
model initial condition and forcing, respectively; zi and M designate the observation and 
measurement operator, respectively; Cv , Cyz, and Czz denote the variance of observation 
error, the covariance between model states and observations, and the variance of 
observations, respectively.  
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Figure 3. Flowchart of modeling and assimilation (of areal SWE) procedures in 
generating ensemble daily streamflow.  RM and Q represent rain plus snowmelt and 
streamflow, respectively; UH stands for unit hydrograph; t indicates time step (t=1,2,...,T; 
6 hourly) ; ta is the daily time step aggregated from 6-hourly step; ti reprsents the 
measurement time when areal SWE is assimilated (refer to Figure 2 for detailed 
assimilation procedure);  j is the ensemble number (j = 1,2,…,N); subscripts U and L 
denote variables for upper and lower sub-basins, respectively; subscript c designates the 
combined variable.  
 
 
2/The forcing uncertainty is accessed via a proxy by SNOW17 parameters. It seems to 
me that if SNOW17 was driven by an ensemble weather forecast, the SCF is adjusting the 
forcing in a way that the uncertainty information is decreased, unless the ensemble 
weather forecast was calibrated with respect to a specific observed meteorological dataset 
knowing the SCF to be used. As such, I am not sure how much of the forcing uncertainty 
is really taken into account. Similarly, it means that in a full probabilistic approach where 
ensemble weather forecasts were to be used, the approach does not allows yet to merge 
forcing uncertainty with model parameterization and initial conditions uncertainties. This 
being said, this approach allows generating an ensemble merging initial conditions and 
parameters uncertainties with an estimate of forcing uncertainty. As far as I know, this is 
a first on how forcing uncertainty can be merged in an ensemble with parameters 
uncertainties and initial conditions errors. 
In this study, the SNOW17 is not driven by ensemble weather forecasts. Instead, it is 
driven by deterministic historical observations of precipitation and temperature (Lines 9-
11, Page 7716). The current version of ICEA (presented in this study) is not designed to 
digest ensemble weather forecasts of forcing data. For future versions of ICEA to ingest 
ensemble forcing, the SCF will have to be fixed at a calibrated value (not to introduce 
biases to the ensemble forcing). However, the uncertainty of other SNOW17 parameters 
can be determined in the same way (as the current ICEA does). And that uncertainty can 
be merged into an ensemble with forcing uncertainty and initial condition uncertainty.  
  
3/ metrics used for the evaluation: the annual bias, the correlation, the RMSE, NRR and 
UR95.When presenting the results about the dispersion, I would suggest making sure that 
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not only the dispersion is being discussed as what matters is if the dispersion represents 
the observed variability. The authors mention in the discussion that other metrics could 
be used to assess the reliability. I would suggest using some of them here, like rank 
histogram for example. They would help assessing if the dispersion is fast enough for 
short lead times, and if the information in the ensemble is right, because too large of an 
ensemble has no value, too narrow either. It needs to bracket the observation in a 
representative way (uniform histogram). I believe that this is another important 
component of your approach – you need to evaluate if the uncertainty is better assessed 
when individually characterizing the uncertainties, or if blending them drive to the same 
result. 
In this study, we evaluated the ensemble streamflow predictions via both statistic metrics 
(i.e., NRR and UR95, as presented in Table 6 and Figure 9) and visual inspection (i.e., 
hydrograph of the wettest year as presented in Figure 7). Both NRR and UR95 have been 
widely applied in evaluating the dispersion of ensembles (see references listed in Section 
3.5).  NRR is a measure of ensemble dispersion relative to the deviation of the ensemble 
mean. UR95 is a measure of the aggregate variability of the 95th percentile prediction 
range relative to the observations. In addition, we evaluated the ensemble mean 
prediction in terms of other metrics including correlation, bias, RMSE, and NSE (i.e., 
Table 5, Figures 5 and 9). We currently have a paper in progress that evaluates 
performance of the ICEA against traditional operational methods in the NFARB using a 
range of probabilistic metrics (including rank histogram and others).  
 
