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Responses to Referee #2 
[Note: All original comments by the referee are reproduced in their entirety below in 
regular black text.  Our responses to these comments are shown immediately after the 
comment in blue text.] 
 
This study presents a procedure for combining Bayesian parameter estimation with data 
assimilation to improve operational streamflow forecasts. The Integrated unCertainty and 
Ensemble-based data Assimilation (ICEA) method combines the previously presented 
ISURF (combination of GSA and DREAM to estimate parameters) and data assimilation 
with the EnKF. The authors had developed this method to be applicable to operational 
forecasting to increase the skill of predictions. This is applied to the SAC-SMA/SNOW-
17 models to compare performance with operational forecasts. The method utilizes 
SNOTEL and CDEC observations of SWE to improve streamflow estimates. Overall the 
paper shows improvement over current operational forecasts but several issues need to be 
addressed (clarified and corrected) before the paper is ready for publication. Therefore, I 
recommend major revision of the manuscript given the comments below: 
We appreciate the referee’s comments which helped to improve the manuscript. We 
detailed the responses to these comments as follows. 
 
Comments: 
1.) Page 7719, Line 17 states that assimilation is only performed once a week. Why is the 
assimilation only performed once a week when the SNOTEL observations are typically 
daily? 
Indeed SNOTEL observations are on daily or even hourly (for some sites) time step and 
any relevant timestep data could be assimilated into the developed framework . However, 
in operation (e.g., in western River Forecast Centers), SWE is typically assimilated into 
the coupled SNOW17/SAC-SMA model on a weekly or even bi-weekly basis via a direct 
insertion method, coupled with subjective judgments from experienced forecasters 
(Donald Laurine (Development and Operations Hydrologist of NWRFC), personal 
communication, 2010). This fact inspired the usage of one week as assimilation 
frequency in this study. To make this point clearer, we changed the sentence “The 
assimilation frequency is one week.” (Line 17, Page 7719) to be “The assimilation 
frequency is set to be one week to mimic the operational environment.” 
 
2.) Page 7720, line 3 states that the second scenario used “ISURF-derived optimal model 
parameters” but ISURF estimates parameter distributions not the optimal parameter set. 
How is optimal defined here (e.g. mode, mean)? 
Except for providing posterior distribution information, ISURF also provides likelihood 
information associated with each posterior parameter set. The optimal parameters here 
refer to the parameter set with the maximum likelihood. To make this point clearer, we 
changed “ISURF-derived optimal model parameters” to be “ISURF-derived parameter 
set with the maximum likelihood”. 
 
3.) Equation 5 appears to have an error. If the difference between the SNOTEL and 
modeled SWE is minimized, this will not produce an areal estimate of the SWE, as 
suggested in this equation. It seems from this method that the sum of the SNOTEL SWE 
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multiplied by the weights is the areal SWE estimate but this needs to be clarified in the 
manuscript. 
We agree and have changed the following part “Specifically, the areal SWE is calculated 
via a non-negative least-squares algorithm as follows 
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to be  
“Specifically, the areal SWE is calculated as a linear combination of the SWE 
observations from three SNOTEL sties. The weight associated with each SNOTEL site is 
determined via a non-negative least-squares algorithm as follows: 
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4.) Section 3.3 describes the method for estimating the areal SWE for the upper elevation 
band. This method combines SNOW17 model estimates (with prior RFC parameters?) 
and SNOTEL observations to estimate the spatially averaged SWE. The Ck values are 
then estimated based on the model estimates and the in-situ observations. This makes the 
SWE values highly dependent on the SNOW-17 model. The model dependent SWE 
observations are then used for calibration and assimilated into the model. In my opinion 
this is very problematic because the model is calibrated, in part, to the prior model runs 
and not solely on observations. In addition, it cannot be ensured that the estimate of SWE 
is representative of the spatial average and thus an accurate calibration and assimilation 
will not necessarily lead to more accurate stream-flow forecast. A further clarification of 
the technique with justification or a method for estimating areal SWE independently of 
the model is necessary. 
We would like to highlight that the way we determine the areal SWE (for assimilation 
into the model via EnKF) mimics the operational way of assimilating SWE information 
into the model (via the direct insertion method). More specifically, the operational direct 
insertion method does not use the SNOTEL-derived SWE (gauge_SWE) to replace the 
entire SNOW17-simulated SWE (model_SWE) and then use the former as new model 
states to run the model forward. Instead, the new SWE is generally a weighted value from 
both gauge_SWE and model_SWE. Put it in a different way, forecasters trust neither 
model_SWE nor gauge_SWE completely but believe that both of them contain 
meaningful information. In this study, since we are not using the direct insertion method 
(which inserts weighted SWE into the model), we need to come up with a technique to 
get the modeled SWE into play along with the SNOTEL SWE (as in the operational 
environment). That is why we use the current technique, as we specified in Lines 9-13 on 
Page 7721. Though this technique might not be perfect, it mimics operational purposes. 
Additionally, we would like to clarify that SWE information is not used in calibration of 
SNOW17 model at all RFCs in U.S. In most cases, observed streamflow is solely applied 
to calibrate the SNOW17 model coupled with the SAC-SMA model.  
 
