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Abstract 

The calibration of hydrologic models is a worldwide challenge due to the uncertainty 

involved in the large number of parameters. The difficulty even increases in a region 

with high seasonal variation of precipitation, where the results exhibit high 

heteroscedasticity and autocorrelation. In this study, the Generalized Likelihood 

Uncertainty Estimation (GLUE) method was combined with the Soil and Water 

Assessment Tool (SWAT) to quantify the parameter uncertainty of the stream flow 

and sediment simulation in the Daning River Watershed of the Three Gorges 

Reservoir Region (TGRA), China. Based on this study, only a few parameters 

affected the final simulation output significantly. The results showed that sediment 

simulation presented greater uncertainty than stream flow, and uncertainty even 

greater in high precipitation conditions than during the dry season. The main 

uncertainty sources of stream flow came from the catchment process while a channel 

process impacts the sediment simulation greatly. It should be noted that identifiable 

parameters such as CANMX, ALPHA_BNK, SOL_K could be obtained with an optimal 

parameter range using calibration method. However, equifinality was also observed in 

hydrologic modeling in TGRA. This study demonstrated that care must be taken when 

calibrating the SWAT model with non-identifiable parameters because these may lead 
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to equifinality of the parameter values. It was anticipated this study would provide 

useful information for hydrology modeling related to policy development in the Three 

Gorges Reservoir Region (TGRA) and other similar areas. 
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1. Introduction 

Watershed hydrology and river water quality models are important tools for 

watershed management for both operational and research programs (Quilbe and 

Rousseau, 2007; Van et al., 2008；Sudheer and Lakshmi, 2011). However, due to 

spatial variability in the processes, many of the physical models are highly complex 

and generally characterized by a multitude of parameters (Xuan et al., 2009). 

Technically, the modification of parameter values reveals a high degree of uncertainty. 

Overestimation of uncertainty may lead to expenditures in time and money and 

overdesign of watershed management. Conversely, underestimation of uncertainty 

may result in little impact on pollution abatement (Zhang et al., 2009). In order to 

apply hydrological models in the practical water resource investigations, careful 

calibration and uncertainty analysis are required (Beven and Binley, 1992; Vrugt et al., 

2003; Yang et al., 2008). 

Much attention has been paid to uncertainty issues in hydrological modeling due to 

their great effects on prediction and further on decision-making (Van et al., 2008；

Sudheer and Lakshmi, 2011). Uncertainty estimates are routinely incorporated into 

Total Maximum Daily Load (TMDL) (Quilbe and Rousseau, 2007). Usually, the 

uncertainty in hydrological modeling is from model structures, input data and 

parameters (Lindenschmidt et al., 2007). In general, structural uncertainty could be 

improved by comparing and modifying the diverse model components (Hejberg and 

Refsguard, 2005). The uncertainty of model input occurs because of changes in 

natural conditions, limitations in measurement, and lack of data (Berk, 1987). One 
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way to deal with this issue is to use random variables as the input data, rather than the 

conventional form of fixed values. Currently, parameter uncertainty is a hot topic in 

the uncertainty research field (Shen et al., 2008; Sudheer et al., 2011). 
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The model parameters can be divided into the conceptual group and the physical 

group (Gong et al., 2011). The conceptual parameters such as CN2 in the SCS curve 

method are defined as the conceptualization of a non-quantifiable process, and 

determined by the process of model calibration. Conversely, physical parameters can 

be measured or estimated based on watershed characteristics when intensive data 

collection is possible (Vertessy et al., 1993; Nandakumar and Mein, 1997). Because of 

the unknown spatial heterogeneity of a studied area and the expensive experiments 

which may be involved, the physical parameters are usually determined by calibrating 

the model against the measured data ( Raat et al., 2004). However, when the number 

of parameters is large either due to the large number of sub-processes being 

considered or due to the model structure itself, the calibration process becomes 

complex and uncertainty issues appear (Rosso, 1994; Sorooshian and Gupta, 1995). It 

has been shown that parameter uncertainty is inevitable in hydrological modeling and 

a corresponding assessment should be conducted before model prediction in the 

decision making process. Studies of parameter uncertainty have been conducted in the 

area of integrated watershed management (Zacharias et al., 2005), peak flow 

forecasting (Jorgeson and Julien, 2005) , soil loss prediction (Cochrane and Flanagan, 

