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Abstract. The calibration of hydrolog%i? worldwide'diﬁ%y ue to the uncertainty involved in
the large number of parameters. The d+ ty gven increases in ¥ region with high seasonal variation

of precipitation, where the results exhibit high heteroscedasticity and autocorrelatjon. In this study, the

Generalized Likelihood Uncertainty Estimation (GLUE) method was combined with S%il and Water

Assessment Tool (SWAT) to quantify the parameter uncertainty of the stream flow and sediment

simulation in the Daning River Watershed of the Three Gorges Reservoir Region (TGRA), China. Based on

this study, only a few parameters affected the final simulation output significantly. The results showed

that sediment simulation preséented grg?j’::er %rtainty than stream flow, and uncertainty even inereersed O‘v/&Céle,./
in high precipitation conditiorkthar}‘?ﬁ’r"'y sedson. The main uncertainty sources of stream flow Rwaimly came

from the catchment process whilgxchannel process impacts the sediment simulation greatly. Jf should be

noted that identifiable parameters such as CANMX, ALPHA_BNK, SOL_K could be obtainedAoptlrﬁé'l"

parameter range using czgalgfftion method. However, equifinality was also observed in hydrologic_moéb(

modeling in TGRA. This pape%emonstrated that care must be taken when calibrating the SWA1:‘with non
-identifiable parameters%s?etﬁ'lay lead to equifinality of the parameter values. It %nticipaiﬁedﬂthls

study would provide useful information for hydrology modeling related to policy development in the Three

Gorges Reservoir Region (TGRA) and other similar areas.
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Abstract

The calibration of hydrologic models is a worldwide difficulty due to the uncertainty
involved in the large number of parameters. The difficulty even increases in the re-
gion with high seasonal variation of precipitation, wher& the results exhibit high het-
eroscedasticity and autocorrelation. In this study, the Generalized Likelihood Uncer-
tainty Estimation (GLUE) method was combined with Soil and Water Assessment Tool
(SWAT) to quantify the parameter uncertainty of the stream flow and sediment simu-
lation in the Daning River Watershed of the Three Gorges Reservoir Region (TGRA),
China. Based on this study, only a few parameters affected the final simulation output
significantly. The results showed that sediment simulation presented greater uncer-
tainty than stream flow, and uncertainty even increased in high precipitation condition
than dry season. The main uncertainty sources of stream flow mainly came from the
catchment process while channel process impacts the sediment simulation greatly. It
should be noted that identifiable parameters such as CANMX, ALPHA_BNK, SOL_K
could be obtained optimal parameter range using calibration method. However, equi-
finality was also observed in hydrologic modeling in TGRA. This paper demonstrated
that care must be taken when calibrating the SWAT with non-identifiable parameters as
these may lead to equifinality of the parameter values. It is anticipated this study would
provide useful information for hydrology modeling related to policy development in the
Three Gorges Reservoir Region (TGRA) and other similar areas.

1 Introduction

Watershed hydrology and river water quality models are important tools for watershed
management for both operational and research programs (Quilbe and Rousseau, 2007;
Van et al., 2008; Sudheer and Lakshmi, 2011). However, due to spatial variability in the
processes, many of the physical models are highly complex and generally character-
ized by a multitude of parameters (Xuan et al., 2009). Technically, the modification of
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parameter values{feveals a high degree of uncertainty. Overestimation of uncertainty
may lead to cesttimplive—sxpam and overdesign of watershed management. Con-
versely, underestimation of uncertainty may result in Iittl'ea‘z?b%eﬁalplution abatement
(Zhang et al., 2009). In order to apply hydrological models in % practical water re-
source investigation” careful calibration and uncertainty analysis are required (Beven
and Binley, 1992; Viugt et al., 2003; Yang et al., 2008).

