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October 18, 2011 

 

 

Dear Editor: 

 
Re: Responses to Reviewers and Revised Manuscript Hydrol. Earth Syst. Sci. Discuss., 8, C4357-

C4359, 2011, “Extended power-law scaling of air permeabilities measured on a block of tuff” by 

M. Siena, A. Guadagnini, M. Riva, and S.P. Neuman 

 

We greatly appreciate the efforts that our reviewers have invested in our manuscript and their excellent 

suggestions for improvement.  

 

Attached is a revised manuscript addressing all of the reviewers’ concerns. 

 

Following is an itemized list of reviewers’ concerns and our response to each. Modifications are 

highlighted in red font within the revised manuscript. 

 

Concerns of REVIEWER #1 
 

Concern: This paper focuses on a structure function defined using measurement increment which 

supports the comparison with variogram analysis. Yet, such kind of function and 

moment approach (eq. 1) and the occurrence of power-law scaling have been largely 

applied (Bird at al., 2006, J. of Hydrology; Dathe et al., 2006; Geoderma) to the 

measurement itself (in this case the size of the support volume is used instead of the lag) 

and conclude that the nonlinear variation of the scaling exponent with q denotes 

multifractality. I believe it would be useful to comment on the use of measurement 

increment versus measurement (as well as the possible use of negative values for q). 
 

Response: In the literature structure functions are usually defined in the way we do, and we limit 

ourselves to functions so defined. It would be outside the scope of our work to consider 

support volumes instead of lags, as suggested by the reviewer. Lines 68 – 69 of the 

revised manuscript now makes clear that we limit our analysis of data to non-negative 

values of q. 

 

Concern: What could explain that the log permeability distribution of this rock is similar to a tfBm 

(and why it is not the case along direction z)? 

 

Response: In lines 276 – 278 of the revised manuscript we note on the basis of cited references that 

“Gaussian samples commonly characterized in the literature by stationary variograms 

may in fact represent truncated self-affine fields.” This and the cited review article by 

Neuman and Di Federico (2003) suggest that there is nothing unusual about log 

permeabilities behaving as tfBm. An answer to the question “why this is so” can be 

found in Neuman, S.P., Relationship between juxtaposed, overlapping and fractal 

representations of multimodal spatial variability, Water Resour. Res., 9(8), 1205, 

10.1029/2002, WR001755, 2003. Though the behavior is common, it is not universal 

and we are therefore not surprised that it is not manifested by our data in one of three 



 

2 

 

directions; the rock is clearly anisotropic in its scaling behavior, most likely due to 

anisotropy in its hydrogeologic structure. 

Concern: Could we extend the conclusions by saying that: if the signal measured is not a tfBm 

distribution, then ESS should not perform better than the standard moment method? 

Response: Our revised conclusions 8 and 9 now state:  

Conclusion 8: “Our demonstration in Appendix A that tfBm is consistent with ESS 

scaling according to (6) at all separation scales, and with power law scaling according to 

(2) at intermediate scales, explains why and how ESS works for our data at all scales. 

The same explains how and why ESS worked for sub-Gaussian processes 

( ); ,l uW G s∆ λ λ  considered by Guadagnini and Neuman (2011).” 

Conclusion 9: “The fact that our data are consistent with (6) but not with (2) at small 

and large lags constitute yet another indication that, despite their nonlinear power law 

scaling at intermediate lags, the data are inconsistent with multifractals or fractional 

Laplace motions, which theoretically scale in this manner at all lags. The same likely 

holds true for other Gaussian or heavy-tailed earth and environmental variables (such as 

those listed in our introduction) that scale according to (2) at intermediate lags and 

according to (3) over an extended range of lags, a possibility noted earlier by 

Guadagnini and Neuman (2011).”  

Concern: The use of “s” for denoting the lag is sometimes confusing (while the structure function 

is noted “S”) and makes typos consequential such as in equation 2 (S ∼ sˆf(q)) 

 

Response: Consistency with the background literature we cite suggests that we stick to similar 

notation. We think that the distinction between S and s should be obvious to the reader. 

 

Concern: Why "N" depends on "s" (it is not always the case isn’t it)? 

 

Response: For a given set of Y data the number N of increments decreases, always, with the lag s. 

 

Concern: I believe that a couple of sentences (in the introduction) explaining for non-specialists 

what is “a signal derived from additive processes subordinated to a truncated version 

(tfBm) of additive, self-affine fractional Brownian motion (fBm)” would make the paper 

more attractive to most of the hydrologists! 

 

Response: We regret that we do not see any way to explain these concepts in a couple of sentences; 

the interested reader would need to study the cited references. 

 

Concern: Line 24, page 7814 “to H =0.74ri =1.27 cm” should be “to H =0.74 for ri =1.27 cm”. 

 

Response: Indeed, the text has been corrected. 
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Concern: (some of the) stationary variograms of Fig. 14 could be added in Figure A1 for direct 

comparison. 

 

Response: We added a new Figure A2, explaining in our revised Appendix A (lines 423 – 424) that 

“Fig. A2 complements this analysis by juxtaposing the TPVs associated with Gaussian 

modes in Fig. 14a with corresponding PVs.” 

Concern: explain notation “!!” in A2 and A8 

 

Response: The revised Appendix A explains: “!! indicates double factorial defined as q!! = q (q-2) 

(q-4)…2 if q is even and q!! = q (q-2) (q-4)…3 if q is odd,” 

 

 

CONCERNS OF TOM KOZUBOWSKI AND FRED MOLZ 
 

Concern: In the paragraph following their equation (3) the reviewers interpret our general finding 

to be that the data do not seem to follow SS, although its ESS is quite apparent.  

 

Response: This is a misunderstanding which our revised manuscript clears by noting, on lines 149 

– 152, that “After showing that our data behave as a sample from tfBm (a truncated self-

affine process) we demonstrate in Appendix A that this process is consistent with (6) at 

all separation scales (lags s) and with (2) at intermediate scales (
I II

s s s< < ), as are most 

of our data.” That our data scale according to (2), and thus follow SS at intermediate 

scales, is demonstrated clearly in Sections 3.1 and 3.3. Our revised Conclusion 6 

amplifies this by stating that “log permeability increments … associated with all tip 

sizes scale in the manner of multifractals at intermediate lags.” 

 

Concern: The reviewers demonstrate that whereas SS implies ESS, the reverse is not generally 

true; ESS is equivalent to their equation (9). In their view we have interpreted the ESS 

of our data on the false premise that they follow SS, rendering our analysis invalid. 

 

Response: As noted in our response to the previous concern, our data do in fact follow SS at 

intermediate lags. Furthermore, we demonstrate in Appendix A that the tfBm model we 

use to represent our data is consistent with equation (9) of the reviewers, as they 

themselves point out. Our analysis is therefore perfectly valid. To bring this home we 

have added the following to the two concluding paragraphs of our Introduction: 

 

“Two among our reviewers, Tom Kozubowski and Fred Molz, note that (3) is 

obtained from (2) simply upon rewriting the latter as ( ) ( )
( )

nn
S s C n s

ξ
=  and 

( ) ( )
( )

mm
S s C m s

ξ
= , solving the first of these expressions for s and substituting into the 

second. Kozubowski and Molz point out further that whereas (2) implies (3) the reverse 

is generally not true, (3) being equivalent instead to 



 

4 

 

( ) ( ) ( )qq
S s f s

ξ
∝   (6) 

where ( )f s  is some, possibly nonlinear, function of s. This is seen upon rewriting (6) 

as ( ) ( ) ( )
( )

nn
S s C n f s

ξ
=  and ( ) ( ) ( )

( )
mm

S s C n f s
ξ

= , solving the first for ( )f s  and 

substituting into the second. 