2005), nutrient flux analysis (Murdoch et al., 2005; Miller et al., 2006), assessment of 

the effect of land use change (Eckhardt et al., 2003; Shen et al., 2010; Xu et al., 2011) 

and climate change impact assessment (Kingston and Taylor, 2010) among many 

others. Nevertheless, parameter identification is a complex, non-linear problem and 

numerous possible solutions might be obtained by optimization algorithms 

(Nandakumar and Mein, 1997). Thus, the parameters cannot be identified easily. 

Additionally, different parameter sets may result in similar prediction which is known 

as the phenomenon of equifinality (Beven and Binley, 1992). However, to the best of 

our knowledge, there are few studies about parameter identifiability based on 

uncertainty analysis in hydrological modeling.  
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Several calibration and uncertainty analysis techniques have been applied in previous 

research works, such as the first-order error analysis (FOEA) (Melching and Yoon, 

1996), the Monte Carlo method (Kao and Hong, 1996) and the Generalized 

Likelihood Uncertainty Estimation method (GLUE) (Beven and Binley, 1992). The 

FOEA method is based on linear-relationships and fails to deal adequately with the 

complex models (Melching and Yoon, 1996). The Monte Carlo method requires 

repeating model simulation according to the parameter sampling, resulting in 

tremendous computational time and human effort (Gong et al., 2011). However, the 

GLUE methodology determines the performance of the model focus on the parameter 

set, not on the individual parameters (Beven and Binley, 1992). The GLUE method 

can also handle the parameter interactions and non-linearity implicitly through the 

likelihood measure (Vazquz et al., 2009). In addition, GLUE is a simple concept and 

is relatively easy to implement. Therefore, GLUE is used in this study for parameter 

uncertainty analysis. 
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The Three Gorges Project-the largest hydropower project in the world-is situated at 

Sandoupin in Yichang City, Hubei Province, China. It is composed mainly of the dam, 

the hydropower station, the two-lane, five-stage navigation locks, and the single-lane 

vertical ship lift. While the Three Gorges Project benefits flood control, power 

generation, and navigation, it also has a profound impact on the hydrology and 

environment, such as river flow interruption and ecosystem degradation. Hydrological 

models have been used in this region to study the impact of the project (Lu and 

Higgitt, 2001; Yang et al., 2002; Wang et al., 2007; Shen et al., 2010). However, 

research on the uncertainty of hydrological models in such an important watershed is 

lacking. Due to the varying geographical locations and water systems (Xu et al., 2011), 

it is of great importance to study the uncertainty of model parameters that affect 

hydrological modeling process. Previously we had conducted a parameter uncertainty 

analysis for nonpoint source pollution modeling in this region. In the present study, a 

further study was developed in hydrological modeling.  

Hence, the main objective of this study was to identify the degree of uncertainty and 

uncertainty parameters for prediction of stream flow and sediment in a typical 
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watershed of the Three Gorges Reservoir Region, China. In this study, a semi- 

distributed hydrological model, Soil and Water Assessment tool (SWAT) was 

combined with the GLUE (Generalized likelihood uncertainty estimation) method to 

quantify the uncertainty of parameters and to provide a necessary reference for 

hydrological modeling in the entire Three Gorges Reservoir region. 
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The paper is organized as follows: 1) a description of the study area and a brief 

introduction of the hydrological model and GLUE method; 2) both the impact of 

parameter uncertainty on model output and parameter identifiability are analyzed in 

the result and discussion section; 3) a conclusion is provided. 

2. Methods and Materials 

2.1 Site description 

The Daning River Watershed (108°44′-110°11′E, 31°04′-31°44′N), lies in the central 

part of the Three Gorges Reservoir Area (TGRA) (Fig. 1), is in Wushan and Wuxi 

Counties, in the municipality of Chongqing, China and covers an area of 4,426 km2. 

