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cA~aQ...-
Abstract. The calibration of hYdrOIOg~ is a worldwide dj""~y<aue to the uncertainty involved in 


the large number of parameters. The' ty t~n increases in tma. region with high seasonal variation 


of precipitation, where the results exhibit high heteroscedasticity and autocorrel~~. In this study, the 

Generalized likelihood Uncertainty Estimation (GLUE) method was combined Wit~Soil and Water 

Assessment Tool (SWAT) to quantify the parameter uncertainty of the stream flow and sediment 

simulation in the Daning River Watershed of the Three Gorges Reservoir Region (TGRA), China. Based on 

this study, only a few parameters affected the final simulation output significantly. The results showed J1 
that sediment simulation presented gr;f~er ~rtainty than stream flow, and uncertainty even inereesQ(\ O~ 

in high precipitation conditio{tha~ sefon. The main uncertainty sources of stream flow ~ came 

from the catchment process whil~hannel process impacts the sediment simulation greatlrJ(. should be 

noted that identifiable parameters such as CANMX, ALPHA_BNK, SOCK could be obtained,J\.oPtl~ 
parameter range using ca~tion method. However, equifinality was also observed in hydrologic"l1l"J~ 

modeling in TGRA. This ~Jdemonstrated that care must be taken when calibrating the SWA1. ~~n 

-identifiable parameters~te~ay lead to equifinality of the parameter values. It ~~ticiPai:ed thIS 


A. 
study would provide useful information for hydrology modeling related to policy development in the Three 

Gorges Reservoir Region (TGRA) and other similar areas. 
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Abstract 

The calibration of hydrologic models is a worldwide difficulty due to the uncertainty 
involved in the large number of parameters. The difficulty even increases in the re­
gion with high seasonal variation of precipitation, wherl the results exhibit high het­

5 eroscedasticity and autocorrelation. In this study, the Generalized Likelihood Uncer­
tainty Estimation (GLUE) method was combined with Soil and Water Assessment Tool 
(SWAT) to quantify the parameter uncertainty of the stream flow and sediment simu­
lation in the Daning River Watershed of the Three Gorges Reservoir Region (TGRA), 
China. Based on this study, only a few parameters affected the final simulation output 

10 significantly. The results showed that sediment simulation presented greater uncer­
tainty than stream flow, and uncertainty even increased in high precipitation condition 
than dry season. The main uncertainty sources of stream flow mainly came from the 
catchment process while channel process impacts the sediment simulation greatly. It 
should be noted that identifiable parameters such as CANMX, ALPHA.BNK, SOLK 

15 could be obtained optimal parameter range using calibration method. However, equi­
finality was also observed in hydrologic modeling in TGRA. This paper demonstrated 
that care must be taken when calibrating the SWAT with non-identifiable parameters as 
these may lead to equifinality of the parameter values. It is anticipated this study would 
provide useful information for hydrology modeling related to policy development in the 

20 Three Gorges Reservoir Region (TGRA) and other similar areas. 

1 Introduction 

Watershed hydrology and river water quality models are important tools for watershed 
management for both operational and research programs (Qui/be and Rousseau, 2007; 
Van et aI., 2008; Sudheer and Lakshmi, 2011). However, due to spatial variability in the 

25 processes, many of the phYSical models are highly complex and generally character­
ized by a multitude of parameters (Xuan et aI., 2009). Technically, the modification of 
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parameter value~als a high degree of uncertainty. Overestimation of uncertainty 
may lead to CIltiWIIi,h e al4ijiJlllilit1 and overdesign of ~~l~J!..Tanagement. Con­
versely, underestimation of uncertainty may result in little )If ,4iIution abatement 
(Zhang et at, 2009). In order to apply hydrological models in U!ICr practical water re­
source investigatior?, careful calibration and uncertainty analysis are required (Beven 
and Binley, 1992; \!rugt et at, 2003; Yang et at, 2008). 