This study aims to evaluate a first version of the ICEA in the context of providing 
streamflow predictions. In this preliminary study, we are particularly concerned about the 
width of ensemble dispersion and its variability relative to the magnitude of observations. 
We believe that this information, combined with the metrics quantifying the performance 
of ensemble mean predictions as well as a visual inspection of the ensemble predictions 
in the extremely wet year, produces an initial picture of the performance of the ICEA. We 
thus deem that the ensemble metrics employed serve the purpose of this study and more 
detailed assessment being undertaken can be provided in more detail in our next 
publication on this work.  
 
 
4/ The results are presented for the entire WY. It is difficult to isolate the performance 
due to the SWE assimilation on top of the approach and the one due to the approach 
when the SWE assimilation is not in used. What is the performance of the system for the 
snow period only - overall. What is the performance of the snow-free period (hear glacial 
melt instead of perennial snow melt if applicable)? It is common to look at the 95th 
percentile for looking at figure 6, it is not obvious if low flow/average flow has improved. 
Please comment as to here add again about the overall performance of the approach and 
its best application / limitations. 
The study basin typically has snow cover (no glacier) from Nov. to June (Lines 18-20, 
Page 7715) when most of the annual precipitation occurs. The snow-free period over this 
basin is the summer and early fall (e.g., July – Oct., refer to Figure 8a as an example). 
During the snow-free period, the flow is generally low (e.g., refer to Figure 7 as an 
example), which has marginal contribution to the total annual flow volume.  
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Operational hydrologic forecasting generally focuses on two variables: the high flows 
(extreme events) and the total volume of flow (water supply). That is why we presented, 
in the original manuscript, the predictions on high flows (Figure 6) and the statistics 
(including the bias) between predicted and observed flow on both annual (Table 4) and 
inter-annual scale (Figure 5). In addition, we also presented the results at different lead 
times from day 1 up to day 7 (Figure 9, which is not on WY scale). We deemed these 
results well illustrate the performance of ICEA in producing predictions on high flows 
and total flow volume.  
  
5/ the ISURF approach allows defining the optimized parameter sets, with their 
uncertainty structure. This is still more or less equivalent to a calibration prior to the data 
assimilation approach, which can affect the water balance. How does it theoretically 
affect the parameter uncertainty structure? And operationally, it might be okay (is it?) to 
not meet the annual water balance as long as we are getting the next few days peak flows 
right. It would contribute to the description of the approach (performances and limits of 
applicability discussion) to comment on it. 
In operational hydrologic forecasting, reliable streamflow predictions should mimic the 
actual (observed) streamflow in the context of high flows (particularly the peak flow) and 
the total flow volume (e.g. the water balance as the referee indicated). The way ISURF 
determines posterior parameter uncertainty information in this study is conditioned on 
minimizing the squared residuals between predicted and observed streamflow. A 
minimum of squared residuals generally indicates a minimum overall bias in total flow 
and a best match of high flows. Therefore, the ISURF-derived parameter sets lead to 
predictions resembles the observations in terms of both total volume and high flows. To 
make this point clear, in Line 17, Page 7717(before “In DREAM…”), we added the 
following sentence “This is accomplished by minimizing the sum of squared residuals 
between model-predicted and observed variables.” 
 
6/ Why did you choose one week for the frequency of the analysis? Others have use 3 
days for example (Clark and Slater 2006), agreeing that the prior distribution does not 
necessarily change that fast. I would think though that during snowmelt period, when 
snow depletes faster, the frequency of the assimilation should not be any longer than the 
time of concentration of the basin in order to avoid any incoherency in the flow and in the 
ensemble flow forecast characteristics, i.e. about 3-4 days over the American? For 
example, it would help looking at the ensemble/dispersion over a continuous period of 
time; i.e. day 7 might display a large dispersion and then assimilation is performed and 
the ensemble dispersion narrows again? Please explain or show a time series of 
the ensemble dispersion over a period of time. 
The selection of one week for assimilation frequency was undertaken to mimic the 
operational environment. Specifically, in operations (e.g., in western River Forecast 
Centers), SWE is typically assimilated into the coupled SNOW17/SAC-SMA model on a 
weekly or even bi-weekly basis via a direct insertion method, coupled with subjective 
judgments from experienced forecasters (Donald Laurine (Development and Operations 
Hydrologist of NWRFC), personal communication, 2010). This fact inspired the usage of 
one week as assimilation frequency in this study. To make this point clearer, we changed 
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the sentence “The assimilation frequency is one week.” (Line 17, Page 7719) to be “The 
assimilation frequency is set to be one week to mimic the operational environment.” 
 
