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Reviewer Comment: This paper provides an overview of techniques for verifying prob-
abilistic forecasts of hydrologic variables and illustrates their application to ensemble
simulations of streamflow from three different hydrologic model parameter estimation
schemes. As the authors rightly mention, probabilistic verification is underutilized in
hydrology, despite the plethora of techniques available to estimate hydrologic uncer-
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tainties, while other disciplines (notably, the atmospheric sciences) have a rich history
of forecast verification. Thus, applications and extensions of probabilistic verification
techniques in hydrology are important and must be welcomed. The paper is gener-
ally well written (from a non-technical standpoint) and is appropriate for publication in
HESS. However, | have several major criticisms and suggestions for the authors to
consider prior to publication.

My overall recommendation is major revision, and | would strongly encourage the au-
thors to resubmit, given the potential for a very useful contribution. The major points
follow, with technical corrections listed afterwards:

aAé The introduction has two major weaknesses. First, there is insufficient coverage
of the diversity of verification techniques and measures that originate from outside hy-
drology and, specifically, from the atmospheric sciences. Given the title of the paper,
one would expect to see some evidence of the rich history of probabilistic verification
from the atmospheric sciences and some of the challenges associated with "borrow-
ing" measures for hydrologic applications. Are there unique challenges for hydrologic
verification? If so, what are these challenges? The introduction need not answer these
questions, but should at least pose them for later discussion. It would seem that these
questions must be addressed if the paper is going to do more than exemplify the appli-
cation of existing verification metrics to hydrologic variables (which has been done be-
fore). Secondly, while the focus of the paper is primarily on verification, the introduction
could better distinguish between the source-based approach to quantifying uncertainty,
whereby uncertainties from specific sources (model inputs, parameters, structure etc.)
are propagated through a model structure, and purely empirical techniques that aim to
capture uncertainties via the joint probability distribution of the observed and forecast
variables (of course, there is overlap between these categories). This is relevant not
only in the context of uncertainty estimation, but also verification, as the latter problem
of "statistical post-processing” is concerned with the same joint probability distribution.

REPLY: In response to the first point: We have added a brief discussion of the history
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of verification to the introduction. We have also specified challenges for the hydrologic
modeling community based on our experiences from this study. These challenges and
issues are discussed in the results section and summarized in the conclusions.

In response to the second point, we note that we are basically utilizing a source-based
approach and using metrics to evaluate parameter uncertainty on model performance.
We believe there is extensive literature on uncertainty methods and techniques. Given
the goal of our paper is to evaluate model performance and our focus on historical
simulations rather than forecasts, we have chosen not to include an extensive literature
review of uncertainty methods and techniques. We feel this may distract from the paper
and the goals of the research, which we have tried to improve upon in the revised
manuscript.

The following is the revised introduction:

In the classic definition, forecast verification is the process of assessing the skill of a
forecast or set of forecasts (Murphy and Winkler, 1987; Jolliffe and Stephenson, 2003;
Wilks, 2006). Verification methods have been well developed in the atmospheric sci-
ences (Jolliffe and Stephenson, 2003; Wilks, 2006) and their application to hydrologic
forecasts has been progressing in recent years, particularly for probabilistic verifica-
tion (Franz et al., 2003; Bradley et al., 2004; Verbunt et al., 2006; Laio and Tamea,
2007; Bartholmes et al., 2009; Renner et al., 2009; Brown et al., 2010; Demargne et
al., 2010; Randrianasolo et al., 2010). One of the earliest attempts at verification was
published by Finley (1884) who undertook an evaluation of the success of tornadoes
forecasts. His early (and controversial) work sparked interest and a range of alter-
native methods in probabilistic verification, many of which are in use today (Murphy,
1997). Notable early verification papers in atmospheric and meteorological sciences
have since included Cooke (1906) who undertook one of the first extensive verification
studies, Ramsey (1926) and de Finetti (1937) who undertook early work in subjective
probability theory, Murphy (1966) who overviewed probabilistic predictions and deci-
sion making, and Murphy and Epstein (1967) where the authors provided an overview
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of early development in probabilistic predictions and summarized terminology and def-
initions in the field. More recent work on probabilistic verification measures includes
Wilks (1997; 1998), numerous papers by Murphy (1991; 1995; 1996; 1997) as well
as papers by Murphy and colleagues (e.g. Murphy and Winkler, 1987; Murphy and
Wilks, 1998). All methods of verification, from early work by Finley (1884) to recent
work by Bradley and Schwartz, (2011), involve the comparison of a forecast (or set of
forecasts) to the corresponding observation (Wilks, 2006). Murphy and Epstein (1967)
lay out simple goals for forecast verification, including: evaluating the value of predic-
tions, evaluating the skill of predictions, performing quality control on the forecast, and
finally, investigating the cause(s) of prediction errors.