Much attention has been paid to uncertainty issues in hydrological modeling due to 
their great effects on prediction amyurther,on decision-making (Van et aI., 2008; Sud­
heer and Lakshmi, 2011). Uncertainty estimates are routinely incorporated into Total 
Maximum Daily Load (TMDL) (Quilbe an~Ro'€,seau, 2007). Usually, the uncertainty 
in hydrological modeling is from model ~':~8',,~~put data and paramete~(Linden­
schmidt et aI., 2007). In general, structural uncertainty could be improved by comparing 
and modifying the diverse model components (Hejberg and Refsguard, 2005). The un- • 
certainty of model input occurs because of changes in natural conditions, limitations 1/11(.,. 
measurement, and lack of data (Berk, 1987). One way to deal with this issue is to use 
random variables as the input data, rather thanMconventional form of fixed values. 
Currently, parameter uncertainty is a hot topic in;tmcertainty research field (Shen et aI., 
2008; Sudheer et aI., 2011 ).~ i:f...sv 

The model parameters cestd be divided into the conceptual group and,..physical group 
(Gong et al., 2011). The conceptual parweters such as CN2 in the scS curve method 
are defined as the conceptualization o~non-quantifiable process, cw£Lqetermined by 
the process of model calibration. Conversely, physical parameters ~be measured 
or estimated based on watershed characteristi~when intensi~ data colle~on is pos­
sible (Vertessyeta!., 1993; Nand.9klJmar and Mein, 1~ ::f:~un~nown spatial 
heterogeneity o~Sludied area amfFxpensive experiment~ Invo~~,;he physical pa­
rameters are usually determined by calibrating the model against the measured data 
(Raat et aI., 2004). However, when the number of parameters is large either due to the 
large number of sub-processes being considered or due to the model structure itself, 
the calibration process becomes complex and uncertainty issues ~ (Rosso, 

Gtk~ 
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1994; Sorooshian and Gupta, 1995). It has been ~ that parameter uncertainty 
is inevitable in hydrological modeling and _~orresponding assessment should be 
conducted before model prediction in the ,gecision making process. Studies of param­
eter uncertainty have been conducted in~~a of integrated watershed management 
(Zacharias et at, 2005), peak flow forecasting (Jorgeson and Julien, 2005), soil loss 
prediction (Cochrane and Flanagan, 2005), nutrient flux" analysis (Murdoch et at, 
2005; Miller et at, 2006), assessment of the effect of land use change (Eckhardt et 
at, 2003; Shen et aI., 2010; Xu et aI., 2011) and climate change impact assessment 

--'"'7'(Kingston and Taylor, 2010) among many others. Nevertheless, parameter identifica­
tion is a complex, non-linea? problem and IRani igbt ~e numerous possible solutions 

1'\Aij)..{ kObtain3~!i!rization algorithms (Nandakumar and Mein, 1997). Thus, the param-
TV~ 	 eters ~ ~j~e!ltif!ed easily. Additionally, different parameter sets may result in 

similar prediction~ «a§ the phenomenon of equifinality (Beven and Binley, 1992). 
However, to the best of our knowledge, there are few studies about parameter identifi­
ability based on uncertainty analysis in hydrological modeling. ~£,~ 
l<-llteplli8re~veral calibration and uncertainty analysis techniques,lipplied in previous 

rE'-7~~ WOtes881;eAaS, such as the first-order error analysis (FOEA) (Melching and Yoon, 1996), 
the Monte Carlo method (Kao and Hong, 1996) and the Generalized Likelihood Un­
certainty Estimation method (GLUE) (Beven a d Bin 1992). The FOEA method is 
based on Iinear-relationshi~and fails to deaf-wit t e c plex models (Melching and 
Yoon, 1996). The Monte Carlo method requires repea model simulation according 
to the parameter sampling, resulting in tremendous computational time and human ef­
fort (Gong et at, 2011). However, the GLUE methodology determines the e:erformance 
of the model focus on the paramete~ not on the individual paramete~(Beven and 
Binley, 1992). The GLUE method ~ also handle the parameter interactions and 
non-linearity implicitly through the likelihood measure (Vazquz et aI., 2009). In addi­
tion, GLUE is a simple concept and is relatively easy to implement. Therefore, GLUE 
is used in this study for parameter uncertainty analysis. 
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The Three Gorges Project-the largest hydropower project in the world-is situated at 
Sandoupin in Yichang City, Hubei Province, China. It is composed mainly of the dam, 
the hydropower station, the two-lane, five-stage navigation locks, and the single-lane 
vertical ship lift. While the Thr69 G~~ Project me:k:el I'• ...,. tor flood control, 