After showing that our data behave as a sample from tfBm (a truncated self-

affine process) we demonstrate in Appendix A that this process is consistent with (6) at 

all separation scales (lags s) and with (2) at intermediate scales (
I II

s s s< < ), as are most 

of our data. We thus explain why and how ESS works for our data at all scales. The 

same likely holds true for other Gaussian or heavy-tailed earth and environmental 

variables (such as those listed earlier) that scale according to (2) at intermediate lags and 

according to (3) over an extended range of lags, a possibility noted earlier by 

Guadagnini and Neuman (2011).” 

In addition, our revised Conclusion 8 now states: “Our demonstration in Appendix A 

that tfBm is consistent with ESS scaling according to (6) at all separation scales, and 

with power law scaling according to (2) at intermediate scales, explains why and how 

ESS works for our data at all scales. The same explains how and why ESS worked for 

sub-Gaussian processes ( ); ,l uW G s∆ λ λ  considered by Guadagnini and Neuman 

(2011).” 

Concern: The reviewers state that we have failed to provide a theoretical reason for our 

observation in Figure 5 that the ratio of consecutive powers tends to 1 as q increases; 

they explain this observation on the basis of their equation (13). 

Response: The reviewers missed our statement, in what is now line 219, that a theoretical 

explanation for this behavior is provided in Appendix A; more importantly, they missed 

our statement in Appendix A that, according to our equation (A10), “The slope of this 

line decreases asymptotically from 2 at q = 1 toward 1 as q → ∞.” 

Concern: According to the reviewers we do not state clearly that tfBm has stationary increments. 

Response: The revised manuscript now states so in the sentence leading to equation (A1). 

Concern: The authors express concern about a 1994 paper on ESS due to Kaplan and Kao. 

Response: It is not clear to us how this concern reflects on or relates to our paper. 

Concern: The reviewers suggest that we bring into our discussion the scaling behaviors of 

fractional Laplace motion. 
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Response: Our original manuscript, in what are now lines 98 – 101, noted that “Though nonlinear 

variation of ξ(q) with q is also reproduced by the fractional Laplace model of 

Meerschaert et al. (2004; see Kozubowski et al., 2006, and Ganti et al., 2009), the latter 

does not include cutoffs and thus fails to reproduce observed breakdown in power law 

scaling at small and large lags.” 

The last paragraph of our revised Introduction now adds: “As our data are consistent 

with (6) but not with (2) at small ( )I
s s< and large ( )II

s s>  scales, we conclude that 

they are inconsistent with multifractals or fractional Laplace motions (Meerschaert et 

al., 2004; Kozubowski et al., 2006; Ganti et al., 2009) which theoretically scale 

according to (2) at all lags. In other words our data, being consistent with a truncated 

self-affine process, exhibit apparent rather than actual multifractal scaling at 

intermediate lags.” 

Our revised Conclusion 9 summarizes: “The fact that our data are consistent with (6) but 

not with (2) at small and large lags constitute yet another indication that, despite their 

nonlinear power law scaling at intermediate lags, the data are inconsistent with 

multifractals or fractional Laplace motions, which theoretically scale in this manner at 

all lags.” 

Technical Correction: The reviewers ask us to clarify that tfBm is Gaussian with stationary increments, 

provide its covariance function, avoid talking about Gaussian and exponential 

autocorrelation functions which in their view readers may find misleading, replace 
m

λ  in 

(A4) by λ  to avoid confusion, examine our equations (A2), (A9) and (A10) for 

correctness, and replace “powers” by “slopes” in the 6
th

 line of Section 3.2. 

Response: The revised version of Appendix A makes clear that tfBm is Gaussian with stationary 

increments. The corresponding variance and variogram, given in the original version of 

Appendix A, jointly define the autocovariance of the process. The terms exponential and 

Gaussian variogram, or autocorrelation, are standard in the geostatistical literature; we 

feel that dropping or replacing them with new terms would be doubly confusing. As 

(A4) includes the term ( ) ( ) ( )2 2 2; , ; ;
l u i u i l

s s s= −γ λ λ γ λ γ λ , replacing 
m

λ  in      

( ) ( ) ( )2 2; /
i m m i m

s s=γ λ σ λ ρ λ  by λ  would leave ( )2 ;
i l

sγ λ , ( )2 ;
i u

sγ λ  and hence 

( )2 ; ,
l u

sγ λ λ  undefined. We found no error in our equations (A2). We corrected a 

typographical error appearing in equations (A9) and (A10). Finally, we replaced 

“powers” with “slopes” in the 6
th

 line of Section 3.2, as suggested. 

  



1 

 

 1 

 2 

EXTENDED POWER-LAW SCALING OF AIR PERMEABILITIES MEASURED ON A 3 

BLOCK OF TUFF 4 

 5 

 6 

by M. Siena
1,2

, A. Guadagnini
1
, M. Riva

1
, and S.P. Neuman

3
 7 

 8 

 9 

 10 

1
Dipartimento di Ingegneria Idraulica, Ambientale, Infrastrutture Viarie e Rilevamento Politecnico di 11 

Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy 12 

 13 

2
Dipartimento di Matematica e Informatica, Università di Trieste,  14 

Piazzale Europa 1, 34127 Trieste, Italy.  15 

 16 

3
Department of Hydrology and Water Resources, 17 

University of Arizona, Tucson, Arizona 85721, USA 18 

 19 

 20 

Correspondence email for proofs: alberto.guadagnini@polimi.it 21 

 22 

  23 



2 

 

ABSTRACT 24 

We use three methods to identify power law scaling of (natural) log air permeability data 25 

collected by Tidwell and Wilson (1999) on the faces of a laboratory-scale block of Topopah Spring 26 

tuff: method of moments (M), extended power-law scaling also known as Extended Self-Similarity 27 

(ESS) and a generalized version thereof (G-ESS). All three methods focus on qth-order sample structure 28 

functions of absolute increments. Most such functions exhibit power-law scaling at best over a limited 29 

midrange of experimental separation scales, or lags, which are sometimes difficult to identify 30 

unambiguously by means of M. ESS and G-ESS extend this range in a way that renders power-law 31 

scaling easier to characterize. Most analyses of this type published to date concern time series or one-32 

dimensional transects of spatial data associated with a unique measurement (support) scale. We 33 

consider log air permeability data having diverse support scales on the faces of a cube. Our analysis 34 

confirms the superiority of ESS and G-ESS over M in identifying the scaling exponents ξ(q) of 35 

corresponding structure functions of orders q, suggesting further that ESS is more reliable than G-ESS. 36 

The exponents vary in a nonlinear fashion with q as is typical of real or apparent (Guadagnini and 37 

Neuman, 2011; Guadagnini et al., 2011) multifractals. Our estimates of the Hurst scaling coefficient 38 

increase with support scale, implying a reduction in roughness (anti-persistence) of the log permeability 39 

field with measurement volume. ESS and G-ESS ratios between scaling exponents ξ(q) associated with 40 

various orders q show no distinct dependence on support volume or on two out of three Cartesian 41 

directions (there being no distinct power law scaling in the third direction). The finding by Tidwell and 42 

Wilson (1999) that log permeabilities associated with all tip sizes can be characterized by stationary 43 

variogram models, coupled with our findings that log permeability increments associated with the 44 

smallest tip size are approximately Gaussian and those associated with all tip sizes scale show 45 

nonlinear (multifractal) variations in ξ(q) with q, are consistent with a view of these data as a sample 46 

from a truncated version (tfBm) of self-affine fractional Brownian motion (fBm). Since in theory the 47 
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scaling exponents, ξ(q), of tfBm vary linearly with q we conclude, in accord with Neuman (2010a, 48 

