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A simple measure of ensemble accuracy is the Containing Ratio (CR) (Xiong and 

O’Connor, 2008): 
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where  I is an indicator function as follows: 
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I[Qobs(t)] equals 1 when the observation falls between the lowest and highest valued ensemble 

members and I[Qobs(t)]  equals 0 when the observation falls outsize the ensemble bounds.   
 
 
 
 
 
 
 
 
 
 



2.4.4 Conditional Statistics 

In the previous sections, we presented metrics that compare the simulated discharge 

values (i.e. median, minimum and maximum of the ensemble) to observed discharge values.  In 

the following section, methods that evaluate probability values from the ensemble for specific 

discharge events are presented.   

We first define mi(t) as the probability of a simulated streamflow event at a given 

timestep from the model ensemble, which can take on any of I values  m1(t), m2(t) …mI(t) (Wilks, 

2006).   The corresponding observation (yj(t)) can take on any of J values y1(t), y2(t)… yJ(t). In 

this study, three possible observations (i.e. J = 3) are defined: low flow or a discharge value that 

is less than the 30
th

 percentile of climatology; middle flow or a discharge value that is between 

the 30
th

  and 70
th

 percentiles of climatology; and high flow or a discharge value that is greater 

than the 70
th

 percentile of climatology.  Climatology is based on the available discharge data at 

each site (Table 1).   

The probability of a simulated streamflow event is derived by computing the percentage 

of the ensemble members that fall within each flow category at a given timestep. The probability 

is rounded up to the nearest tenth probability, therefore the probability will fall within one of ten 

possible probability bins (0-10%, >10%-20%, etc.).  At a given timestep, the observation will 

have a value of 1 (yj(t)=1) for the flow category in which it was observed, and a value of 0 

(yj(t)=0) for the flow categories in which it did not occur.   

Murphy and Winkler (1987) set up a general framework for forecast verification based on 

factorization of the joint distribution of forecasts and observations into the calibration-refinement 

factorization:  

);()(),( iijji mpmypymp   i = 1,…,I; j=1,…,J.  (10) 

 

and the likelihood-base rate factorization:  

 

);()(),( jjiji ypympymp   i = 1,…,I; j=1,…,J.  (11) 

The conditional distribution p(yj|mi) in Equation 10 is the more familiar measure of the 

two and can be plotted on a reliability diagram as a function of the ensemble probability.  The 

ensemble probability is well calibrated if, for a given flow category, the relative frequency of the 

conditional event equals the ensemble probability  (e.g. p(y=low flow|m=0.1) =0.1) and when 

plotted on the reliability diagram, the conditional event will plot along a 1:1 line (Murphy and 

Winkler, 1987; Murphy and Winkler, 1992; Wilks, 2006).  To avoid confusion with the model 

parameter calibration discussion, hereafter we refer to the calibration of the ensemble probability 

as reliability.   

The relative frequencies of the ensemble probabilities (p(mi)) are plotted as an inset on 

the reliability diagram to indicate the sharpness, or resolution, of the ensembles (Wilks, 2006).  

Sharp ensembles will have narrowly distributed probability values where probability occurs most 

frequently in the extreme probability categories (i.e., 0-10% and >90-100%).   

The likelihood distribution (p(mi|yj)) is a less intuitive measure, but very useful for 

evaluating how much probability the ensemble gives to the correct flow category compared to 

other possible categories.  For all instances of an observation occurring in a given flow category, 

the conditional probability for all possible flows is computed: for example, the ensemble 

probability of a low flow given a low flow observation (p(m=low flow|y=low flow)), the 

ensemble probability of a middle flow given a low flow observation (p(m=middle flow|y=low 



flow)), and the ensemble probability of a high flow given a low flow observation (p(m=high 

flow|y=low flow)).  These likelihood distributions can then be plotted on the discrimination 

diagram as a function of the ensemble probability.  Ensembles are highly accurate if the majority 

of the ensemble members frequently fall within the flow category observed (in the previous 

example, this would be the low flow category), resulting in high probabilities for the observed 

flow category and low probabilities for the remaining flow categories.  For such ensembles, the 

likelihood distributions for the different possible flows will not overlap to a great degree when 

plotted on the discrimination diagram and they are considered to have good discrimination for 

that flow category (Murphy and Winkler, 1987; Murphy et al., 1989; Wilks, 2006).   
 
 
 
 
 
 

 
 
 