5 	 power generation, and n~ijJ~Uori;1fatsonas a profound impact on the hydrology and 
environment, such as rivet.A!merr6'ption and ecosystem degradation. Hydrological mod­
els have been used in this region to study the impact of the project (Lu and Higgitt, 
2001; Yang et at, 2002; Wang et a!., 2007; Shen et al., 2010). However, research on 
the .ertflip!y.of hydrological models in suc~~portant watershed is lacking. Due to 

10 	 the ~C<;aphicallocations and water systems Q'u et al., 2011), it is of great impor­
tance to study the uncertainty of model J?~rametehthat affect, hydrological modeling 
process. Previously we had conducted:1)arameter uncertainty analysis for nonpoint 
source pollution modeling in this regio~ In the present study, a further study was 
MI:or developed in hydrological modeling. 

15 Hence, the main ob~ective of this study was to identify the degree of uncertainty and 
uncertainty paramete~for prediction of stream flow and sediment in a typical watershed 
of the ,Three Gorges. Reservoir Region, China. In this study, a semi~ distri~ll1~d hy­

~ drologlcal model, SOil and Water Assessment tool (SW~~was combined wlt~LUE 
(Generali~~ li~§liho~ uncertainty estimation) method to quantify the uncertainty of 

20 paramete~~li8~necessary reference for hydrological modeling in the entire Three 
Gorges Reserv~ir region. ~ 

The paper vlI8i{'organized as follows: (1) a description o~siUdy area and a brief intro­
duction of the hydrological model and GLUE method; (2) Doth the impact of parameter 

H'_uncertainty on model out~t and parameter identifiability 'Wefe analyzed in ttllit; PSf1!ot 

2rTesulfand discussion; (3kconclusion WJIS provided. Q..-t'e­
~ 1/5 
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2. 	 Methods and materials , .•• \:L, G;cl=:~~~".'~L-"lllif~ki~di"" 
2.1 Site description //~~- 0 ~~~~~ '/) 

.. The Daning River WZIrshed (10S"44'-110"II'E. 31"04'-31~eS in the cen· 

_. K.Ac.. ~of the Three orges Reservoir Ar~TGR~) (Fig. 1>'Joca't~d in Wushan and 

~ Wuxi e&imty, in the of Chongqing.t1.~~na~coverllQ an area of 4426 km2

• Mountain 
tI -~"'~ makes up 95,% of the total area an~llills contributep the other 5%. The aver­
~ o..~7 ~ X sPge altitude ~ 1197 m. The .... landuse in the watershed i~ 22.2 % cropland, 
QJ oJ..f?~ L ~ 11.4 % grassland, and 65.8 % forest. "'~nal yellow soil is the dominant soil of the 
\0u..'f-'''' c;.:i watershed. This area is characterized by the tropical monsoon and subtropical climates 

10 of Northern Asia. A humid subtropical monsoon climate covers this area, featuring dis­

tinct seasons with adequate i mination (an annual mean temperature of 16.6°C) and 


. Ion (an annual mean precipitation of 1124.5 mm). A hydrological 

ation is located in Wuxi County • ....nhis study focused on the watershed controlled 
Q" j;rJ-:­

~~v 
I' 

by the Wuxi hydrological station,~f approximately 2027 km2 (Fig. 1). 
• ). Gt.-")I\ ClLt"eL,,~ 