Much attention has been paid to uncertainty issues in hydrological modeling due to
their great effects on prediction ancyurther on decision-making (Van et al., 2008; Sud-
heer and Lakshmi, 2011). Uncertainty estimates are routinely incorporated into Total
Maximum Daily Load (TMDL) (Quilbe and Roysseau, 2007). Usually, the uncertainty
in hydrological modeling is from model w‘g,ir\?ut data and parametep\‘(Linden-
schmidt et al., 2007). In general, structural uncertainty could be improved by comparing
and modifying the diverse model components (Hejberg and Refsguard, 2005). The un-

certainty of model input occurs because of changes in natural conditions, limitations ef ¢

measurement, and lack of data (Berk, 1987). One way to deal with this issue is to use
random variables as the input data, rather than the conventional form of fixed values.
Currently, parameter uncertainty is a hot topic in Auncertainty research field (Shen et al.,
2008; Sudheer et al., 2011). 04 4

The model parameters cestd be divided into the conceptual group and physical group
(Gong et al., 2011). The conceptual pargmeters such as CN, in the SCS curve method
are defined as the conceptualization of,non-quantifiable process, and determined by
the process of model calibration. Convérsely, physical parameters be measured
or estimated based on watershed characteristiqwhen intensiyﬁe datascgllest_ion is pos-
sible (Vertessy et al., 1993; Nandakumar and Mein, 1 ‘gaa ankriown spatial
heterogeneity oi;\s udied area and,expensive experimentﬁ m%??é ,c'the physical pa-
rameters are usually determined by calibrating the model against the measured data
(Raat et al., 2004). However, when the number of parameters is large either due to the
large number of sub-processes being considered or due to the model structure itself,
the calibration process becomes complex and uncertainty issues sur&8Rd (Rosso,
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1994; Sorooshian and Gupta, 1995). It has b&en preved that parameter uncertainty
is inevitable in hydrological modeling and tg®,corresponding assessment should be
conducted before model prediction in the %ggsion making process. Studies of param-
eter uncertainty have been conducted in area of integrated watershed management
s (Zacharias et al., 2005), peak flow forecasting (Jorgeson and Julien, 2005), soil loss
prediction (Cochrane and Flanagan, 2005), nutrient fluxe analysis (Murdoch et al.,
2005; Miller et al., 2006), assessment of the effect of land use change (Eckhardt et
al., 2003; Shen et al., 2010; Xu et al., 2011) and climate change impact assessment
~—7(Kingston and Taylor, 2010) among many others. Nevertheless, parameter identifica-
10 tion is a complex, non-Iinea? problem and thesa=mighte numerous possible solutions
oy be_obtained by optjmization algorithms (Nandakumar and Mein, 1997). Thus, the param-
eters 5t Ye identified easily. Additionally, different parameter sets may result in
similar predictionA Howh 58 the phenomenon of equifinality (Beven and Binley, 1992).
However, to the best of our knowledge, there are few studies about parameter identifi-

15 ability based on uncertainty analysis in hydrological modeling. have bero
{Eﬁé&evegeveral calibration and uncertainty analysis techniques/@pplied in previous
researda WO reseasehes, such as the first-order error analysis (FOEA) (Melching and Yoon, 1996),
the Monte Carlo method (Kao and Hong, 1996) and the Generalized Likelihood Un-
certainty Estimation method (GLUE) (Beven apd Binley, 1992). The FOEA method is
2 based on Iinear-relationshipzand fails to dea Awn the cpmplex models (Melching and
Yoon, 1996). The Monte Carlo method requires repeatg model simulation according
to the parameter sampling, resulting in tremendous computational time and human ef-
fort (Gong et al., 2011). However, the GLUE methodology determines the performance
of the model focus on the parameter_set, not on the individual parameter;(Beven and
25 Binley, 1992). The GLUE method cesid also handle the parameter interactions and
non-linearity implicitly through the likelihood measure (Vazquz et al., 2009). In addi-
tion, GLUE is a simple concept and is relatively easy to implement. Therefore, GLUE

is used in this study for parameter uncertainty analysis.

8206




20

The Three Gorges Project-the largest hydropower project in the world-is situated at
Sandoupin in Yichang City, Hubei Province, China. It is composed mainly of the dam,
the hydropower station, the two-lane, five-stage navigation locks, and the single-lane
vertical ship lift. While the Three Ggrq?s Project mekes=giaat-esder flood control,
power generation, and nygg?,tjorﬂ? 4fs5has a profound impact on the hydrology and
environment, such as river in errd\ption and ecosystem degradation. Hydrological mod-
els have been used in this region to study the impact of the project (Lu and Higgitt,
2001; Yang et al., 2002; Wang et al., 2007; Shen et al., 2010). However, research on
the upcertainty of hydrological models in sucii'lmportant watershed is lacking. Due to
the éj %phical locations and water systems (Xu et al., 2011), it is of great impor-
tance to study the uncertainty of model parameter. that affectthydrological modeling
process. Previously we had conducted parameter uncertainty analysis for nonpoint
source pollution modeling in this regioA In the present study, a further study was
4urtver developed in hydrological modeling.