Model evaluation is not dissimilar from forecast verification, except that the approach
is generally aimed at evaluating the reproduction of historical events rather than the
prediction of future events. However, the goals of forecast verification and model eval-
uation (i.e. verification) are analogous. Hydrologists are interested in the value and
skill of their simulations, as well as the potential sources of error in their modeling sys-
tem (Muleta and Nicklow, 2005; Beven, 2006; Gupta et al., 2006; Clark and Kavetski,
2010; Kavetski and Clark, 2010; Schoups et al., 2010. Despite the solid existence of
probabilistic verification measures in the atmospheric and meteorological sciences, few
metrics have been normally applied by the hydrologic community. Historically, evalua-
tion of hydrologic models ensembles has been undertaken with standard deterministic
measures, such as error, correlation, or bias, typically applied to the ensemble mean or
median and occasionally application of a containing ratio metric (Xiong and O’Connor,
2008). While creating a deterministic variable simplifies the corresponding model eval-
uation, deterministic evaluation measures are deficient for fully analyzing probabilistic
forecast or model performance (Franz et al., 2003; Bradley et al., 2004; Demargne
et al., 2010). The recent growth of probabilistic streamflow estimates in hydrologic
modeling, including ensemble data assimilation methods (Kitanidis and Bras, 1980a,
1980b; Evensen, 1994; Margulis et al., 2002; Seo et al., 2003, 2009), multi-modeling
platforms (Ajami et al., 2007; Duan et al., 2007; Vrugt and Robinson, 2007; Franz et
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al., 2010), Extended Streamflow Prediction (ESP) and other probabilistic forecasting
systems (Day, 1985; Krzysztofowicz, 2001; Faber and Stedinger, 2001; Franz et al.,
2003; Bradley et al., 2004; Franz et al., 2008; Thirel et al., 2008) and post-processing
techniques (Krzysztofowicz and Kelly, 2000; Montanari and Brath, 2004; Coccia and
Todini, 2010; Weerts et al., 2011) warrants greater integration of probabilistic model
evaluation into the hydrologic community.

There have been few publications on the probabilistic assessment of model perfor-
mance. Duan et al., (2007) used the ranked probability score to evaluate the outcome
of a multi-modeling system. De Lannoy et al. (2006) evaluated model uncertainty for
soil moisture using the rank histogram (or Talagrand diagram) and several moments
from the probability density functions (such as ensemble spread). Franz et al. (2008)
applied probabilistic verification methods to ESP hindcasts produced using two differ-
ent snow models to assess the impact of the model structure on streamflow predictions.
Finally, Shrestha et al. (2009) used the range of the probability interval and number
of observations that fell within the interval to assess estimates of model parameter
uncertainty in a lumped conceptual model.