15 	 2.2 SWAT model 

The SWAT Arnold et al., 1998 moderis a hydrologic/water quality tool developed 
by the Unite ates epartment of Agriculture-Agricu~_Research Service (US­
DAARS). The SWAT model is also available within the ~SIN..$ as one of the mod­
els that the USEPA supports and recommends for state arRrfederal agencies to use 

20 	 to address point and nonpoint source pollution control. Th hydrological processes 

are divided into two phases: the land phase and the chann Vfloodplain phase. The 

SWAT m0ftuses the SCS curve number procedure when d ily precipitation data is 

used whit . reen-Ampt infiltration method is chosen when s b-daily data is used to 

estimate s rface runoff. The SCS curve number equation is: 


1 
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)2(Rday -/a
(1 ) 

Q 
surf = (Rday-/a +5) 

where Q surf is the accumulated runoff or rainfall excess (mm H20); Rday is the rain­
fall depth for the day (mm H20); la is the initial abstractions, which includes surface 
storage, interception, and infiltration prior to runoff (mm H20); and 5 is the retention 

5 	 parameter (mm H20). The retention parameter varies spatially due to changes in soil, 
land use, management, and slope and temporally due to changes in soil water content. 
The retention parameter is defined as: ~ 

1\ 	 ~t,"~
5 = 25400 -254 	 (\ I ·IC.~ \ (2)

CN I-\~~YO °a 
where CN is the curve number fo e day. 

10 The SWAT model uses the odified Universal Soil Loss Equation (MUSLE) to esti­
mate sediment yield at HR level. The MUSLE is defined as: 

Q sed = 11.8(Qsurf·Qpeak·Ahru)O.56 ·Kusle,Cusle ,Pusle·Lusle • FCFRG 	 (3) 

where Q sed is the sediment yield on a given day (metric tons); Q surf is the surface runoff 
volume (mm H20lha); qpeak is the peak runoff rate (m3 

S-l); Ahru is the area of the HRU 
15 (H)piJellgicat .elf' m iii) (ha); Kusle is the USLE soil erodibility factor; C usle is the 

USLE cover and management factor; Pus1e is the USLE support practice factor; Lusle is 
the USLE topographic factor; and FCFEG is the coarse fragment factor. 

In order to effiCiently and effectively apply the SWAT model, different calibration and 
uncertainty analysis methods have been developed and applied to improve the pre­

20 	 diction reliability and quantify prediction uncertainty of SWAT simulations (Arabi et al., 
2007). In this study, a parameter sensitivity analysis was perform~iR!ior to calibrat­
ing the model. Based on the sensitivity ranking results provided by~orris Qualitative 
Screening Method, the 20 highest ranked parameters affecting stream flow and sedi­
ment yield (shown in Table 1) were selected for the following uncertainty analysis using 

8209 
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QDG\.J..¥~~ 
the GLUE method. For modeling aee"" •• ly, parameters were calibrated and validated 
using the highly efficient Sequential Uncertainty Fitting version-2 (SUFI-2) pr5f~dure 
(Abbaspour et al., 2007). The initial parameter range was recommended fro~AT 
manual. This calibration method is an inverse optimization approach that uses the Latin 

5 Hypercube Sampling (LHS) procedure along with a global search algorithm to exam­
/,r • 'v\ ine the behavior of objective functions. The procedure has been incorporated into the 

11o\.,- t SWAT-CUP software, which can be downloaded for free from the EAWAG wff§ite (Ab­
~ ~,k ,\1 ----;tbaspour et aI., 2009). For the runoff, the Nash-Sutcliffe coefficients during

A
ca1ibration 

'}"-'~ \) 7 p8ie8 and validation ~iocfwere 0.94 and 0.78 For the sediment yield, the Nash­\1 

(~~ 10 Sutcliffe coefficients in""calibration p8fjed and vali tion perio{were 0.80 and 0.70, 
. -\J respectively. More details Gettkt be found in the stu of Shen et al. (2008) and Gong 

et al. (2011). ~ ret;.rcti vc4 .. 
2.3 GLUE method 	 0 
The GLUE method (Beven and Freer, 2001) is an uncertainty analysis technique 