2010b, 2011), that nonlinear scaling in our case is not an indication of multifractality but an artifact of 49 

sampling from tfBm. This allows us to explain theoretically how power law scaling of our data, as well 50 

as of non-Gaussian heavy-tailed signals subordinated to tfBm of the kind considered by Guadagnini 51 

and Neuman (2011), are extended by ESS. It further allows us to identify the functional form and 52 

estimate all parameters of the corresponding tfBm based on sample structure functions of first and 53 

second orders. Our estimate of lower cutoff is consistent with a theoretical support scale of the data. 54 

 55 

  56 
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1. Introduction 57 

The literature indicates (Neuman and Di Federico, 2003) that hydrogeologic variables exhibit 58 

isotropic and directional dependencies on scales of measurement (data support), observation (extent of 59 

phenomena such as a dispersing plume), sampling window (domain of investigation), spatial 60 

correlation (structural coherence), and spatial resolution (descriptive detail). Attempts to explain such 61 

scale dependencies have focused in part on observed and/or hypothesized power law behaviors of 62 

structure functions of variables such as hydraulic (or log hydraulic) conductivity (e.g. Painter, 1996; 63 

Liu and Molz, 1997a, 1997b; Tennekoon et al., 2003), space-time infiltration (Meng et al., 2006), soil 64 

properties (Caniego et al., 2005; Zeleke and Si, 2006, 2007), electrical resistance, natural gamma ray 65 

and spontaneous potential (Yang et al., 2009) and sediment transport data (Ganti et al., 2009). Power 66 

law behavior means that a sample structure function 67 

( )
( )

( )
( )

1

1
N s

qq

N n

n

S s Y s
N s =

= ∆∑  (1) 68 

of order-q (for simplicity we limit our mathematical exposition to one dimension and our analysis of 69 

data to non-negative values of q) scales according to 70 

( ) ( )qq

NS s s
ξ

∝

 

(2) 71 

where ( )Y x  is the variable of interest (assumed to be defined on a continuum of points x in space or 72 

time), ( )nY s∆  is a measured increment ( ) ( ) ( )Y s Y x s Y x∆ = + −  of the variable over a separation 73 

distance (lag) s between two points on the x axis, and ( )N s  is the number of measured increments. 74 

When the scaling exponent (power) ξ(q) varies linearly with q, ( )Y x  is interpreted to form a self-75 

affine (mono-fractal) random field and the slope H of the corresponding line is termed Hurst exponent. 76 

When the scaling exponent ξ(q) is a nonlinear function of q, ( )Y x  has traditionally been taken to form 77 
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a multifractal field. A semi-empirical “universal" multifractal model due to Schertzer and Lovejoy 78 

(1987) relates ξ(q) to the Hurst exponent via H = ξ(1), as explained and illustrated by Seuront et al. 79 

(1999); some approximate H by dξ dq⁄  near 0q = .  80 

Neuman (2010a, 2011) has shown theoretically and Neuman (2010b) and Guadagnini et al. 81 

(2011) have demonstrated numerically that signals derived from additive processes subordinated to a 82 

truncated version (tfBm) of additive, self-affine fractional Brownian motion (fBm) scale in a manner 83 

similar to multifractals even as they differ from such multiplicative constructs in a fundamental way. 84 

Their work suggests that nonlinear variations in ξ(q) with q need not represent multifractal scaling but 85 

could instead be an artifact of sampling from tfBm or fields subordinated to tfBm. 86 

Power-law scaling is typically inferred from measured values of earth and environmental 87 

variables by the method of moments (M). This consists of calculating sample structure functions (1) for 88 

a finite sequence, q1, q2, ..., qn, of q values and for various separation lags. For each order qi the 89 

logarithm of iq

N
S  is related to log s by linear regression and the power ξ(qi) set equal to the slope of the 90 

regression line. Linear or near-linear variation of log iq

NS  with log s is typically limited to intermediate 91 

ranges of separation scales, 
I II

s s s< < , where 
I

s  and 
II

s  are theoretical or empirical lower and upper 92 

limits, respectively. Breakdown in power law scaling is attributed in the literature to noise at lags 93 

smaller than 
I

s  and to undersampling at lags larger than 
II

s (Tessier et al., 1993). Yet noise-free signals 94 

subordinated to tfBm generated by Neuman (2010b) and Guadagnini et al. (2011) show power law 95 

breakdown at small and large lags even when sample sizes are large. This breakdown is caused by 96 

cutoffs which truncate the fields at small lags proportional to the measurement and/or resolution scale 97 

of the data, and at large lags proportional to the size of the sampling domain, regardless of noise or 98 

undersampling. Though nonlinear variation of ξ(q) with q is also reproduced by the fractional Laplace 99 

model of Meerschaert et al. (2004; see Kozubowski et al., 2006, and Ganti et al., 2009), the latter does 100 
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not include cutoffs and thus fails to reproduce observed breakdown in power law scaling at small and 101 

large lags. 102 

Benzi et al. (1993a, 1993b, 1996) discovered empirically that the range 
I II

s s s< <  of separation 103 

scales over which velocities in fully developed turbulence (where Kolmogorov's dissipation scale is 104 

assumed to control sI) scale according to (2) can be enlarged significantly, at both small and large lags, 105 

through a procedure they called Extended Self-Similarity (ESS). ESS arises from the observation that 106 

structure functions of different orders, n and m, computed for the same separation lag are related by  107 

( ) ( )
( , )n mn m

S s S s
β

∝   (3) 108 

where β(n,m) = ξ(n)/ ξ(m) is a ratio of scaling exponents. Benzi et al. (1996) introduced, and Nikora 109 

and Goring (2001) employed, a generalized form of ESS (G-ESS) according to which 110 

( ) ( )
( , , ), ,∝

p q nn p n q
G s G s

ρ
  (4) 111 

where 112 

( )
( )

( )
,

/
=

p

n p

p nn

S s
G s

S s
 ( )

( )

( )
,

/
=

q

n q

q nn

S s
G s

S s
 ρ(p, q, n) = 

ξ(p) – (p/n) ξ(n)

ξ(q) – (q/n) ξ(n)
 (5) 113 

The exponent ( , , )p q nρ  is a ratio between deviations of structure functions of order p and q, 114 

respectively, from linear (monofractal or self-affine) scaling. Chakraborty et al. (2010) cite the success 115 

of ESS in extending observed scaling ranges, and thus allowing more accurate empirical determinations 116 

of the functional exponent ξ(q) for turbulent velocities. ESS has been reported to achieve similar results 117 

for diffusion-limited aggregates, natural images, kinetic surface roughening, fluvial turbulence, sand 118 

wave dynamics, Martian topography, river morphometry, gravel-bed mobility and atmospheric 119 

barometric pressure, low-energy cosmic rays, cosmic microwave background radiation, metal-insulator 120 

transition, irregularities in human heartbeat time series, turbulence in edge magnetized plasma of fusion 121 

devices and turbulent boundary layers of the Earth’s magnetosphere (Guadagnini and Neuman, 2011). 122 
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In all cases, ESS has revealed nonlinear variation of ( )qξ  with q. Whereas the literature has 123 

interpreted this to imply that ESS applies to multifractals, Guadagnini and Neuman have shown that (3) 124 

works equally well when applied to signals derived from additive processes subordinated to tfBm. As 125 

the latter are not multifractal, neither must be processes revealed by ESS (or any other method of 126 

analysis) to yield nonlinear variations in ( )qξ  with q.  127 

In this paper we use three methods to identify power law scaling of log air permeability data 128 

collected by Tidwell and Wilson (1999) on the faces of a laboratory-scale cube of Topopah Spring tuff: 129 

method of moments (M) and extended power-law scaling via ESS and G-ESS. Most published analyses 130 

of extended power law scaling concern time series or one-dimensional transects of spatial data 131 

associated with a unique measurement (support) scale. We use instead data measured on diverse 132 

support scales and distributed in two or three dimensions across several faces of the cube. Our aim is to 133 

infer the scaling behavior of these data using all three methods, compare results among the methods 134 

and explore the dependence of corresponding scaling exponents on support scales and direction.  135 