Hence, the main objective of this study was to identify the degree of uncertainty and
uncertainty parameter for prediction of stream flow and sediment in a typical watershed
of the Three Gorges Reservoir Region, China. In this study, a semi- distribyted hy-
drological model, Soil and Water Assessment tool (SWAT),was combined with GLUE
(Generalizsgcuib; _ihogg uncertainty estimation) method to"quantify the uncertainty of
paramete;\b pr |8g‘necessary reference for hydrological modeling in the entire Three
Gorges Reservaoir region.

The paper wes organized as follows: (1) a description of,study area and a brief intro-
duction of the hydrological model and GLUE method; (2) both the impact of parameter

gg‘z:mcertainty on model output and parameter identifiability v:(re efnalyzed in thegpeEbal.

esulfand discussion; (3)conclusion wes provided.
Sect g Lo
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2.1 Site description

The Daning River Watgfshed (108°44'-110°11'E, 31°04'-31°4 13 é||es in the cen-
tral rt of the Three GGorges Reservoir Are MiTGRé) (Fig. 1), ocat din Wushan and

Wuxi €ogmty, in the of Chonggqing, cover.g an area of 4426 km2. Mountaine
Q, 4 \yéde makes up 95.% of the total area and ills contributef the other 5%. The aver-
0\4’7% cage altitude wgs 1197 m. The rewin Iandu e in the watershed instéde 22.2 % cropland,
\QM\N"“ 11.4% grassland, and 65.8 % forest. M%nal yellow soil is the dominant soil of the
Wt o4 watershed. This area is characterized by the tropical monsoon and subtropical climates

10

90

st

20

of Northern Asia. A humid subtropical monsoon climate covers this area, featuring dis-
tinct seasons WIth adequate illymination (an annual mean temperature of 16.6 °C) and
ion (an annual mean precipitation of 1124.5mm). A hydrological
ation is located in Wuxi County.aiﬁls study focused on the watershed controlled

by the Wuxi hydrological station, Wew 2027 km? (Fig. 1).
- an ores.

2.2 SWAT model

The SWAT is a hydrologic/water quality tool developed
by the United States Department of Agriculture-Agricul Research Service (US-
DAARS). The SWAT model is also available within the éAS IN$ as one of the mod-
els that the USEPA supports and recommends for state andjfederal agencies to use
to address point and nonpoint source pollution control. The hydrological processes

are divided into two phases: the land phase and the channgl/floodplain phase. The
SWAT mo%%{uses the SCS curve number procedure when daily precipitation data is

used whilg Green-Ampt infiltration method is chosen when sub-daily data is used to
estimate surface runoff. The SCS curve number equation is:
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(Rday - Ia)2

Qg = Sy 78)__
surt (Rday_/a +S)

1)

where Qs is the accumulated runoff or rainfali excess (mm H,0); Ry, is the rain-
fall depth for the day (mm H,0); /, is the initial abstractions, which includes surface
storage, interception, and infiltration prior to runoff (mm H,O); and S is the retention
parameter (mm H,0). The retention parameter varies spatially due to changes in soil,
land use, management, and slope and temporally due to changes in soil water content.
The retention parameter is defined as:

AR

25400 ”
S —a‘— —254 “‘&&,,ol oa

where CN is the curve number forthe day.
The SWAT model uses the Modified Universal Soil Loss Equation (MUSLE) to esti-
mate sediment yield at HRU level. The MUSLE is defined as:

Osed =11 -8(Osurf'qpeak'Ahru)o'56 ’Kusle 'Cusle 'Pusle 'Lusle 'FCFRG (3)

where Q.4 is the sediment yield on a given day (metric tons) Qs is the surface runoff
vqume (mm H,0/ha); qpea is the peak runoff rate (més™Y; Apry is the area of the HRU

HysisglegicatresperSaeei®) (ha); K, is the USLE soil erodibility factor; C g, is the
USLE cover and management factor; P4, is the USLE support practice factor; L g, is
the USLE topographic factor; and Fereg is the coarse fragment factor.