15 inspired by importance sampling and regional sensitivity analysiS (Hornberger and 
-..:s;r 	Spear, 1981). In GLUE, parameter uncertainty accounts for all sources of uncertainty" 

i.e., input uncertainty, structural uncertainty, parameter uncertainty and response un-) 
certainty. Therefore, this method has been widely used in many areas as an effective 
and general strategy for model calibration and uncertainty estimation associated with 

20 	 complex models. In this study, the GLUE analysis process consists of the following 
three steps: 

Step 1: Definition of likelihood function 
---I. _. 	 • I • S ...A~ v-t ~ 

The likelihot,~~nction was used to evaluate SWAT outputs agai t observed values. 
In our study, Nash-Sutcliffe coefficient (NS) was picked because ~he most frequently 

25 	 used likelihood measure for GLUE based on literature (Beven and Freer, 2001; Freer 
~ 
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et at, 1996; Arabi et at, 2007). 

n 	 2
L (QSimJ-QmeaJ)
;=1 

ENS =1--------	 (4) 
n ( _)2
~ Qmea,; - Qmea 


W 1=1

~.~7 'Where Xi represents the outputs of time..!, n represents the times, QmeaJ is the ob­

y... 'J'v served data, Qsim,; is the simulated data, Qmea is the mean value of the observed data, -y../lv 
and n is the simulation time. 	 1­

-t1~~~1w.~., Mu~t~ 
Step 2: Sampling parameter sets 

(}fV'Aw;v\ rrer ' 9~~(,w~. a.., 
Due to the lack 0 ibution 0warameter, unif m distribution was chosen due to 
its si enhart et al., 2002, uleta and Nicki w, 2005; Migliaccio and Chaubey, 
2008). The range of each parameter was divided int n overlapping intervals based on~7 
equal probability (Table 1) and parameters ~re id ntically chosen f!E spanning the ~~ rt J,~~ 
feasible parameter range. The drawback 0XtYpical LUE approach c., its prohibitive ~ '}.,o11. computational burden imposed by its random sampli strategy. Therefore in this study, 

<- L -I\.. an improved sampling method was introduced by ombing atin Hypercube iampling
~S 17 '. (LHS). Compared to random sampling, LHS can re sampling times and provide 

410-fold greater computing efficiency (Vachaud and Chen, 2002). Therefore, LHS was ,~~7 used for random parameter sampling to enhance the simulation efficiency of the GLUE 
simulation. Values then were randomly selected from each interval. ~ 

If the initial sampling of the parameter space was not dense enough ,,,GLUE sampling 
scheme probably could not ensure a sufficient precision of the statistics inferred from 

20 	 the retained solutions (Bate~ an.t! C;ampb~001). Hence, a large number of sampling 
sets (1~0 times) wer~~.~ecause)\SWAT module and the SWAT-CUP software 
were in different intertaccl all of the 10,000 simulations were calculated manually. The 
whole simulation period W-six months on a Centrino Duo@2.8 GHz computer. 

~,ttJ.. 8211 



Step 3: Threshold definition and re'lIlits .~nalysis, n 
~t'ki7 '?~ ~ 

Compared to oth~.~pplications (Gassman etg:. 2007), ,g.? was judged as a reason­
able ENS value for;fWAT simulation. "Rtfs J(Qe.y set 0.5 a~~eshold value of ENS and if 
the accePtabilit~below a certain subjective threshold, the run was considered to be 

5 "non-beh~al ~d that parameter combination ~emoved from further analysis. In 
this studY,-I?WAT model was performed 1OPOO times with different parameter sample 
sets. For each output, the dotty plot, cumulative parameter frequency and 9SCI were 
analyzed. 