“In spite of several attempts to explain the success of ESS" cited by Chakraborty et al. (2010) 136 

the authors note that "the latter is still not fully understood and we do not know how much we can trust 137 

scaling exponents derived by ESS. It would be nice to have at least one instance for which ESS not 138 

only works, but does so for reasons we can rationally understand.” Chakraborty et al. provide such a 139 

theoretical reason in the special context of one-dimensional Burgers equation. In contrast, they consider 140 

“the multifractal description of turbulence,” with which ESS is commonly associated, to be “quite 141 

heuristic and arbitrary.” Two among our reviewers, Tom Kozubowski and Fred Molz, note that (3) is 142 

obtained from (2) simply upon rewriting the latter as ( ) ( )
( )

nn
S s C n s

ξ
=  and ( ) ( )

( )
mm

S s C m s
ξ

= , 143 

solving the first of these expressions for s and substituting into the second. Kozubowski and Molz point 144 

out further that whereas (2) implies (3) the reverse is generally not true, (3) being equivalent instead to 145 
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( ) ( ) ( )qq
S s f s

ξ
∝   (6) 146 

where ( )f s  is some, possibly nonlinear, function of s. This is seen upon rewriting (6) as 147 

( ) ( ) ( )
( )

nnS s C n f s
ξ

=  and ( ) ( ) ( )
( )

mmS s C n f s
ξ

= , solving the first for ( )f s  and substituting into the 148 

second. 149 

After showing that our data behave as a sample from tfBm (a truncated self-affine process) we 150 

demonstrate in Appendix A that this process is consistent with (6) at all separation scales (lags s) and 151 

with (2) at intermediate scales (
I II

s s s< < ), as are most of our data. We thus explain why and how ESS 152 

works for our data at all scales. As our data are consistent with (6) but not with (2) at small ( )Is s< and 153 

large ( )IIs s>  scales, we conclude that they are inconsistent with multifractals or fractional Laplace 154 

motions (Meerschaert et al., 2004; Kozubowski et al., 2006; Ganti et al., 2009) which theoretically 155 

scale according to (2) at all lags. In other words our data, being consistent with a truncated self-affine 156 

process, exhibit apparent rather than actual multifractal scaling at intermediate lags. The same likely 157 

holds true for other Gaussian or heavy-tailed earth and environmental variables (such as those listed 158 

earlier) that scale according to (2) at intermediate lags and according to (3) over an extended range of 159 

lags, a possibility noted earlier by Guadagnini and Neuman (2011).   160 

2. Previous analyses of experimental data  161 

Tidwell and Wilson (1999) measured air permeabilities, k, on six faces of a block of Topopah 162 

Spring tuff (Fig. 1), extending 30 cm on each side, with the aid of a Multisupport Permeameter (MSP). 163 

Measurements were conducted at intervals of ∆ = 0.85 cm on a grid of 36 × 36 points along each face 164 

using four tip-seal sizes having inner radii ri = 0.15, 0.31, 0.63, 1.27 cm and outer radii 2ri. As the 165 

precise nature and size of the support volume associated with each measurement is the subject of 166 

debate (Goggin et al., 1988; Molz et al., 2003; Tartakovsky et al., 2000; Neuman and Di Federico, 167 
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2003), we consider the inner radius of the tip-seal to represent a nominal measurement scale (data 168 

support) as proposed by Tidwell and Wilson (1999). We conclude from their analysis that 169 

measurements on face 6 of the block are less reliable than the rest and therefore limit our analysis 170 

below to those on faces 1 - 5. 171 

Measured (natural) log permeability values, Y = ln k, were found to have bi-modal frequency 172 

distributions particularly at larger tip sizes (Fig. 2 of Tidwell and Wilson, 1999). This was deemed by 173 

them to be consistent with the geologic structure of the tuff sample within which regions of high 174 

(associated with pumice fragments) and low (corresponding to solid matrix) permeability could be 175 

visually identified. Tidwell and Wilson were able to fit spherical models with nuggets to sample 176 

variograms on all faces of the cube for each tip radius. The variograms were found to be isotropic in the 177 

xy plane of Cartesian coordinates on face 1 of the cube but anisotropic in the xz and yz planes on faces 178 

2 - 5, with estimated ranges in the z direction about one half of those in the x and y directions. Sill and 179 

range estimates decreased and increased, respectively, with tip seal inner radius. For additional details 180 

the reader is referred to the above authors. 181 

3. Identification of power low scaling 182 

To evaluate sample structure functions for the experimental data of Tidwell and Wilson (1999) 183 

according to (1) we compute directional increments, ∆Y, of Y = ln k at various separation lags (taken to 184 

be integer multiples of grid spacing, ∆ , for each tip size) parallel to the x, y and z coordinates on the 185 

faces of the cube. Figure 2 depicts variations in ∆Y associated with lag sx = 8.5 cm along selected 186 

transects in the x direction on face 1 associated with the smallest and largest tip radii, ri = 0.15 and 1.27 187 

cm. Clearly, increasing the tip radius results in smoother and more persistent variability of the 188 

increments. Figure 3 shows frequency distributions of similar increments along all x-directional 189 

transects on multiple faces and Maximum Likelihood (ML) fits of Gaussian probability density 190 

functions (pdfs) to these distributions. Both frequency distributions are symmetric about zero with 191 
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humps reflecting the bi-modal distributions of Y identified by Tidwell and Wilson. Increments 192 

corresponding to the smallest tip size appear to be closer to Gaussian than those corresponding to the 193 

largest tip size, consistent with their finding that Y becomes increasingly bimodal with tip size.  194 

3.1 Analysis of face 1 data by method of moments 195 

As lag increases the number N(s) of incremental data along all transects of face 1 decreases 196 

from 1260 corresponding to sx = sy = ∆  = 0.85 cm to 36 corresponding to sx = sy = 35× ∆  = 29.75 cm. 197 

Figure 4 depicts log q

NS (sx) as functions of log sx along all transects for 0.1 ≤ q ≤ 2.5 at each tip size. To 198 

identify a middle range of lags within which these relationships are linear we have fitted regression 199 

lines to the data within several such ranges and adopted those that yield the highest coefficients of 200 

determination for each tip size. These ranges, identified in Fig. 4 by dashed vertical lines, are on the 201 

order of (
I

s = 2∆) ≤ sx ≤ (
II

s = 6∆)  or 1.7 cm ≤ sx ≤ 5.1 cm. The corresponding nonlinear variation of 202 

ξ(q) with q for the largest tip size (based on data such as those in Fig. 4d) is depicted in Fig. 5. The 203 

solid line has slope �dξ dq⁄ |q=0 = 0.74 which, if taken to represent a Hurst exponent H, implies a 204 

persistent signal consistent with that depicted in Fig. 2b. Values of ξ(q) in Fig. 5 start deviating from 205 

this solid line at about q ≈ 0.6 to become asymptotically linear in q at about q ≥ 3.5, as evidenced by 206 

the dotted line obtained through regression against these values. Results for other tip sizes and in the y 207 

direction (not reported) are qualitatively similar. Though such behavior would typically be interpreted 208 

to imply that increments of ln k are multifractal, we note that qualitatively similar scaling has been 209 

produced synthetically by Guadagnini and Neuman (2011, their Fig. 4) with a model in which Y is 210 

subordinated to tfBm, a truncated version of self-affine (monofractal) fBm. 211 

3.2 Analysis of face 1 data by extended power law scaling 212 

Replotting the data in Fig. 4d (corresponding to the largest tip size) as log q

NS  versus log 1q

NS −  213 

for 2.0 ≤ q ≤ 5.0 (at intervals of 0.5) reveals much less ambiguous power law scaling over a much 214 
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wider range of lags in Fig. 6. Equations of corresponding curves (regression lines on log-log scale) 215 

included in the figure are characterized by coefficients of determination, 2R , that exceed 0.98 at all 216 

lags. Results of similar quality (not reported) have been obtained for all tip sizes and directions. The 217 

slopes of the regression curves, representing β(q, q−1) in (3), decrease asymptotically with q toward 218 

unity consistently with the asymptotic tendency of ξ(q) in Fig. 5 toward linear variation with q. In 219 