The focus of the current study is to provide a succinct overview of a range of available
probabilistic verification measures and to demonstrate their application in evaluating
and distinguishing model ensemble performance. We utilize two commonly applied
parameter estimation methods (Generalized Uncertainty Likelihood Estimator (GLUE;
Beven and Binley, 1992) and the Shuffled Complex Evolution Metropolis (SCEM; Vrugt
et al., 2003) and an operational rainfall-runoff model (Sacramento Soil Moisture Ac-
counting Model (SAC-SMA; Burnash et al., 1973) for demonstration purposes. We
evaluate the uncertainty associated with model ensembles propagated through param-
eter estimates, although the metrics presented here are readily transferable to evaluate
model performance from other probabilistic systems. We are not undertaking explicit
evaluation of the “best” parameter estimation method being used, but rather highlight-
ing how the applied metrics can help better inform users on model performance and
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behavior when different results (ensemble hydrographs) are apparent. We also high-
light unique challenges in applying probabilistic verification to hydrologic model ensem-
bles and provide initial guidance on those measures which may be most suitable to the
hydrologic community. The study sites, model, parameter estimation methods and
verification metrics are presented in Section 2.0. Results from the application of the
verification metrics are discussed in Section 3.0. Concluding statements are provided
in Section 4.0.

The following is the revised conclusions:

When evaluating ensembles of simulations, deterministic metrics are often applied to
the median or expected value. This practice ultimately removes a significant amount of
ensemble information from the evaluation process. We have demonstrated a sampling
of metrics that are traditionally applied for verification of forecasts, and have shown
these to be informative for evaluation and comparison of ensemble streamflow simula-
tions. A considerable amount of information about the uncertainty estimation methods
can be obtained when treating the simulations in a probabilistic manner. A critical skill
of a probabilistic simulation is the ability to indicate which flow is most likely, rather than
just merely capture the event using large uncertainty bounds. A simulation ensemble
can be considered accurate if it contains all the observations within the uncertainty
bounds; however if the uncertainty bounds are so large that there is little precision in
the ensemble, the ensemble is useless for any meaningful decision-making application.
Discrimination and reliability diagrams give information about the accuracy and preci-
sion of the uncertainty estimates. The use of flow categories and the joint distribution
plots allow analysis of the ensembles for discharge levels of interest.

We have identified some challenges when using forecast verification metrics for model
ensemble evaluation. First, most forecast verification metrics were developed for fore-
casts of a single variable (e.g. rain or no rain, or peak discharge) to occur over some
forecast interval, whereas model simulations produce a continuous variable most often
evaluated at the model timestep. This means that in the case of evaluating model simu-
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lations, the sample size will likely be very large. Furthermore, the number of timesteps
with low flow will be very large relative to the higher flows and model skill for low flows
will dominate the results. Because low flows are often the range of least interest,
approaches to limit the influence of low discharge events on the statistics should be
investigated. One possible approach to deal with variations in sample sizes across
flow regimes is to evaluate categories of flows as shown. But careful consideration
of the influence of the sample size and sampling distribution on the confidence of the
verification metric, an issue not addressed in this study, should be taken (Bradley et
al., 2003; Wilks, 2006). Because probabilistic statistics rely on significant number of
model-observation pairs to obtain meaningful results (Wilks, 2006), evaluation of the
model uncertainty associated with flood events will be limited by small sample sizes in
most cases. Common problems such as identifying flow and probability thresholds or
appropriate distributions exist and, because they may be treated differently in different
studies, will limit the ability to compare results across different studies. Finally, we did
not test for time-dependent clustering of the ensemble members or independence of
the events analyzed, such as described by Christoffersen (1998), to determine statisti-
cal correctness. There is significant memory in a sequence of hydrologic model outputs
and hydrologic observations, which violates the assumption of sample independence.
Investigation of this issue with respect to hydrologic model and forecast verification is
a recommended topic for future studies.