As for the representativeness of the areal SWE derived, we would like to highlight that 
SWE has so much variability in space that there are actually no widely agreed upon 
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representative observations. Specifically, in-situ observations (e.g. SNOTEL SWE) 
contains limited information on the spatial variability of SWE. As an example (also as 
discussed in Lines 19-21, Page 7720), there are over 1700 snow stations which provide 
SWE observations in the Western U.S. However, they are still not adequate to resolve the 
variability of SWE at the basin scale (Bales et al., 2006). While remotely sensing 
techniques are able to provide continuous spatial distribution of SWE, they are generally 
suffering from poor resolution and thus quality, as reviewed in section 3.3. In fact, none 
of those (in-situ and remotely sensed) products can be claimed as spatially 
“representative” and thus are not yet being widely applied in operations. In the study, we 
set out to mimic the operational method of deriving areal SWE, however, we do not deem 
the SWE produced is the “truth” or more accurate than other spatial SWE estimates. 
Instead, we assigned an error term to it when assimilating it into the model via the EnKF 
(as specified in Lines 1-2, Page 7722). In addition, we further discussed alternative 
options in defining this error term in Section 5 (Lines 21-26, Page 7732). 
 
  
5.) In paragraph 2 of section 3.4, the method of using the SCF and PXTEMP parameters 
to account for forcing error is described. This technique adds noise to these two 
parameters to account for errors in forcing data. From my understanding in He et al. 
2011a, this is not actually noise added to the parameters but an estimated posterior 
distribution from DREAM. If this is the case here, the forcing uncertainty will likely be 
underestimated. Since the DREAM algorithm works in a batch framework, the 
uncertainty in these parameters (and thus the forcing error) will be estimated over the 
entire length of the batch instead of daily, as is more commonly performed. Estimating 
the SCF across the entire batch length will find the uncertainty relating to the average 
error of the precipitation measurements as opposed to the daily measurement errors. It is 
likely that the daily precipitation measurement error has a much greater variance than its 
long term average uncertainty, which will likely lead to degraded prior distributions. 
In my opinion, the added ease of application through assuming the SCF and PXTEMP 
parameters handle forcing error is not worth risking the potential problems associated 
with this approach. Further, I would suggest examining this method as compared to the 
traditional methods of adding forcing error to ensure that this method is not significantly 
altering the results. 
We would like to clarify that the technique applied in this study is not adding “noise to 
these two parameters to account for errors in forcing data”, but applying the same 
technique as presented in He et al. 2011a which produces posterior uncertainty 
distributions of these two parameters. We realized that the description “we perturb 
parameters SCF and PXTEMP” (Line 26, Page 7722) might be confusing. To make it 
clearer, we changed the last three sentences of Section 3.4 from  
“Hence, instead of perturbing precipitation and air temperature timeseries, we perturb 
parameters SCF and PXTEMP and assume that the uncertainty identified for these two 
parameters implicitly represent the uncertainty in precipitation and air temperature. This 
method is relatively easier to understand in concept and requires no explicit quantification 
of the distribution type of precipitation and air temperature. This method has been 
recently applied in defining SNOW17 model forcing uncertainty (He et al., 2011a).”  
to: 
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“Hence, instead of perturbing precipitation and air temperature timeseries, we determine 
the uncertainty of parameters SCF and PXTEMP and assume that the uncertainty 
identified implicitly represent the uncertainty in precipitation and air temperature. This is 
achieved by applying the same method used in defining the uncertainty of these two 
SNOW17 parameters in one of our previous studies (He et al., 2011a). This method is 
relatively easier to understand in concept and requires no explicit quantification of the 
distribution type of precipitation and air temperature.”  
 