Appendix A we explain this behavior theoretically by demonstrating that tfBm scales according to (2) 220 

at intermediate lags and according to (3) at all lags. The fact that our data scale according to (2) at 221 

intermediate lags allows us to follow an approach patterned after Guadagnini and Neuman (2011): 222 

adopt the value of ξ(1) from Fig. 5 as computed by the method of moments, fit straight lines by 223 

regression to log qS  versus log pS  values corresponding to p = q − ∆q where ∆q = 0.1 for 0.1 ≤ q ≤ 3 224 

and ∆q = 0.5 for 3 < q ≤ 5 in ascending orders q = 1.1, 1.2, … and descending orders q = 0.9, 0.8, …, 225 

set the slopes of these lines equal to ξ(q)/ ξ(q−∆q) according to (3), then compute ξ(1.1), ξ(1.2), ξ(1.3), 226 

... in ascending order and ξ(0.9), ξ(0.8), ξ(0.7), ... in descending order from these ratios. Resulting 227 

values of ξ(q) corresponding to the x and y directions on face 1, identified as ESS, are plotted versus q 228 

in Fig. 8.  229 

As ξ(q) in Fig. 5 starts deviating from the solid line at approximately q ≈ 0.6 we set n = 0.5 in 230 

(5) and plot in Fig. 7 log Gn,q+1(sx) versus log Gn,q(sx) for q = 1.0, 1.5, 2.0, ..., 4.0 corresponding to the 231 

increments in Fig. 4d. Included in Fig. 7 are equations of curves fitted to these log-log relationships by 232 

linear regression and associated R
2
 values. The figure reveals extended power law scaling with R

2 
≥ 233 

0.98 over virtually the entire range of lags. As in the earlier case of β(q, q−1), the scaling ratios 234 

ρ(q+∆q, q, n) diminish asymptotically toward unity as q increases. Similar behavior is observed in the 235 

case of other tip sizes. Resulting values of ξ(q) corresponding to the x and y directions on face 1, 236 
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computed in a manner analogous to that described in the previous paragraph and identified as G-ESS, 237 

are plotted versus q in Fig. 8. 238 

Figure 8 juxtaposes values of ξ(q) as functions of q within the range 0 ≤ q ≤ 5.0, in the x and y 239 

directions of face 1, obtained for the largest tip size by the method of moments and two methods of 240 

extended power law scaling. We saw earlier that the latter two methods are much less ambiguous than 241 

the first in helping one to identify and quantify power law scaling of structure functions at various 242 

orders q. As ESS requires only one reference value, ξ(1), to compute ξ(q) on the basis of β(q, q−1) for 243 

any order q while G-ESS requires two such reference values, we consider the former more reliable than 244 

the latter.  245 

Figure 9 shows that values of β(q, q − ∆q) and ρ(q + ∆q, q, n) are relatively insensitive to tip 246 

size and direction. The same is not true for the scaling exponent ξ(q) which, as shown in Fig. 10, 247 

increases consistently with tip size. Though these results correspond to the x direction on face 1, they 248 

do not differ qualitatively from those corresponding to x and y on all five faces. This behavior translates 249 

into a consistent increase in the Hurst exponent H with tip size (from H = 0.13 for ri = 0.15 cm to H = 250 

0.74 for ri = 1.27 cm), implying that averaging over larger and larger support volumes smoothes a 251 

signal and renders it more persistent.  252 

3.3 Analysis of multiple face data by extended power law scaling 253 

Next we consider jointly the scaling of Y = ln k data from all five faces 1 - 5 of the cube along 254 

each Cartesian direction for each tip size, yielding 12 sets of three directional increments for 4 tip sizes. 255 

Figure 11 depicts log-log plots of q

N
S (sz) versus separation distance, sz, along the z direction for 0.1 ≤ q 256 

≤ 2.5 corresponding to each tip size. In neither plot is it possible to identify an intermediate range of 257 

power law scaling, most likely due to the reduced range of the increments in this direction. We 258 

therefore omit incremental data in the z direction from further consideration in this paper. Structure 259 

functions in the x and y directions (not shown) display behaviors qualitatively similar to those noted 260 
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earlier in the x direction on face 1 (Fig. 4). Figure 12 compares values of ξ(q) obtained by each method 261 

on all available data with x-directional values obtained on face 1 via ESS. Whereas face 1 values in Fig. 262 

8 show no significant difference between directions x and y, the multiface values in Fig. 12 do suggest 263 

a slight directional dependence revealed, most likely, by the relatively large size of this sample. In 264 

general, multiface values of ξ(q) in Fig. 12 lie below the face 1 values in Fig. 8, reflecting the impact of 265 

sample size on the quantification of power law scaling. 266 

As in the case of face 1, multiface values of β(q, q − ∆q) and ρ(q + ∆q, q, n) are seen in Fig. 13 267 

to be relatively insensitive to tip size and direction. 268 

We note that there is no conflict between the ability of Tidwell and Wilson (1999) to 269 

characterize Y for any tip size by means of a stationary variogram and our finding that order-q structure 270 

functions of Y exhibit power law scaling at intermediate lags with exponents that vary in a nonlinear 271 

fashion with q. Instead both, coupled with our finding that increments of Y associated with small tip 272 

sizes are approximately Gaussian, are consistent with a view of Y as a sample from tfBm (implying that 273 

Y is not multifractal). Such a sample is characterized by a truncated power variogram (Di Federico and 274 

Neuman, 1997) which is difficult to distinguish from stationary variogram models (Neuman et al., 275 

2008) and exhibits power law scaling with exponents that are nonlinear in q at intermediate lags 276 

(Neuman, 2010a, 2010b, 2011; Guadagnini et al., 2011). The former implies that Gaussian samples 277 

commonly characterized in the literature by stationary variograms may in fact represent truncated self-278 

affine fields, the latter implies that such samples may in turn display apparent multifractality as does Y 279 

in this paper. 280 

3.4 Model identification and parameter estimation 281 

As shown by Eq. (A2) in Appendix A the q
th

-order structure function of tfBm is completely 282 

defined by q and the ensemble (theoretical) truncated power variogram (TPV) ( )2 ; ,l usγ λ λ . Since 283 

increments of Y associated with the smallest tip size have a near-Gaussian distribution, one should be able 284 
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to estimate the parameters of this variogram by fitting such theoretical structure functions to their sample 285 

counterparts, q

NS , for ri = 0.15 cm. As the number of data N needed to obtain stable q

NS  values increases 286 

with q, we limit our estimation of parameters to structure functions 1

NS  and 2

NS  of orders q = 1, 2. 287 

Equations (A4) – (A7) in Appendix A make clear that a TPV is defined by four parameters: the 288 