Mountainous terrain makes up 95% of the total area and low hills contribute the other 

5%. The average altitude is 1197 m. The landuse in the watershed is 22.2% cropland, 

11.4% grassland, and 65.8% forest. Zonal yellow soil is the dominant soil of the 

watershed. This area is characterized by the tropical monsoon and subtropical 

climates of Northern Asia. A humid subtropical monsoon climate covers this area, 

featuring distinct seasons with adequate sunshine (an annual mean temperature of 

16.6°C) and abundant precipitation (an annual mean precipitation of 1,124.5 mm). A 

hydrological station is located in Wuxi County, and this study focused on the 

watershed controlled by the Wuxi hydrological station, which has an area of 

approximately 2027 km2 (Fig. 1). 

2.2 SWAT model 

The SWAT model (Arnold et al., 1998) is a hydrologic/water quality tool developed 

by the United States Department of Agriculture-Agriculture Research Service 
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(USDAARS). The SWAT model is also available within the BASINS (Better 

Assessment Science Integrating point & Non-point Sources) as one of the models that 

the USEPA supports and recommends for state and federal agencies to use to address 

point and nonpoint source pollution control. The hydrological processes are divided 

into two phases: the land phase and the channel/floodplain phase. The SWAT model 

uses the SCS curve number procedure when daily precipitation data is used while the 

Green-Ampt infiltration method is chosen when sub-daily data is used to estimate 

surface runoff. The SCS curve number equation is: 
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where Qsurf is the accumulated runoff or rainfall excess (mm H2O); Rday is the rainfall 

depth for the day (mm H2O); Ia is the initial abstractions, which includes surface 

storage, interception, and infiltration prior to runoff (mm H2O); and S is the retention 

parameter (mm H2O). The retention parameter varies spatially due to changes in soil, 

land use, management, and slope and temporally due to changes in soil water content. 

The retention parameter is defined as: 
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where CN is the curve number for the day.  

The SWAT model uses the Modified Universal Soil Loss Equation (MUSLE) to 

estimate sediment yield at HRU (Hydrological Response Units) level. The MUSLE is 

defined as: 

CFRGusleusleusleuslehrupeaksurfsed FLPCKAqQQ ⋅⋅⋅⋅⋅⋅⋅= 0.56)11.8(                 (3) 

where Qsed is the sediment yield on a given day (metric tons); Qsurf is the surface 

runoff volume (mm H2O/ha); qpeak is the peak runoff rate (m3/s); Ahru is the area of the 

HRU (ha); Kusle is the USLE soil erodibility factor; Cusle is the USLE cover and 

management factor; Pusle is the USLE support practice factor; Lusle is the USLE 

topographic factor; and FCFEG is the coarse fragment factor. 

In order to efficiently and effectively apply the SWAT model, different calibration and 
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uncertainty analysis methods have been developed and applied to improve the 

prediction reliability and quantify prediction uncertainty of SWAT simulations (Arabi 
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et al. 2007). In this study, a parameter sensitivity analysis was performed prior to 

calibrating the model. Based on the sensitivity ranking results provided by Morris 

Qualitative Screening Method, the 20 highest ranked parameters affecting stream flow 

and sediment yield (shown in Table 1) were selected for the following uncertainty 

analysis using the GLUE method. For modeling accuracy, parameters were calibrated 

and validated using the highly efficient Sequential Uncertainty Fitting version-2 

(SUFI-2) procedure (Abbaspour et al., 2007). The initial parameter range was 

recommended from the SWAT manual. This calibration method is an inverse 

optimization approach that uses the Latin Hypercube Sampling (LHS) procedure 

along with a global search algorithm to examine the behavior of objective functions. 

The procedure has been incorporated into the SWAT-CUP software, which can be 

downloaded for free from the EAWAG website (Abbaspour et al., 2009). For the 

runoff, the Nash-Sutcliffe coefficients during calibration period and validation period 

were 0.94 and 0.78, respectively. For the sediment yield, the Nash-Sutcliffe 

coefficients in the calibration and validation period were 0.80 and 0.70, respectively. 