3 Results and discussion .hc!,.MC.tl. ~J,
qr::/ 0 ~ . ~ q,l:J 

10 3.1 Uncertainty of outputs 	 ~.l q, ~ 

For the purpose of determining the extent to which parameter uncerta !Y affec mo:el 
simulation, the degree of uncertainty of outputs was expressed by 9SC hich was 

-:::r derived by ordering the 10,000 outputs and then identifying the 2.5 % and 97.5 % 
threshold values. The 9SCI for botl')_stream flow and sediment period ere shown in 

15 Fig. 2. It was evident that the 9SCI e¥ ~tream flow and sediment was '" 3 ni3 
S -1 and 

_ ~~6S7,800 t, respectively. In addition, sediment simulation presented greater un­
certainty than stream flow, which might be due to the fact that sediment was affected 

-...:sy and dominated by both stream flow processes as well as other factors such as land 
use variability (Shen et at, 2008; Migliaccio and Chaubey, 2008). ') 

~ .11: From Fig. 2, the temporal variatio~ut~ was presented in which 1Qva e..i~t 
~<.\.l""V"'"-J -te:::abtlill!lM!; clear relationshi~ettVeen me amount of the rainfall and the width of 

(J.M 	 confidence interval. This result highlighted an increased model uncertainty intmgh 
precipitation condition. The variability in the uncertainty of sediment was the ~ame 
as that for runoff, because runoff affects both factors. This could be explained by 

~ S-o.J; that uncertainty was inherent in precipitation due to variability in time of occurrence, 
~ 
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10catiO~"ensity, and tempo-spatial distribution (Shen et aI., 2008). '"",hydrology 
model ch as SWAT, although a rainfall eventmay a!!P9t only a small portion of the 
basin, he model assumes it affects the entire basin. wIiI8Ii may cause a larger runoff 
event w. observed in simulation although little precip'jJ~tion was recorded due to the 
limited local extent of :Certain prAcipitation event. In;Jffiee Gorges Reservoir area, 
the daily stream flow changes frequently and widely, thus the monthly mean value of 
runoff might not represent the actual change very well and the discrepancy between 
the measured mean value and sirT'Nltted mean value would be high. Hence, daily 
precipitation data might be invalid ii'(AiGRA and more detailed precipitation data and 
stations should be pbtained for hydrOIOgw,0dEn....~ te.u-e. . 

From Fig. 2, it ~ clear that most of ,. oeseT = vactues were bracketed by the 95 
--""? CI, 54 %:or stream fl~f$~O~ and 95 % for sediment. However, several stream flow 

ooservatlons were dIim~ above the 97.5 % threshold values (such as March, 
April, November it 2004; March, April, May, June, July, August and October. 2005; 
February, March, April, May and July1lr2006; March, May, June, July and August it 
2007). Conversely, only one observation (October" 2006) was observed below the 
2.5 % threshold of sediment output. Measured value was not entirely in the range of 
95CI, indicating that the SWAT model could not ~:~'ate the flow and sediment 

~es:~wever, it was acknowledged that r parameter, model structure v'v 	 and data inpu~also causef uncertainty in model simulation (Bates and Campbell, 2001; 
Yang et aI., 2007). Based on the results presented in this study, it was not possible to 
tell the extent to which the errors in the input and model structure contribute on the total 
simulation uncertainty. However, as parameter uncertainty was only able to a~count for 
a sma!'gart 9f,vv601e uncertainty in hydrological modeling, this study suggestirltfurther 
studie§ on'l\~tructure and input in TGRA. 

Ano\her concern in hydrologic modeling was the equifinality of model parameters 
(Beven and Binley, 1992; Wagener and Kollat, 2007). Table 2 showed multiple combi­
nations of parameter values yield the same ENS during hydrologic modeling in TGRA. 
The so-called equifinality showed there was no unique parameter estimation and hence 
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uncertainly in the estimated parameters in TGRA was obvi . This re:i:::11 
with many other studies (Beven and Binley, 1992; Gupta and Soro shian 2005 This 
may due to the fact that parameters obtained from calibration were affected by several 
factors such as correlations amongst parameters, sensitivity or insensitivity in para me­

5 ters, spatial and temporal scales and statistical features of model residuals (Wagener 
et aI., 2003; Wagener and Kollat, 2007). It could be inferred that the identifiability of 

O.:V\,optimal parameter obtained from calibration should also be evaluated. For an already 
gauged catchment, a virtual study can provide a pOint of reference for the minimum un­
certainty associated with a model application. This study highlighted the importance of 

10 	 monitoring task for several important physical parameters to determine more credible 
results for watershed management. 