Hurst exponent H, coefficient A, upper cutoff λu and lower cutoff λl. We found earlier from the slope of 289 

ξ(q) at small q that, for incremental data on face 1, H = 0.13 in the x direction and H = 0.09 in the y 290 

direction while, for incremental data on multiple faces, H = 0.08 in the x direction and H = 0.09 in the y 291 

direction. All four parameters are linked by the relationship 292 

 
( )

2

2 2

2
H H

u l

H
A

σ

λ λ
=

−
  (7) 293 

where 2σ  is the sill (asymptotic plateau) of the variogram ( )2 ; ,l usγ λ λ . We expect the estimate of this 294 

sill to not differ significantly from the sample variance of the Y data. 295 

We estimate parameters on the basis of sample variograms, ( )2* ; ,l usγ λ λ , of Y data computed 296 

from sample structure functions of first and/or second order, respectively, via 297 

( ) ( )( )
2

2* 1; ,
4

l u N
s S s

π
γ λ λ =   and/or    ( )

( )2

2* ; ,
2

N

l u

S s
sγ λ λ =

       

(8) 298 

according to (A2). We estimate the sill, 2σ , by averaging values of ( )2* ; ,l usγ λ λ  corresponding to 299 

large lags, s, obtained from 1

NS  and/or 2

NS  in this manner. We then estimate the cutoffs (and A) through 300 

a maximum likelihood (ML) fit of ( )2 ; ,l usγ λ λ  to ( )2* ; ,l usγ λ λ  where the first is a TPV model based 301 

either on Gaussian or on exponential modes as defined in (A4) – (A7).  The ML procedure consists of 302 

minimizing the log likelihood criterion (Carrera and Neuman, 1986)  303 

2

2
ln ln ln 2

J
NLL n nγ

γ

σ π
σ

= + + +V ;       ( ) ( )
T

2 2* 2 2*ˆ ˆJ
−= − −1

Vγ γ γ γγ γ γ γγ γ γ γγ γ γ γ      (9) 304 
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with respect to λu and λl subject to (7). Here 2γ̂γγγ  and *2γγγγ  are vectors of n discrete ( )2 ; ,l usγ λ λ  and 305 

( )2* ; ,l usγ λ λ  values, respectively, T denotes transpose, 2

γ γσ=C V
 
where γC  is the covariance matrix 306 

of errors in *2γγγγ  (resulting from log permeability measurement errors), 2

γσ  is estimated during inversion 307 

according to  308 

2 minJ

n
γσ =     (10) 309 

where Jmin is the minimum of J, and V is a known symmetric positive-definite matrix. For simplicity 310 

we take errors in *2γγγγ  to be uncorrelated and set V equal to the identity matrix. 311 

Applying the above procedure to face 1 yields a sill of 4.48 based on 1

NS  as well as on 2

NS  of 312 

increments parallel to the x axis, 3.64 based on 1

NS  and 3.88 on 2

NS  of increments parallel to the y axis, 313 

the variance of the corresponding Y data being 4.06. Applying the above procedure jointly to faces 1, 2 314 

and 4 (where incremental data in the x direction are available, see Fig. 1) yields a sill of 3.52 based on 315 

1

NS  and 3.77 based on 2

NS  of increments parallel to the x-axis, the corresponding variance of Y being 316 

3.77; applying it to faces 1, 3 and 5 (where incremental data in the y direction are available, see Fig. 1) 317 

yields 3.52 based on 1

NS  and 3.79 on 2

NS  of increments parallel to the y-axis, the corresponding 318 

variance of Y being 3.91 while that of all Y data on faces 1 – 5 is 3.79. We conclude that to obtain 319 

consistent estimates of 2σ  it is best to consider jointly all data from faces 1 – 5 as we do below.  320 

Due to the irregular behavior of ( )1

NS s  and ( )2

NS s  at large lags (Fig. 4a) we limit our ML 321 

estimation of cutoffs (and A) to lags in the range ∆ ≤ s ≤ 13∆ so that n = 13. Table 1 lists parameter 322 

estimates and corresponding 95% confidence intervals for TPV models consisting of Gaussian and 323 

exponential modes obtained on the basis of 1

NS , 2

NS  and both with x- and y-directional increments. The 324 
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table also lists Jmin, NLL, the determinant Q  of the covariance matrix Q of λu and λl estimation errors, 325 

and the Bayesian model discrimination criterion KIC (Kashyap, 1982) 326 

ln ln
2

n
KIC NLL M

π

 
= + − 

 
Q   (11) 327 

where M = 2 is the number of parameters. Values of quantities obtained on the basis of 1

NS , 2

NS  and 328 

both are seen to be mutually consistent. Though estimates of λu in the x direction exceed those in the y 329 

direction by about 25-30%, we hesitate to interpret this as anisotropy due to their relatively large 330 

uncertainty. Figures 14a and 14b compare sample x- and y-directional variogram values, respectively, 331 

based on 1

NS , 2

NS  and 1

NS  and 2

NS  jointly with variogram models calibrated against these values.  332 

Whereas values of NLL corresponding to TPV models based on Gaussian and exponential 333 

modes are similar, those of KIC show a preference for exponential modes. Adopting the latter while 334 

considering 1

NS
 
and 2

NS  jointly yields λu = 1.65 cm in the x direction and λu = 1.31 cm in the y 335 

direction with an average of 1.48 cm. These correspond to ratios µ = λu / L of upper cutoff to block size 336 

L equal to 0.055 in the x direction and 0.044 in the y direction with an average of 0.049. Corresponding 337 

estimates of the lower cutoff λl are 6.8×10-2 cm in the x direction and 1.2×10-1 cm in the y direction 338 

with an average of 6.8×10
-2

 cm. Adopting the suggestion of Di Federico and Neuman (1997) that µ = 339 

λu / L = λl / lm  yields support (measurement) scales lm = 1.24 cm in the x direction and 2.69 cm in the y 340 

direction with an average of 1.88 cm. The latter is about 12 times the inner radius of the MSP. Albeit 341 

one should consider all the approximations involved in this estimate, we note that it is consistent with a 342 

definition of MPS support volume by Tartakovsky et al (2000) as a region containing 90% of total gas 343 

flow (see their Fig. 6). Estimates of µ and lm for all cases are listed in Table 2.  344 

 345 

 346 
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4. Conclusions 347 

Our work leads to the following conclusions: 348 

1. Natural log air permeability data collected by Tidwell and Wilson (1999) on the faces of a 349 

laboratory-scale block of Topopah Spring tuff, at four scales of measurement (support), exhibit 350 

power law scaling at intermediate lags in two out of three Cartesian directions. Scaling 351 

exponents vary in a nonlinear fashion with the order q of corresponding structure functions in a 352 

manner typical of multifractals. 353 

2. Identification of this nonlinear power law scaling was greatly enhanced by a method of analysis 354 

that extend its range to virtually all lags (Guadagnini and Neuman, 2011) known as Extended 355 

Self-Similarity (ESS) and a generalized version thereof (G-ESS).  356 

3. Most analyses of extended power law scaling published to date concern time series or one-357 

dimensional transects of spatial data associated with a unique measurement (support) scale. We 358 

considered log air permeability data having diverse support scales and distributed in two or 359 

three dimensions across several faces of a cube. 360 

4. Our estimates of the Hurst scaling exponent were found to increase with support scale, implying 361 

a reduction in roughness (anti-persistence) of the log permeability field with measurement 362 

volume. 363 

5. ESS and G-ESS ratios between scaling exponents ξ(q) associated with various orders q showed 364 

no distinct dependence on support volume or on two out of three Cartesian directions (there 365 

being no distinct power law scaling in the third direction). As ESS requires only one reference 366 

value, ξ(1), to compute ξ(q) for any q on the basis of such ratios while G-ESS requires two such 367 

reference values, we consider the former to be more reliable than the latter.  368 