More details can be found in the study of Shen et al. (2008) and Gong et al. (2011). 
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2.3 GLUE method 

The GLUE method (Beven and Freer, 2001) is an uncertainty analysis technique 

inspired by importance sampling and regional sensitivity analysis (Hornberger and 

Spear, 1981). In GLUE, parameter uncertainty accounts for all sources of uncertainty, 

i.e., input uncertainty, structural uncertainty, parameter uncertainty and response 

uncertainty. Therefore, this method has been widely used in many areas as an 

effective and general strategy for model calibration and uncertainty estimation 

associated with complex models. In this study, the GLUE analysis process consists of 

the following three steps: 
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Step 1: Definition of likelihood function.  



The likelihood function was used to evaluate SWAT outputs against observed values. 

In our study, the Nash–Sutcliffe coefficient (E
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NS) was picked because it was the most 

frequently used likelihood measure for GLUE based on the literature (Beven and 

Freer, 2001; Freer et al., 1996; Arabi et al., 2007). 
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where  and  are the measured and simulated values for the iimeaQ , isimQ , th pair, meaQ  

is the mean value of the measured values, and n is the total number of paired values. 
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NS value is from -∞ to 1, with 1 indicating a perfect fit. 

 

Step 2: Sampling parameter sets.  

Due to the lack of prior distribution of parameter, uniform distribution was chosen 

due to its simplicity (Muleta and Nicklow 2005; Lenhart et al. 2007; Migliaccio and 

Chaubey 2008). The range of each parameter was divided into n overlapping intervals 

based on equal probability (Table 1) and parameters were identically chosen from 

spanning the feasible parameter range. The drawback of a typical GLUE approach is 

its prohibitive computational burden imposed by its random sampling strategy.  

Therefore in this study, an improved sampling method was introduced by combing 

Latin Hypercube Sampling (LHS) with GLUE. Compared to random sampling, LHS 

can reduce sampling times and provide a 10-fold greater computing efficiency 

(Vachaud and Chen, 2002). Therefore, LHS was used for random parameter sampling 

to enhance the simulation efficiency of the GLUE simulation. Values then were 

randomly selected from each interval. 

If the initial sampling of the parameter space was not dense enough, the GLUE 

sampling scheme probably could not ensure a sufficient precision of the statistics 

inferred from the retained solutions (Bates and Campbell, 2001). Hence, a large 

number of sampling sets (10000 times) were conducted. Because the SWAT module 

and the SWAT-CUP software were in different interfaces, all of the 10,000 simulations 
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were calculated manually. The whole simulation period lasted six months on a 

Centrino Duo@2.8 GHz computer. 
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Step 3: Threshold definition and results analysis.  

Compared to other applications (Gassman et al., 2007), 0.5 was judged as a 

reasonable ENS value for SWAT simulation. In this study, we set 0.5 as the threshold 

value of ENS and if the acceptability was below a certain subjective threshold, the run 

was considered to be “non-behavioral” and that parameter combination was removed 

from further analysis. In this study, the SWAT model was performed 10,000 times 

with different parameter sample sets. For each output, the dotty plot, cumulative 

parameter frequency and 95% confident interval (95CI) were analyzed. 

3. Results and Discussion 

3.1 Uncertainty of outputs 

For the purpose of determining the extent to which parameter uncertainty affects 

model simulation, the degree of uncertainty of outputs was expressed by 95CI, which 

was derived by ordering the 10000 outputs and then identifying the 2.5% and 97.5% 

threshold values. The 95CI for both stream flow and sediment period were shown in 

Fig. 2. It was evident that the 95CI for stream flow and sediment was 1-53 m3/s and 

2,000-7,657,800 t, respectively. In addition, sediment simulation presented greater 

uncertainty than stream flow, which might be due to the fact that sediment was 

affected and dominated by both stream flow processes as well as other factors such as 

land use variability (Shen et al. 2008; Migliaccio and Chaubey 2008). 