In the meantime, we agree with the referee that estimating SCF uncertainty range based 
on long record likely makes the estimated range conditioned more on average error of 
observed precipitation other than errors in individual observations. Applying the 
traditional methods to add noise to (directly perturb) the observed precipitation might 
provide more realistic estimates on precipitation uncertainty and thus provide further 
improved streamflow predictions. However, there is no widely agreed upon method 
which provides most “realistic” estimate on precipitation uncertainty in research 
community yet. In the operational environment, forecasters prefer tools easy to 
understand in concept while providing predictions in satisfactory quality (e.g., 
perturbation of forcing data would be very confusing to forecasters based on the first 
author’s extensive experience communicating with them). As such, in this study, our 
intent is to come up with a method easy for forecaster to understand and apply, other than 
comparing various methods and trying to pick up the “best” one (without universal 
agreement from the research community though) for forecasters. More importantly, the 
ICEA as is (with simplification on handling precipitation error) is demonstrated to 
provide improved predictions, which is what the forecasters are interested in. 
Nevertheless, from a researcher’s perspective, we agree with the referee that there are 
definitely potential values of the traditional perturbation methods. These values are worth 
being explored and will be evaluated in the future work.  
 
In light of above discussions invoked by the referee’s constructive comment on 
precipitation uncertainty, we added the sentence “Moreover, the uncertainty of parameter 
SCF derived from ISURF represents only partial uncertainty of precipitation. This is due 
to the fact that ISURF is applied over the entire training period to produce the uncertainty 
range and distribution information of SCF. Thus, the uncertainty of SCF is more 
representative of the average precipitation error in the training period rather than errors 
associated with individual precipitation events. To more comprehensively account for 
uncertainty in precipitation, it may be necessary to implicitly consider the error for each 
precipitation event. This could be achieved by assigned a random multiplier (with a 
certain distribution) to observed precipitation at each time step following previous studies 
(e.g. Margulis et al., 2002; Leisenring and Moradkhani, 2011).” after the references in 
Line 26, Page 7733.  
 
Lastly, we would like to highlight that we are presenting a first version of ICEA, 
evaluating its viability in streamflow prediction against the current prediction, and 
identifying the potential enhancements (as discussed in the last paragraph of Section 5) 
for future versions of ICEA. As illustrated by the results, this first version of ICEA has 
already shown advantages over the current prediction, even with several simplifications 
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specifically designed to mimic the operational environment (e.g., sparse assimilation 
frequency, parsimonious methods utilized to determine areal SWE data and forcing 
uncertainty as also mentioned in the previous paragraph). This inspires us to believe that 
an enhanced ICEA would provide further improved streamflow predictions, which is 
being explored in our ongoing work (as also highlighted in the last paragraph of Section 
5).  
 
6.) Page 7724 line 7 states that the UR95 has a perfect score of 0%. This statement is not 
entirely correct because an uncertainty ratio of 0% indicates no uncertainty is estimated. 
In any practical scenario, there would be some uncertainty, due to forcing, model, 
parameter and observation error, and therefore an UR95 of 0 % will be an overconfident 
prediction.  
We agree with the referee that a UR95 value of 0% indicates no uncertainty is estimated. 
In practice, it is unlikely to produce such a value. Accordingly, we changed the statement 
“UR95 is a measure of the aggregate variability of the 95th percentile prediction range 
relative to the observations (Moradkhani et al., 2006). It ranges from 0 to 100 %, with a 
perfect score equal to 0 %.” (Lines 5-7, Page 7724) to be “UR95 is a measure of the 
aggregate variability of the 95th percentile prediction range relative to the observations, 
generally ranging from 0 to 100 % (Moradkhani et al., 2006; Leisenring and Moradkhani, 
2011).” 
 