In order to efficiently and effectively apply the SWAT model, different calibration and
uncertainty analysis methods have been developed and applied to improve the pre-
diction reliability and quantify prediction uncertainty of SWAT simulations (Arabi et al.,
2007). In this study, a parameter sensitivity analysis was perform rior to calibrat-
ing the model. Based on the sensitivity ranking results provided by Morris Qualitative
Screening Method, the 20 highest ranked parameters affecting stream flow and sedi-
ment yield (shown in Table 1) were selected for the following uncertainty analysis using
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the GLUE method. For modeling aseurately, parameters were calibrated and validated
using the highly efficient Sequential Uncertainty Fitting version-2 (SUFI-2) progcedure
(Abbaspour et al., 2007). The initial parameter range was recommended fro AT
manual. This calibration method is an inverse optimization approach that uses the Latin
Hypercube Sampling (LHS) procedure along with a global search algorithm to exam-
ine the behavior of objective functions. The procedure has been incorporated into the
SWAT-CUP software, which can be downloaded for free from the EAWAG wg site (Ab-
pSmed and validation %{iod; were 0.94 and 0.78.4For the sediment yield,/k the Nash-
Sutcliffe coefficients in,\calibration petied and vali
respectively. More details ceuld be found in the stu
et al. (2011). Comy

————baspour et al., 2009). For the runoff, the Nash-Sutcliffe coefficients during calibration
s

tion periodf\were 0.80 and 0.70,
of Shen et al. (2008) and Gong

f@élaa:tg./(? )

The GLUE method (Beven and Freer, 2001) is an uncertainty analysis technique
inspired by importance sampling and regional sensitivity analysis (Hornberger and
Spear, 1981). In GLUE, parameter uncertainty accounts for all sources of uncertaintye

2.3 GLUE method

i.e., input uncertainty, structural uncertainty, parameter uncertainty and response un-J

certainty. Therefore, this method has been widely used in many areas as an effective
and general strategy for model calibration and uncertainty estimation associated with
complex models. In this study, the GLUE analysis process consists of the following
three steps:

Step 1: Definition of likelihood function s

[ S VN 4
The likeliho%ﬁmction was used to evaluate SWAT outputs agigft observed values.
In our study, Nash-Sutcliffe coefficient (NS) was picked because &8 the most frequently

s used likelihood measure for GLUE based op}[it/e\rature (Beven and Freer, 2001; Freer

“Yhe
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et al., 1996; Arabi et al., 2007).
n
2
Z (osim,i - omea,i)

=1
Exs=1-= — @)
21 (Omea,i _omea)
7w = o : ,
’ ‘Where X; represents the outputs of time /, n represents the times, Q.4 ; iS the ob-
< N / i mea,i
ﬁb v served data, Qg ; is the simulated data, Q. is the mean value of the observed data,

‘ s and n is the simulation time. 7
/\\)J“L" ’ M Qoes ﬂM§ Al

699 + Step 2: Sampling parameter sets

a.
9 Q>(\ ‘/\}/ Due to the lack of prior distribution o;\parameter, unifofm distribution was chosen due to
its simplici enhart et al., 2002 Muleta and Nicklgw, 2005; Migliaccio and Chaubey,
4//9 2008). The range of each parameter was divided intp n overlapping intervals based on

. (&1& equal probability (Table 1) and parameters #r/ere identically chosen ero spanning the
W{/&”ﬂ’g feasible parameter range. The drawback of;typical GLUE approach its prohibitive
© h

computational burden imposed by its random sampling strategy. Therefore in this study,
<4 an improved sampling method was introduced by atin Hypercube §ampling
mé 9 (LHS). Compared to random sampling, LHS can reduce sampling times and provide
;j"& €. 10-fold greater computing efficiency (Vachaud and Chen, 2002). Therefore, LHS was
(@9{1 used for random parameter sampling to enhance the simulation efficiency of the GLUE
simulation. Values then were randomly selected from each interval.
if the initial sampling of the parameter space was not dense enough,I\GLUE sampling
scheme probably could not ensure a sufficient precision of the statistics inferred from
20 the retained solutions (B(%gﬁ acr_ga?ampbe ,.2001). Hence, a large number of sampling
sets (10000 times) were reade. ecause,SWAT module and the SWAT-CUP software
were in different interface, all of the 10,000 simulations were calculated manually. The
whole simulation period ix months on a Centrino Duo@2.8 GHz computer.