From Fig. 2, the temporal variation of outputs was presented in which an evidently 

clear relationship was obtained between the amount of the rainfall and the width of 

confidence interval. This result highlighted an increased model uncertainty in the high 

precipitation condition. The variability in the uncertainty of sediment was the same as 

that for runoff, because runoff affects both factors. This could be explained by the fact 

that uncertainty was inherent in precipitation due to variability in the time of 
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occurrence, location, intensity, and tempo-spatial distribution (Shen et al. 2008). In a 

hydrology model such as SWAT, although a rainfall events may affect only a small 

portion of the basin, the model assumes it affects the entire basin. This may cause a 

larger runoff event to be observed in simulation although little precipitation was 

recorded due to the limited local extent of a certain precipitation event. In the Three 

Gorges Reservoir area, the daily stream flow changes frequently and widely, thus the 

monthly mean value of runoff might not represent the actual change very well and the 

discrepancy between the measured mean value and simulated mean value would be 

high. Hence, daily precipitation data might be invalid in the TGRA and more detailed 

precipitation data and stations should be obtained for hydrology modeling in the 

TGRA. 
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From Fig. 2, it is clear that most of the observed values were bracketed by the 95CI, 

54% for stream flow outputs and 95% for sediment. However, several stream flow 

observations were observed above the 97.5% threshold values (such as March, April, 

November 2004; March, April, May, June, July, August and October 2005; February, 

March, April, May and July 2006; March, May, June, July and August 2007). 

Conversely, only one observation (October 2006) was observed below the 2.5% 

threshold of sediment output. Measured value was not entirely in the range of 95CI, 

indicating that the SWAT model could not fully simulate the flow and sediment 

processes. However, it was acknowledged that for a parameter, model structure and 

data input can also cause uncertainty in model simulation (Bates and Campbell, 2001; 

Yang et al., 2007). Based on the results presented in this study, it was not possible to 

tell the extent to which the errors in the input and model structure contribute on the 

total simulation uncertainty. However, as parameter uncertainty was only able to 

account for a small part of whole uncertainty in hydrological modeling, this study 

suggests further studies are needed on model structure and input in TGRA. 

Another concern in hydrologic modeling was the equifinality of model 

parameters (Beven and Binley, 1992; Wagener and Kollat, 2007). Table 2 showed 

multiple combinations of parameter values yield the same ENS during hydrologic 

modeling in TGRA. The so-called equifinality showed there was no unique parameter 
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estimation and hence uncertainty in the estimated parameters in TGRA was obvious. 

This result agreed well with many other studies (Beven and Binley, 1992). This may 

due to the fact that parameters obtained from calibration were affected by several 

factors such as correlations amongst parameters, sensitivity or insensitivity in 

parameters, spatial and temporal scales and statistical features of model residuals 

(Wagener et al., 2003; Wagener and Kollat, 2007). It could be inferred that the 

identifiability of an optimal parameter obtained from calibration should also be 

evaluated. For an already gauged catchment, a virtual study can provide a point of 

reference for the minimum uncertainty associated with a model application. This 

study highlighted the importance of the monitoring task for several important physical 

parameters to determine more credible results for watershed management.  
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3.2 Uncertainty of parameters 
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Fig. 3 and Fig. 5 illustrate the variation of ENS for the Daing River watershed as a 

function of variation of each of the 20 parameters considered in this study. By 

observing the dotty plot from Fig. 3, it was evident that the main sources of 

streamflow uncertainty were initial SCS CN II value (CN2), available water capacity 

of the layer (SOL_AWC), maximum canopy storage (CANMX), base flow alpha factor 

for bank storage (ALPHA_BNK), saturated hydraulic conductivity (SOL_K), and soil 

evaporation compensation factor (ESCO). Among the above six parameters, 

SOL_AWC and CANMX were the most identifiable parameters for the Daing River 

watershed. This could be explained by the fact that SOL_AWC represented soil 

moisture characteristics or plant available water. This parameter plays an important 

role in evaporation, which is associated with runoff (Burba and Verma, 2005). It has 

also been suggested that the soil water capacity has an inverse relationship with 

various water balance components (Kannan et al., 2007). Therefore, an increase in the 

SOL_AWC value would result in a decrease in the estimate of base flow, tile drainage, 

surface runoff, and hence, water yield. As shown in Fig. 3, the optimal range of 

SOL_AWC was between [0, 0.2] and better results could be obtained in this interval. 