Nonetheless, advanced probabilistic verification metrics developed for forecast verifi-
cation provide a rigorous platform by which modeling methods can be evaluated and
compared. The application of these metrics require no information in addition to what is
already available as part of the traditional model validation methodology, except that it
considers the entire ensemble or uncertainty range in the approach. These measures
are much more informative about the nature of model uncertainty estimates than sim-
ple deterministic measures. Through our efforts in this and future papers, we hope to
advance discussion about evaluation of simulation uncertainty and more robust model
verification measures.
C4516

Reviewer Comment: 4A¢ | recommend that the authors re-think their experimental de-
sign and case study. The comparison of (essentially) two different parameter estimation
techniques is, in my view, a distraction to the core aims of the paper. It leads to exten-
sive explanations (of the two parameter estimation techniques), which do not contribute
to an ’overview of the available probabilistic verification measures’ or a better under-
standing of the challenges that arise in applying them to hydrologic variables. Also,
it inevitably requires careful evaluation of the relative performance of these parameter
estimation techniques later on, including explanation of the significant differences in
performance identified, which is missing from the results and discussion. Indeed, the
results and discussion sections (subsections of Section 3 and Section 4) are all very
descriptive, with no explanation of the differences seen. This makes it very difficult
to follow and to appreciate the value of the metrics for identifying specific problems
with the chosen methods of uncertainty estimation. The use of an adapted version
of GLUE only exacerbates this problem and constitutes a further distraction. Instead,
the authors should consider a simpler experimental framework, such as forecasts from
a single hydrologic model across several locations (using one parameter estimation
scheme) or, if they want to provide a comparative evaluation, a set of forecasts be-
fore and after bias correction. The latter might tie in nicely to an updated introduction
since, as stated before, there is a close connection between verification (bias identi-
fication) and statistical post-processing (bias correction). If possible, the case study
should illustrate some of the challenges associated with "borrowing" measure from the
atmospheric sciences for use in hydrology (once these challenges are identified).

REPLY:We recognize that the objectives and message of the paper were not made
sufficiently clear in the first submission. The original paper was overwhelmed by com-
parisons between the three parameter uncertainty methods and the results and discus-
sion did not support our stated objectives for this paper. We have removed the modified
GLUE method from the paper. We retained the SCEM and GLUE in order to show how
the evaluation results vary between two very different ensembles. We have integrated
the results and discussion sections to remove redundancies. We have also rewritten
C4517



the results such that comparative statements about the GLUE and SCEM are made
only to discuss application of the evaluation measures. We have also tried to highlight
problems with the application of the selected measures to the model ensembles as
mentioned above.

While we find the suggestion to demonstrate bias correction to be valid and would make
an interesting paper, we do not think it would support the purpose of this manuscript
which is to broach the subject of the currently inadequate approach to model uncer-
tainty evaluation.

Reviewer Comment: 4A¢ | would recommend that the discussion of measures for dis-
tribution properties is reduced or dropped completely (Page 3094: 2.4.1). It is normal
practice to conduct data exploration, and there are many other useful metrics for data
exploration not mentioned here (scatter plots, quantile-quantile plots etc.). The degree
and types of data exploration that might be useful are also problem dependent. This
is not the main focus of the paper and one could convey the importance of conduct-
ing some data exploration more concisely (without providing measures and detailed
discussion). Also note that some of this discussion can take place in the context of
verification metrics, such as score decompositions, which convey the relative contribu-
tions of systematic bias (unconditional bias and Type-I and Type-Il conditional bias), as
well as uncertainty (of the observed variable) and sharpness (of the forecast variable).

REPLY:We have reduced the discussion of the distribution properties and, in general,
have edited the methods section to remove unnecessary material about the statistics.

Reviewer Comment: 4A¢ The mathematical notation is poor in many places and many
equations contain errors or lack clarity. There is no single problem to mention here,
but there are many minor mistakes and use of irregular or incorrect notation. Terms
are also used incorrectly throughout, including mathematical terms (e.g. event when
referring to an outcome and likelihood instead of probability. Note that likelihood is
used in the context of the parameters of a statistical model, otherwise probability is

C4518

the correct term) and verification terms (e.g. 3105 line 20 "reliability diagrams allow
evaluation of skill"). These are further identified under the technical corrections, below.