6. Tidwell and Wilson (1999) were able to characterize log permeabilities associated with all tip 369 

sizes by stationary variogram models. This, coupled with our findings that log permeability 370 
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increments associated with the smallest tip size are approximately Gaussian and those 371 

associated with all tip sizes scale in the manner of multifractals at intermediate lags, are 372 

consistent with a view of the data as a sample from truncated fractional Brownian motion 373 

(tfBm). 374 

7. Since in theory the scaling exponents, ξ(q), of tfBm at intermediate lags vary linearly with q we 375 

conclude, in accord with Neuman (2010a, 2010b, 2011), that nonlinear scaling in our case is not 376 

an indication of multifractality but an artifact of sampling from tfBm. 377 

8. Our demonstration in Appendix A that tfBm is consistent with ESS scaling according to (6) at 378 

all separation scales, and with power law scaling according to (2) at intermediate scales, 379 

explains why and how ESS works for our data at all scales. The same explains how and why 380 

ESS worked for sub-Gaussian processes ( ); ,l uW G s∆ λ λ  considered by Guadagnini and 381 

Neuman (2011). 382 

9. The fact that our data are consistent with (6) but not with (2) at small and large lags constitute 383 

yet another indication that, despite their nonlinear power law scaling at intermediate lags, the 384 

data are inconsistent with multifractals or fractional Laplace motions, which theoretically scale 385 

in this manner at all lags. The same likely holds true for other Gaussian or heavy-tailed earth 386 

and environmental variables (such as those listed in our introduction) that scale according to (2) 387 

at intermediate lags and according to (3) over an extended range of lags, a possibility noted 388 

earlier by Guadagnini and Neuman (2011).  389 

10. Since increments of Y associated with the smallest tip size have a near-Gaussian distribution, 390 

we were able to identify the functional form and estimate all parameters of the corresponding 391 

tfBm based on sample structure functions of first and second orders. Our estimate of lower 392 

cutoff is consistent with a theoretical support scale of the data. 393 

 394 
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Appendix A 395 

Let ( ); ,l uG x λ λ  be truncated fractional Brownian motion (tfBm), a Gaussian process defined 396 

by Neuman (2010a) where x is a generic space (or time) coordinate and l
λ , u

λ  are lower and upper 397 

cutoff scales, respectively. As shown by this author, central q
th

-order moments of absolute values of 398 

corresponding zero-mean stationary increments 399 

( ) ( ) ( ); , ; , ; ,l u l u l uG s G x+ s G x∆ λ λ = λ λ − λ λ   (A1) 400 

of ( ); ,l uG x λ λ
 
are given by  401 

( ) ( ) ( )2

2

; , 2 ; , 1 !! 1, 2,....

1

q
qq

l u l u

if q is odd
S G s s q q n

if q is even


 = ∆ λ λ = γ λ λ − =π 



 (A2) 402 

where s is separation scale or lag, !! indicates double factorial defined as q!! = q (q-2) (q-4)…2 if q is 403 

even and q!! = q (q-2) (q-4)…3 if q is odd, and ( )2 ; ,l usγ λ λ  is the variogram of ( ); ,l uG x λ λ , i.e.  404 

( ) ( )
22 1

; , ; ,
2

l u l u
s G sγ λ λ = ∆ λ λ . (A3) 405 

The latter is given by (Neuman, 2010a) 406 

( ) ( ) ( )2 2 2; , ; ;l u i u i ls s s= −γ λ λ γ λ γ λ ;        ( ) ( ) ( )2 2; /i m m i ms s=γ λ σ λ ρ λ  (A4) 407 

where
 

408 

( )2 2 / 2H

m mA Hσ λ λ=  (A5) 409 

( )
2

1 / 1 exp 1 2 ,

H

m

m m m

s s s
s H

      
 = − − + Γ −     
       

ρ λ
λ λ λ

 0 0.5H< <  (A6) 410 

( )
2 2 2

2 2 2 2
/ 1 exp 1 ,

4 4 4

H

m

m m m

s s s
s H

      
 = − − + Γ −     
       

π π π
ρ λ

λ λ λ
            0 1H< <  (A7) 411 



20 

 

A is a coefficient, H is a Hurst exponent ( )0 1H< < , i = 1 for tfBm with modes (defined in Neuman, 412 

2010a) having exponential autocorrelation functions and i = 2 for modes having Gaussian 413 

autocorrelation functions. Figure A1 compares TPVs based on Gaussian modes with A = 1, H = 0.3, λl 414 

= 10 and four values of λu ( = 10
4
 , 10

3
, 5×10

2
, 10

2
) with a power variogram (PV) ( )2

sγ = 2

2

H
A s  415 

where ( ) ( )2 / 4 1 / 2
H

A A H H= Γ −π . The slopes of the TPV and PV coincide in a midrange of lags 416 

(labeled Zone II) but not in the outlying ranges of small and large lags (labeled Zone I and III, 417 

respectively). This break in power law scaling at small and large lags is due entirely to the presence of 418 

lower and upper cutoffs, respectively, being unrelated to noise or oversampling which play no role in 419 

Fig. A1 (Neuman, 2010a). It follows that estimating H as the slope of the variogram on log-log scale is 420 

valid at intermediate lags but not at small and large lags which would lead, respectively, to over- and 421 

under-estimation of its value. Fig. A2 complements this analysis by juxtaposing the TPVs associated 422 

with Gaussian modes in Fig. 14a with corresponding PVs. 423 

For a PV (A2) takes the form  424 

( ) ( )
2

; , 1 !! 2 1, 2,....

1

qqq qH

l u i

if q is odd
S G s q A s q n

if q is even


 = ∆ λ λ = − =π 



 
(A8) 425 

rendering a log-log plot of S
q
 versus s linear with constant slope qH. As in the case of q = 2, the slopes 426 

of corresponding truncated structure functions are similar in the midrange of lags but larger and 427 

smaller, respectively, at small and large lags. 428 

From (A2) it follows that the ratio between structure functions of order q+1 and q is 

 

429 

( )
( )

( )
( )

2

1

2

!!
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1, 2,....
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l u
q

q
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q
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q n
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q

+


π γ λ λ −
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 γ λ λ
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 431 

which depends on the square root of ( )2 ; ,l usγ λ λ . Using (A2) to express ( )2 ; ,l usγ λ λ  as a function of 432 

qS  and substituting into (A9) yields, after some manipulation, 433 

( ) ( )

( ) ( )

1

1
1

1

1

1
1

1 !!

2 2 1 !! 1 !!
1, 2,....

2 1 !!

1 !! 1 !!

q
q q

q

q
q q

q
S if q is odd

q q
S q n

q
S if q is even

q q

+

+

+


 π π      − −  

= =
  
      π − − 

 (A10)

 434 

This makes clear that 
1q

S
+

 is linear in 
q

S  on log-log scale regardless of what functional form does 435 

( )2 ; ,l usγ λ λ  take. The slope of this line decreases asymptotically from 2 at q = 1 toward 1 as q → ∞. 436 

Equation (A10) and its asymptotic behavior follow from the fact that (A2) is equivalent to (6) in which 437 

( )2( ) 2 ; ,
l u

f s sγ λ λ =
 

. As such it helps explain how and why ESS works for our data. The same 438 

explains how and why ESS worked for sub-Gaussian processes ( ); ,l uW G s∆ λ λ  considered by 439 

Guadagnini and Neuman (2011).  440 
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Tables 

Table 1. Calibration results, main statistics and Model quality criteria. The 95% confidence intervals of 

the parameter estimates are reported in parenthesis. 