3.2 Uncertainty of parameters
.L.D-Y 	 ~ 

Fig. 3 and t'll' 5 iIIustrate~ the variation of ENS forADaing River watershed as a function 
of variation .. each of the 20 parameters considered in this study. By observing the 

15 dotty plot from Fig. 3, it was evident that the main sources of streamflow uncertainty 
were initial SCS CN II value (CN2), available water capacity of the layer (SOLAWC), 
maximum canopy storage (CANMX) , base flow alpha factor for bank storage (AL­
PHA_BNK) , saturated hydraulic conductivity (SaLK), and soil evaporation compen­
sation factor (ESCO). Among the ~e six parameters, SOLAWC and CANMX were 

20 the most identifiable parameters f<»'i~~ing River watershed. This could be explained by 
~ ,~tthat SOLAWClepresented soil moisture characteristics or RI~nt available water. This 

parameter play_an important role in evaporation, which" associated with runoff 
(Burba and Verma, 2005). It hl9f also been suggested that the soil water capacity had$ 
an inverse relationship with various water balance components (Kannan et a!., ~~). 

25 Therefore, an increase in the SOLAWC value would result in a decrease',:eslimate 
~ of base flow, tile drainage, surface runoff, andtence, water yield. As shown in Fig. 3, 

the optimal range of SOLAWC was between lU, 0.2J and better results could be 
in this interval. ethel idelltiflable pah!tll'letef9 (CA.\'M:K[9, 3g~, 4U?J-I,4 SAUqO.3r1J, 
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f?j rv) - ~~,,~ ~17, ,~~~o;4
~Lt'l\J-.l.v(p.,.;kv f ~~."l~o f...... 0~-VCUK4.,.J-o"'" 
O~ v~-f;.~tJ,{-e..ta.r~7l . J.' 

SDLK [SO, a99] ) GQwlEl aL be obtaicad opli~al pal=a~9t9r FaFl~ t:l9iFlS eeliBf8tien 
metRos without I "ue'" difficttlties. However, presence of multiple peaks in the Nash­
Sutcliffe model efficiency for CN2 and ESCO indicated th~mation of these pa­

.J 1:'6 rameters might not be feasible. ~ Joe-~ 
. , ,l"\\.A.P' 5 However, itshould be noted that non-identifiability of a parameter t!I8 not indicate that 
~_Q t\, the modelllAl not sensitive to these parameters. Generally, CN2 was considered as 
~ _- ,~e pr:imary source of uncertaintyiaede~1l!J.g. with stream flow simulation (Eckhardt 

"'~ ~vV\" •.~nd Arnold, 2001; hel'hart et aD 2002 .•'his study...#showed that CN2 exhibited 
~J~""""--non-identifiabir i htream flow sim ation. This is similar to the study proposed by 

(J-" ~ 10 Kannan et a 006). The potential cause would be that there was an explicit provi­
~ sio' e SWfi.. model to update the CN2 value for each day of simulation based on 

1.. ~ available water content in the soil profile. Therefore, a change in the initial CN2 value 
_ Ii)~. /' would not greatly affect water balanc~W!'ponents. Estimation of non-identifiable pa­
r- .J...r" rameters, such as CN2 and ESCO fo't"lJaning River watershed, would be difficult as 

.Y ( T\J 15 there may be many combinations of th~e parameters that would result ~milarmodel 
'"'I performance. 0.:. 