REPLY: We have removed the term likelihood within the results section. We have also
fixed notation where necessary and addressed other specific reviewer comments that
follow.

Reviewer Comment: 4Aé Page 3100, Section 2.4.6. The discussion of sample size
is unclear to me. It seems to imply that confidence intervals were computed for the
verification metrics. If so, how? Or were "indicative" confidence intervals somehow
computed from the sample size information alone? If so, this is problematic, as the
width of a confidence interval depends strongly on the choice of metric. One approach
to computing confidence intervals for verification metrics in the presence of spacetime
dependence is to use a block bootstrap.

REPLY:We have removed this section as it was confusing and detracted from our anal-
ysis.

Reviewer Comment: 4A¢ A different notation should be used for timestep (N) and
ensemble member size (n), using a consistent case (upper case is normally reserved
for random variables).

REPLY:We have removed the use of symbol N. Ensemble size is z and timestep is n in
the revised manuscript.

Reviewer Comment: 4A¢é Eqn. (1). You should omit the first summation in the denomi-
nator. 4A¢ Eqn. (3). You should omit the first summation in the denominator.

REPLY: Thank you for pointing out these errors. They were incorrectly rewritten during
typesetting, we will review the PDFs more carefully in the future before they are sent to
reviewers. See equations 5 and 7 in the attached PDF.

Reviewer Comment: 4A¢ Some of the mathematical notation is a little irregular and
there are frequent mistakes. For example, egn. (7) is wrong and uses poor notation.
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Consistent notation should be used to denote a sample mean (e.g. of the range in
eqn. (8)). Why is the division by N used in egn. (9), but a multiplication by 1/N used
elsewhere?

REPLY: Equation 7 (equation 2 in the revised version) and inconsistencies in the nota-
tion have been fixed.

Reviewer Comment: 4A¢é Use conventional indicator notation for egns. (9) and (10).
REPLY:Fixed. See equation 8 and 9 in the attached PDF.

Reviewer Comment: 4A¢ Page 3096, line 16: 10th quantile? | think you mean 10th
percentile.

REPLY:This has been fixed.

Reviewer Comment: aA¢ Note the relationship between the CR defined in eqn. (9)
and (10) and the rank histogram (or probability integral transform for probability dis-
tributions), especially in the subsequent discussion, where it is mentioned that the
"CR....does not consider the distribution of ensembles." Also see Brown et al (2010)
in the reference list, where several intervals are defined with respect to the forecast
median and the average frequency of observations falling within the intervals are com-
puted. Essentially, the limitation of the CR, as identified, stems from the use of one
interval.

REPLY:We agree with the reviewer’s assessment that the CR uses the entire ensemble
bounds and does not consider the specific distribution of the ensembles , however we
wanted to demonstrate the standard application of the metric and include it for that
purpose.

We added a statement in the results section with respect to methods to investigate the
ensemble distributions: In its standard application, the CR provides a useful summary
of the accuracy of the uncertainty bounds, but does not consider the distribution of the
ensemble members. It also cannot reveal whether the ensemble is over- or under-
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estimating the observation. More detailed information about the ensemble member
distributions and associated performance can be obtained by considering multiple in-
tervals within the ensemble, rather than the ensemble bounds only such as through
the application of the rank histogram (Hamill and Collucci, 1997; Hamill, 2001; Wilks,
2006) or spread-bias diagram (Brown et al., 2010).

Reviewer Comment: 4A¢ Reference to the minimum and maximum quantiles is made
throughout the paper, but it is not clear what precisely is meant by these quantities.
For example, in the context of eqn (9) and (10), it would be better to refer to the lowest
and highest ensemble members. In general, one uses a plotting position formula to
estimate quantiles from data, and the extreme upper and lower limits are undefined.