Only 
1

NS  data 

 x-axis y-axis 
Modes Gaussian Exponential Gaussian Exponential 
λu [cm] 2.82 (1.84 - 4.56) 1.65 (0.21 - 3.10) 2.15 (1.41 – 2.91) 1.27 (0.55 - 1.98) 

λl  [cm] 6.1×10
-4

 (0 - 6.5×10-3) 9.2×10
-2

 (0 - 3.8×10-3) 8.9×10
-3

 (0 - 4.3×10-2) 1.7×10
-1

 (0 - 4.1×10-1) 

A[cm
-2H

] 0.64 1.41 0.88 2.01 

Jmin  0.12 0.12 0.04 0.04 
2

γσ  9.55×10
-3

 9.49×10
-3

 2.88×10
-3

 3.25×10
-3

 

NLL - 23.58 - 23.65 - 39.16 -37.57 

|Q| 1.24×10
-6

 8.26×10
-4

 4.27×10
-6

 1.15×10
-4

 

KIC -8.53 -15.10 -25.34 -27.05 

Only 
2

NS  data 

 x-axis y-axis  
Modes Gaussian Exponential Gaussian Exponential 
λu [cm] 2.73 (1.04 - 4.43) 1.64 (0.21 - 3.07) 2.14 (1.27 – 2.99) 1.26 (0.47 - 2.04) 

λl  [cm] 2.3×10
-5

 (0 - 5.6×10-4)  4.8×10
-2

 (0 - 2.5×10-1)  2.5×10
-4

 (0 - 3.0×10-3) 8.4×10
-2

 (0 - 2.8×10-1) 

A[cm
-2H

] 0.61 1.29 0.74 1.70 

Jmin  0.10 0.10 0.03 0.04 
2

γσ  7.97×10
-3

 7.76×10
-3

 2.68×10
-3

 2.91×10
-3

 

NLL - 25.93 - 26.27 - 40.10 -39.04 

|Q| 6.26×10
-9

 3.59×10
-4

 3.44×10
-8

 8.37×10
-5

 

KIC -5.58 -16.88 -21.46 -28.20 
1

NS  and 
2

NS  data jointly 

 x-axis y-axis  
Modes Gaussian Exponential Gaussian Exponential 
λu [cm] 2.78 (0.96 - 4.61) 1.65 (0.12 - 3.18) 2.19 (0.71 – 3.66) 1.31 (0 – 2.61) 
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λl  [cm] 1.5×10
-4

 (0 - 2.4×10-3)  6.8×10
-2

 (0 - 3.3×10-1)  2.0×10
-3

 (0 - 2.4×10-2) 1.2×10
-1

 (0 - 4.9×10-1) 

A[cm
-2H

] 0.62 1.35 0.80 1.78 

Jmin 0.63 0.63 0.60 0.61 
2

γσ  2.44×10
-2

 2.43×10
-2

 2.30×10
-2

 2.33×10
-2

 

NLL - 22.77 - 22.91 - 24.28 - 23.97 

|Q| 2.12×10
-7

 9.42×10
-4

 8.86×10
-6

 1.16×10
-3

 

KIC -4.56 -13.11 -9.80 -14.37 

 

 

 

 

 

Table 2. Multiple faces data. Estimates of µ = λu / L and the associated support scale lm.  

 µ lm [cm] 

 x-axis y-axis x-axis y-axis 

Data Gauss Exp Gauss Exp Gauss Exp Gauss Exp 
1

NS   0.094 0.055 0.072 0.042 0.01 1.68 0.00 4.10 

2

NS   0.091 0.055 0.061 0.042 0.00 0.87 0.02 2.01 

1

NS  and
 

2

NS  jointly 0.093 0.055 0.073 0.044 0.00 1.24 0.03 2.69 
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Figure Captions 532 

Figure 1. Scheme of block (size: 81 × 74 × 63 cm
3
) of Topopah Spring tuff sample. Faces of size 30 × 533 

30 cm
2
 where MSP measurements were taken are highlighted in gray.  534 

Figure 2. Increments, ∆Y (sx = 8.5 cm), versus position, x, along three transects on face 1 (y = 0, 10.16, 535 

20.32 cm) for (a) ri = 0.15 cm and (b) ri = 1.27 cm. 536 

Figure 3. Frequency distributions of ∆Y (sx = 8.5 cm) on multiple faces and ri = 0.15; 1.27 cm 537 

(symbols). ML fits of Gaussian probability density functions are also reported (lines). 538 

Figure 4. Sample structure functions of absolute increments of various orders q versus lag along x 539 

direction on face 1 and (a) ri = 0.15 cm, (b) ri = 0.31cm, (c) ri = 0.63cm, (d) ri = 1.27cm. 540 

Dashed vertical lines delineate ranges of lags within which power law scaling is noted.  541 

Figure 5. ξ(q) versus q evaluated for ri = 1.27cm on face 1 along x axis. Continuous line has slope 542 

similar to ξ(q) near q = 0. Dashed line has slope similar to ξ(q) for q ≥ 3.5. 543 

Figure 6. q

NS  versus 1q

NS −  for 2.0 ≤ q ≤ 5.0 and ri = 1.27cm evaluated on face 1 along x-axis. Linear 544 

regression equations and relative regression coefficients (R
2
) are also reported. 545 

Figure 7. G
n,q+1

 versus G
n,q

 for n = 0.5, 1.0 ≤ q ≤ 4.0, ri = 1.27cm evaluated on face 1 along x-axis.  546 

Linear regression equations and relative regression coefficients (R
2
) are also reported. 547 

Figure 8. ξ(q) versus q evaluated for ri = 1.27cm on face 1 in x and y directions. 548 

Figure 9. (a) β(q, q − ∆q) and (b) ρ(q+ ∆q, q, n = 0.5) versus q evaluated on face 1 in x and y directions 549 

and various ri. 550 

Figure 10. ESS estimates of ξ(q) versus q evaluated on face 1 in x direction and various ri. 551 

Figure 11. Sample structure functions of absolute increments of various orders q versus lag in z 552 

direction and (a) ri = 0.15 cm, (b) ri = 0.31cm, (c) ri = 0.63cm, (d) ri = 1.27cm. 553 
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Figure 12. ξ(q) versus q evaluated for ri = 1.27cm using all the available data in x and y directions. ESS 554 

estimates obtained in x direction on face 1 are included for comparison. 555 

Figure 13. (a) β(q, q − ∆q) and (b) ρ(q+ ∆q, q, n = 0.5) versus q evaluated using all available data in x 556 

and y directions and various ri. 557 

Figure 14. Variograms obtained from multiple faces data in (a) x (faces 1, 2, 4)  and (b) y (faces 1, 3, 5) 558 

directions, on the basis of 1

NS  (�) and 2

NS  (×). Estimated variograms are also reported with 559 

continuous (Gaussian modes) and dashed (exponential modes) lines. Black lines correspond 560 

to estimated variograms obtained on the basis of 1

NS  and 2

NS  jointly. 561 

Figure A1. Power variogram (dashed curves) and truncated power variogram (continuous curves) 562 

evaluated with A = 1, H = 0.3, λl = 10 and λu = (a) 10
2
 (b) 5×10

2
 (c) 10

3
 (d) 10

4
.  563 

Figure A2. Power variogram (dashed curves) and truncated power variogram with Gaussian modes 564 

(continuous curves) obtained with the parameters estimated in Fig. 14a on the basis of 1

NS  565 

(red curves), 2

NS
 
(blue curves), and 1

NS  and 2

NS  jointly (black curves) 566 

 567 

 568 
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