By using calibration methods, optimal parameter ranges could also be obtained 



without much difficulty for other identifiable parameters (CANMX [0, 30], 

ALPHA_BNK [0.3, 1], SOL_K [80, 300] ) could also be obtained optimal parameter 

range using calibration method without much difficulties. However, presence of 

multiple peaks in the Nash-Sutcliffe model efficiency for CN2 and ESCO indicated 

that estimation of these parameters might not be feasible. 
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However, it should be noted that non-identifiability of a parameter does not indicate 

that the model was not sensitive to these parameters. Generally, CN2 was considered 

as the primary source of uncertainty when dealing with stream flow simulation 

(Eckhardt and Arnold, 2001; Lenhart et al., 2007). This study showed that CN2 

exhibited non-identifiability in the stream flow simulation. This is similar to the study 

proposed by Kannan et al (2007). The potential cause would be that there was an 

explicit provision in the SWAT model to update the CN2 value for each day of 

simulation based on available water content in the soil profile. Therefore, a change in 

the initial CN2 value would not greatly affect water balance components. Estimation 

of non-identifiable parameters, such as CN2 and ESCO for the Daning River 

watershed, would be difficult as there may be many combinations of these parameters 

that would result in a similar model performance. 

Fig. 4 and Fig. 6 illustrate the cumulative parameter frequency for both stream flow 

and sediment in the Daing River watershed. As shown in Fig. 4, the parameters were 

not uniformly or normally distributed, especially SOL_AWC, CANMX and ESCO. 

ESCO represents the influence of capillarity and soil crannies on soil evaporation in 

each layer. Therefore, a change in the ESCO value affected the entire water balance 

component. When there were higher ESCO values, the estimated base flow, tile 

drainage and surface runoff increased. The greater uncertainty of this parameter 

indicated that the soil evaporation probably played a greater role in the whole 

evaporation process, possibly due to the high air temperature in the TGRA. In 

comparison, other parameters such as CN2 and SOL_K were close to a uniformly 

distribution while they were also more or less skewed. This non-linearity further 

implies that the uncertainty in model input did not translate directly into uncertainty in 

the model outputs but might rather appear significantly dampened or magnified in the 
12 

 



output (Sohrabi et al., 2003). This result demonstrates the important opinion that the 

model output was influenced by the set of parameters rather than by a single 

parameter (Beven and Binley, 1992). 
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Similar to the stream flow simulation, even though many of the parameters were 

sensitive and affected the sediment simulation, only a small number of the sensitive 

parameters were identifiable. As shown in Fig. 5, the factors of uncertainty for 

sediment were CN2, Manning’s value for main channel (CH_N2), maximum canopy 

storage (CANMX), base flow alpha factor for bank storage (ALPHA_BNK), 

exp.Re-entrainment parameter for channel sediment routing (SPEXP), 

lin.re-entrainment parameter for channel sediment routing (SPCON), channel cover 

factor (CH_COV) and channel erodibility factor (CH_EROD). Clearly, the parameter 

samples were very dense around the maximum limit (Fig. 6). Summarizing the 

information in Fig. 3, 4, 5 and 6, it can be said that the parameters with greater 

uncertainty of stream flow mainly come from the surface corresponding process and 

the parameters with greater uncertainty of sediment focused on the channel response 

process. The results matched well with those of Yang et al. (2011) and Shen et al. 

(2010). 

4. Conclusion 

In this study, the GLUE method was employed to assess the parameter uncertainty in 

the SWAT model applied in the Daning River Watershed of the Three Gorges 

Reservoir Region (TGRA), China. The results indicate that only a few parameters 

were sensitive and had a great impact on the stream flow and sediment simulation. 

CANMX, ALPHA_BNK and SOL_K were identified as identifiable parameters. The 

values of these parameters could be obtained by calibration process without much 

difficulties. Conversely, there were multiple possible values for CN2 and ESCO. This 

indicates that calibration of these parameters might be infeasible. These 

non-identifiability parameters even led to equifinality in hydrologic and NPS 

modeling in the TGRA. It was anticipated that the parameter uncertainty are 

systematically correlated to the non-identifiability parameters. Under such cases, a 

13 
 



user should check if any information related to the watershed characteristics and its 

underlying hydrologic processes could be used to provide a more precise range for 

model parameter. It is anticipated that this study would provide some useful 

information for hydrological modeling related to policy development in the Three 

Gorges Reservoir Region (TGRA) and other similar areas. 