REPLY: The text has been modified to discuss CR, and other measures, with respect
to ensemble bounds.

Reviewer Comment: 4A¢ Page 3098, line 1: probability, not "likelihood."
REPLY: This has been fixed.

Reviewer Comment: 4A¢ Page 3098, line 7. The conditional distribution is not referred
to as "reliability." Reliability is a measure of departure between the estimated condi-
tional probability given the truth and the truth. Indeed, measures of reliability can take
several forms (such as a squared deviation). The same applies to discrimination (line
14).

REPLY:Section 2.4.4 has been revised. The section now first dicusses the conditional
distributions as calibration and likelihood distribution and then states that they are dis-
played on reliability and discrimination diagrams, respectively. We then state specif-
ically how we use the terms reliability and discrimination to discuss the results from
these figures. See the revised Section 2.4.4 in the attached PDF.

Reviewer Comment; 4Aé Page 3098, line 16: | don’t understand the notation here.
Also, note that an event is a set of outcomes, or a subset of the sample space. The
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conditioning must take place for a specific experimental value or outcome.

REPLY: This section has been rewritten and the notation changed. The term flow
category is used instead of “event”.

Reviewer Comment: 4A¢ Eqn. 13 is wrong. You cannot condition on an experimental
value (probability), you need to define the variable and its experimental value sepa-
rately.

REPLY: We presented this equation in a manner similar to the way in which it is pre-
sented in the literature cited (i.e. Wilks, 2006). We have, however, altered this dis-
cussion to present the concept by way of an example rather than the equation used
previously given this comment by the reviewer.

Reviewer Comment: 4Aé Eqn. 16 is wrong. In your notation, you have subtracted an
"event" from an "observation."

REPLY: We have corrected wording and the notation for the BS equation (now equation
15).

Reviewer Comment: 4A¢ Line 3105, line 20. The reliability diagram provides a mea-
sure of Type-I conditional bias, not skill.

REPLY: we have removed the term “skill” with respect to reliability diagram results.

Reviewer Comment: 4A¢ Page 3106, line 10. It is misleading to talk about (statistical)
calibration here when a large part of this paper is concerned with evaluating techniques
for hydrologic model calibration. You need to define statistical calibration in this context
(i.e. reliability).

REPLY: We have removed the term “calibration” from the reliability discussion in the
results. We also make the following statement in the methods section: “To avoid con-
fusion with the model parameter calibration discussion, hereafter we refer to the cali-
bration of the ensemble probability as reliability.”
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Reviewer Comment: 4A¢ Page 3109, line 17 What exactly is meant by: "The CR does
not provide information about biases in the ensembles.” The CR is indeed sensitive to
bias, although there is no separate identification of the bias and spread contributions.

REPLY: We were referring to the fact that CR does not indicate whether the ensemble
is over- or under-estimating the observation, and have clarified that in the text. The
original statement has been removed.

Reviewer Comment: 4A¢ Page 3112, line 18. Utility is mentioned here, but it is not used
elsewhere. Indeed, it would be helpful to distinguish between measures of accuracy
and utility in the introduction.

REPLY: We removed this term in the conclusions because we did not evaluate the
usefulness of the ensembles for application such as forecasting.

Reviewer Comment: 4A¢ Page 3112, line 20: what is meant by "commensurate with the
dimension of the ensembles themselves"? REPLY: This sentence has been removed
in the revised conclusions.

Reviewer Comment: 4A¢ Page 3112, line 8. Hersbach is misspelled. REPLY: We
removed the discussion about the CRPS and this reference.

Reviewer Comment: aAé Page 3113, line 1: "theses measure" should be these
measures REPLY: This has been corrected.

Please also note the supplement to this comment:
http://www.hydrol-earth-syst-sci-discuss.net/8/C4510/2011/hessd-8-C4510-2011-
supplement.pdf
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