Figures 4 an.Q,fl Ulustrate~ the cumulative parameter frequency for both stream flow 
and sediment i1i'naing River watershed. As shown in Fig. 4, the parameters were not 
uniformly,er no'rlnally distributed, especially SOL~ CI,tNMX and ESCO. ESCO 

20 representlli the influence of capillarity and soil <!. ~H~"tOil evaporation in each 
--r layer, a change in the ESCO valueJtherefore,affected the entire water balance compo­

nent. When there were higher ESCO values, the estimated base flow, tile drainage and 
surface runoff increased. The greater uncertainty 'Of this parameter indicated that the 
soil evaporation probably played a greJ)!~~ role in the whole evaporation process, pos­

25 sibly due to the high air temperatu~ iI'li'GRA. In comparison, other parameters such 
~ as CN2 and SOLK, were close tOl\unitbrmly ~istribution,while they were also more or 

less skewed. This non-linearity furthe~~liel that the oncertainty in model input did 
-...Q not translate directly into uncertainty int1.model outputs but might,rathelJappear signifi­

cantly dampened or magnified in the output (Sahrabi, 2002). Th(s result ~d 
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important opinion thaUhe model output was influenced by the set of paramet~ filM a 
single pararn~ter (Beven and Binley, 1992). 

Similar t~srream flow simulation, even though many of the parameters were sensi­
tive and affected the sediment simulation, only a small number of the sensitive param­

5 	 eters were identifiable. As shown in Fig. 5, the factors of uncertainty for sediment were 
CN2, Manning's value for main channel (CH_N2), maximum canopy storage (CANMX) , 
base flow alpha factor for bank storage (A LPHA_BNK) , exp.Re-entrainment parame­
ter for channel sediment routing (SPEXP), lin.re-entrainmeptllarameter for channel 
sediment routing (SPCON), channel cover factor (CH_COV)~annel erodibility factor 

10 	 (CH_EROD). Clearly, the parameter samples were very dense around the maximum 
limit (Fig. 6). E that the parame­
ters with greater uncertainty of stream flow m nly ~ from u ace corre.w~nding 
process and the parameters with greater unce ainty of sediment focused o~~nnel 
response process. The results matched well wit those of Yang et at. (2011) and Shen 

15 	 et al. (2010). 5 ~ l1I\ )1~. Cl ~ L- t ~ " U l't\ \-o't ~ W. F.' O~· ?} ", f:j 
~ h ) \{:, ~ ~!.-&;ct...:L 

4 	 Conclusions 

In this study, the GLUE method was employed to assess the parameter uncertainty in 
~	SWAT model applied in the Daning River Watershed of the Three Gorges Reservoir 

Region (TGRA), China. The results indicate\ that only a few of the parameters were , r 20 sensitive and affected the stream flow and sediment si~on. It should be noted that 
rWc. lL, (identifiable parameters such as CANMX, ALPHA_BNK(, SOLK could be obtained op­

0....-7 timal parameter range using calibration method without much difficulties. 
7~~~:V~ presence of multiple peaks in non-identifiability parameters (CN2 and ESCO)indicate~ ~ 
~-.1\0+'ro that calibration of these parameters might. be feasible. In addition, multiple combina­

7 	 .{\ ~ \ 25 tions of parameters contributed the same/ENS during hydrologiC modeling in 
~ -\J Care must be taken when calibrating the SWAT with non-identifiable parametenf~ 

these might lead to equifinality of the parameter values. Under such cases, a user 
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~ should check if the final parameter values correspond to thelwatershed characteristics 
&:.. and its underlying hydrologic processes. It Vl(as anticiPated~is study would provide a 

~~~practical and flexible implication for hydrolog"c..r&;deling related to policy development 
~ in the Three Gorges Reservoir Region (TGRA) and other similar areas. 

5 It is suggested that more detailed measureUata and ll'lr~ precipitation stations 
~(iZ.-C; , should be obtained in the future for hydrology modeling ~IGRA. And also further 

'9 fI/1 A ..~,~ studi~ should be contin.»~ in the field of model structure and input to quantify hydrol­
~'~"': ogx"model uncertainty irl;rGRA. 
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