7.) Page 7729 line 24 states “from day 230 to day 252, the EnKF ensemble is much wider 
than ICEA ensemble” but it is not mentioned that during this time the EnKF ensemble 
encompasses the observation while the ICEA ensemble does not. This means that the 
EnKF actually performed better than ICEA during this period. This is followed by the 
statement “from day 265 to day 289, the ICEA ensemble reasonably captures the 
recession pattern while the EnKF ensemble follows the variation of RFC predictions 
which deviate from the observed streamflow”. Though the ICEA is closer to the 
observation during this period, it appears that the observation is outside the ensemble of 
the ICEA for the majority of this period. For this reason, I disagree that the “ICEA 
ensemble reasonably captures the recession pattern”. 
We agree with the referee that the EnKF outperforms the ICEA from day 230 to 252, 
while the latter performs better the former from day 265 to 289. We also agree that our 
current description on this can be improved to avoid any potential confusion. Specifically, 
we changed “First, from day 230 to day 252, the EnKF ensemble is much wider than 
ICEA ensemble; second, from day 265 to day 289, the ICEA ensemble reasonably 
captures the recession pattern, while the EnKF ensemble follows the variation of RFC 
predictions which deviate from the observed streamflow with a negative bias.” (Lines 24-
27, Page 7729) to be “First, from day 230 to day 252, in comparison to the ICEA 
ensemble, the EnKF ensemble is much wider and well encompasses the observations; 
second, from day 265 to day 289, the ICEA ensemble reasonably captures the variation 
pattern of streamflow observations in this period, while the EnKF ensemble follows the 
variation of RFC predictions which deviate from the observed streamflow with a negative 
bias.” 
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8.) Page 7730 lines 14-17 explains that after day 265 the EnKF SWE melts more rapidly 
than the ICEA SWE leading to poorer performance from the EnKF than the ICEA in 
terms of streamflow. However, the EnKF appears to match the observed SWE more 
closely than the ICEA throughout the melt season. Given that the ICEA performs worse 
in matching the observed SWE but better in matching the streamflow, it is likely that the 
SWE used for assimilation is not representative of the true basin SWE (this relates back 
to problems suggested in comment 3). This would explain the poor performance of the 
EnKF in terms of streamflow despite a relatively accurate assimilation of SWE. Once 
again I find it necessary to show that the method for spatially averaged SWE generation 
is representative of the true basin SWE. 
We would like to highlight again that it is hardly possible to evaluate whether a SWE 
product is “representative” or not (and thus best suitable for operational applications) 
since there is no widely agreed upon “true” basin SWE available. In this study, we aimed 
to mimic the operational way (of NWS RFCs) in generating areal SWE and evaluate the 
applicability of ICEA in streamflow predictions by assimilating this SWE information. 
And results showed that ICEA did provide improved predictions. Different methods can 
be employed to derive different areal SWE products (how to ensure they are 
“representative”?) which might lead to further improved predictions of ICEA, but this is 
out of the scope of the current study and could be a topic for further research. In fact, we 
discuss the uncertainty in areal SWE produced in the study and proposed an alternative 
method to better account for this uncertainty in the conclusion section (Lines 21-26, Page 
7732).  
 
As for the performance of both EnKF and ICEA after day 265, both techniques merge 
observations and model simulations to provide updated model states. If the technique 
identifies that observations are more erroneous than model simulations, it puts more 
weight on the former, and vice versa (reflected via the Kalman Gain). The descriptions in 
Lines 14-17, Page 7730 (as the referee highlighted in this comment) indicate that ICEA is 
more skillful in merging the observed information and modeled information than the 
EnKF, given the same observation information available (in operations) even this 
information is flawed. To reiterate, our intention was to mimic operational methods in 
producing observation information rather than producing the most representative 
information (which can not be verified in reality and is never being applied in operations).  
 
9.) Page 7731 lines 7-10 states “the whole EnKF predicted streamflow ensemble is wider 
than the ICEA ensemble at several lead times (day 2, day 6, and day 7), while the 
ensemble is narrower at other lead times (figure 9f)”. Figure 9f shows the NRR which is a 
measure of the accuracy of the ensemble spread, not a direct measure of the width of the 
ensemble. The UR95 is a more accurate measure for comparing which has a wider 
ensemble spread. This statement would also be more accurate if phrased “the whole 
EnKF predicted streamflow ensemble is less overconfident than the ICEA ensemble at 
several lead times (day 2, day 6, and day 7), while the ensemble is more overconfident at 
other lead times (figure 9f)”. 
We thank the referee for the thoughtful comment on this point. We accordingly updated 
the sentence according to the referee’s suggestion. 

 