373 

374 
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377 
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379 

380 

381 

382 

383 

384 

385 

386 

387 

It is suggested that more detailed measured data and more precipitation stations 

should be obtained in the future for hydrological modeling in the TGRA. And also 

further studies should be continued in the field of model structure and input to 

quantify hydrological model uncertainty in the TGRA. 
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Table 1 the range and optimal value of model parameter 1 

 Name Lower limit Upper limit Optimal value 
1 r_CN2.mgt -0.25 0.15 -0.2143 
2 v_ALPHA_BF.gw 0 1 0.6075 
3 v_GW_DELAY.gw 1 45 13.4854 
4 v_CH_N2.rte 0 0.5 0.2870 
5 v_CH_K2.rte 0 150 36.1563 
6 v_ALPHA_BNK.rte 0 1 0.1572 
7 v_SOL_AWC.sol 0 1 0.0038 
8 r_SOL_K.sol -0.2 300 251.4728 
9 a_SOL_BD.sol 0.1 0.6 0.4442 
10 v_SFTMP.bsn -5 5 0.0499 
11 v_CANMX.hru 0 100 2.68 
12 v_ESCO.hru 0.01 1 0.5637 
13 v_GWQMN.gw 0 5000 3023.488 
14 v_REVAPMN.gw 0 500 380.7558 
15 v_USLE_P.mgt 0.1 1 0.6443 
16 v_CH_COV.rte 0 1 0.8124 
17 v_CH_EROD.rte 0 1 0.0350 
18 v_SPCON.bsn 0 0.05 0.0210 
19 v_SPEXP.bsn 1 1.5 1.1924 
20 r_SLSUBBSN.hru -0.1 0.1 0.0490 
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Table 2 the equifinality of model parameters 2 

Flow Sediment Parameter 
Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

r__CN2.mgt 0.0203 -0.1027 -0.0085 0.1363 0.0217 0.0643 
v__ALPHA_BF.gw 0.4048 0.0087 0.4896 0.3411 0.0191 0.0324 
v__GW_DELAY.gw 36.0475 24.2712 39.5298 35.3257 13.4576 13.2559

v__CH_N2.rte 0.4176 0.3761 0.2179 0.2947 0.2024 0.2178 
v__CH_K2.rte 32.1141 89.7282 16.4653 10.1802 38.9954 18.0410

v__ALPHA_BNK.rte 0.3616 0.4323 0.3980 0.4089 0.9418 0.4505 
v__SOL_AWC(1-2).sol 0.0796 0.0307 0.0006 0.1660 0.3279 0.1196 

r__SOL_K(1-2).sol 113.3080 137.3520 166.4420 58.4822 234.5450 48.3082
a__SOL_BD(1-2).sol 0.1476 0.1905 0.2797 0.2512 0.3964 0.3136 

v__SFTMP.bsn -1.7443 1.9458 3.7872 -1.3314 -3.5880 -0.9027 
v__CANMX.hru 2.8527 6.3323 24.4465 22.0842 29.0789 6.0640 

v__ESCO.hru 0.9775 0.0217 0.0800 0.2704 0.7215 0.3153 
v__GWQMN.gw 1256.920 205.524 913.087 4958.950 372.250 4729.050

v__REVAPMN.gw 137.0420 129.2090 434.2130 390.4860 71.2840 34.4314
v__USLE_P.mgt 0.5067 0.2462 0.4990 0.1085 0.6628 0.6285 

r__SLSUBBSN.hru 0.0402 -0.0759 -0.0946 -0.0771 0.0011 0.0481 
v__CH_Cov.rte    0.8376 0.3398 0.1628 

v__CH_EROD.rte    0.8894 0.6481 0.5564 
v__SPCON.bsn    0.0326 0.0391 0.0358 
v__SPEXP.bsn    1.4285 1.2595 1.3446 

ENS 0.6915 0.6917 0.6919 0.6997 0.6999 0.7000 
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Fig.1 Location of Daning River Watershed 1 

2 

3 

4 

5 

6 

Fig. 2 the 95CI for stream flow and sediment period 

Fig.3 The dotty plot map for stream flow simulation 

Fig.4 The cumulative parameter frequency for stream flow 

Fig.5 The dotty plot map for sediment simulation 

Fig.6 The cumulative parameter frequency for sediment 
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