As for the change of ensemble dispersion over a period of time, in real-time ensemble 
forecasting, the dispersion generally increases in magnitude with increasing lead time. 
This is usually due to the fact that the accuracy of forecasted forcing (precipitation and 
temperature) decreases with increasing lead time. This study, however, does not use 
forecasted forcing. Instead, historical MAP and MAT data (and simulations) are used. 
The accuracy of forcing is thus consistent and not dependent on the lead time. As such 
the ensemble dispersion is not lead time-dependent, as can be told from Figures 7b and 7c. 
Of course, we realized that in the future, we would apply the enhanced ICEA in a real-
time environment. We therefore presented relevant discussions in Lines 14-16, Page 7731 
and Lines 10-11, Page 7732 in the original manuscript.  
 
Technical revisions: 
Why 6 years of training and 6 years of validation when 23 years are available? 
This study is the first study of ICEA. The selection of 6-year training period and 
equivalent length of prediction is to demonstrate the applicability of this method in 
streamflow prediction. These years selected are representative of the entire period, as 
presented in Figure 2 and discussed in Lines 17-19, Page 7716.  
  
P7716, line9: what is the model providing the meteorological forcing to 
SNOW17/SACMA? 
This study is not a real-time case study. All the forcing applied to SNOW17/SAC-SMA 
are not forecasted data produced from numerical weather models. Instead, historical 
observed mean areal precipitation (MAP) and temperature (MAT) data are used. As such, 
these data are archived observations (not provided by any models). To make it clearer, we 
changed the statement in Line 9, Page 7716 from “…including the MAP, MAT…” to be 
“…including the historical MAP, MAT…” 
 
p7716 line 11: is the observed daily flow regulated? 
The observed flow is not regulated at the point of our simulations (USGS gage # 
11427000).  
 
How do the uncertainty in the forcing compares to actual short or medium range 
ensemble forecasts? 
Currently no short to medium range ensemble forcing forecasts are applied in operations 
at NWS River Forecast Centers (RFCs). Instead, RFCs generally use single-valued 
precipitation (QPE) and temperature (QTE) forecasts produced by NCEP in streamflow 
forecasting. Yet NCEP also provides GFS/GEFS ensemble precipitation and temperature 
ensemble forecasts, ingest of these products into real-time hydrologic forecasting is in the 
experimental stage at OHD and not available at RFCs yet. As such, there are actually no 
benchmark practical ensemble forecasts to compare with.  
 
P7721, line17: How are the station weights computed? Or give a reference. 
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There is actually a typo in Equation (5). We have changed the following part 
“Specifically, the areal SWE is calculated via a non-negative least-squares algorithm as 
follows 

23

areal model
1 1
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t t t
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to be  
“Specifically, the areal SWE is calculated as a linear combination of the SWE 
observations from three SNOTEL sties. The weight associated with each SNOTEL site is 
determined via a non-negative least-squares algorithm as follows: 
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The weight for each SNOTEL site is calculated via the updated Equation (5). The 
equation aims to mimic the operational way in determining the areal SWE, as we 
described in Lines 10-12, Page 7721.  
 
P7732, line1: I would suggest substituting “current” with “automatic” as the current 
prediction depends heavily on the human forecasters who make a difference, as seen on 
the statistics used for this analysis and those seen on the RFC website. 
We agree with the referee that the current prediction involves real-time adjustments from 
forecasters. We changed “current” to be “automatic”. 
 
P7743, table 1; It seems there a typo for year 1994 peak flow, should be higher 
In fact, the peak flow of water year 1994 is 31.14 cms. The hydrograph of this year is 
depicted as follows.  

 