Lasted 8211




Step 3: Threshold definition and resylts analysi

EE“- S 5 we
Compared to otheg gpplications (Gassman et 2{ 2007), 2 was judged as a reason-
able Eng value forSWAT simulation. y set 0.5 as threshold value of Eyg and if

the acceptability Mbelow a certain subjective thre\fpold, the run was considered to be
s “non-behayioral” and that parameter combination 1 femoved from further analysis. In
this study, SWAT model was performed 10000 times with different parameter sample
sets. For each output, the dotty plot, cumulative parameter frequency and 95CI were

analyzed.

3 Results and discussion

1o 3.1 Uncertainty of outputs

simulation, the degree of uncertainty of outputs was expressed by(95C}); which was
~—7 derived by ordering the 107000 outputs and then identifying the 2.5%/and 97.5%
threshold values. The 95CI for bot stream flow and sediment period ere shown in
s Fig. 2. It was evident that the 95CI et stream flow and sediment was
_ __2_(&0@716577800 t, respectively. In addition, sediment simulation presented greater un-
certainty than stream flow, which might be due to the fact that sediment was affected
=37 and dominated by both stream flow processes as well as other factors_such as land

use variability (Shen et al., 2008; Migliaccio and Chaubey, 2008).
o From Fig. 2, the temporal variatiomutw was presented in which Rawers-evidont
o m&“ﬁﬁ +te=abtaiethe clear relationshif, between the amount of the rainfall and the width of
confidence interval. This result highlighted an increased model uncertainty iﬁUﬁ?Qh
precipitation condition. The variability in the uncertainty of sediment was the 'same
as that for runoff, because runoff affects both factors. This could be explained by
e Sra,ut that uncertainty was inherent in precipitation due to variability in time of occurrence,
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location, jafensity, and tempo-spatial distribution (Shen et al.,, 2008). In_ hydrology
model stich as SWAT, although a rainfall eventsmay affgct only a small portion of the
basin, she model assumes it affects the entire gasin.\&?\ may cause a larger runoff
event wes observed in 0§imulation although little precipitation was recorded due to the
limited local extent of,certain pr@cipitation event. ln‘ﬁ‘?\’ree Gorges Reservoir area,
the daily stream flow changes frequently and widely, thus the monthly mean value of
runoff might not represent the actual change very well and the discrepancy between
the measured mean value and simylated mean value would be high. Hence, daily
precipitation data might be invalid in,TGRA and more detailed precipitation data and

stations should be obtained for hydrology modeling in there .
From Fig. 2, it wi< clear that most ofy?t&'ée% values were bracketed by the 95

N
Cl, 54 % for stream floy outputs and 95 % for sediment. However, several stream flow
observations were dﬁﬁélsﬁ"ﬁ%@d above the 97.5 % threshold values (such as March,
April, November & 2004; March, April, May, June, July, August and October 4 2005;
February, March, April, May and July @ 2006; March, May, June, July and August =
2007). Conversely, only one observation (October# 2006) was observed below the
2.5 % threshold of sediment output. Measured value was not entirely in the range of
95Cl, indicating that the SWAT model could not fgly simulate the flow and sediment
processes. However, it was acknowledged that parameter, model structure
and data inpujalso cause‘ uncertainty in model simulation (Bates and Campbell, 2001;
Yang et al., 2007). Based on the results presented in this study, it was not possible to
tell the extent to which the errors in the input and model structure contribute on the total
simulation uncertainty. However, as parameter uncertainty was only able to agcount for
a small part oflw?ole uncertainty in hydrological modeling, this study suggestas further
studie&on structure and input in TGRA.

Another concern in hydrologic modeling was the equifinality of model parameters
(Beven and Binley, 1992; Wagener and Kollat, 2007). Table 2 showed multiple combi-
nations of parameter values yield the same Eyg during hydrologic modeling in TGRA.
The so-called equifinality showed there was no unique parameter estimation and hence
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uncertainty in the estimated parameters in TGRA was obviglis. This result agreed well
with many other studies (Beven and Binley, 1992;(Gupta and Sorooshian, 2005) This
may due to the fact that parameters obtained from calibration were affected by several
factors such as correlations amongst parameters, sensitivity or insensitivity in parame-
ters, spatial and temporal scales and statistical features of model residuals (Wagener
et al., 2003; Wagener and Kollat, 2007). it could be inferred that the identifiability of

0 optimal parameter obtained from calibration should also be evaluated. For an already

20

25

gauged catchment, a virtual study can provide a point of reference for the minimum un-

certainty associated with a model application. This study highlighted the importance of 7}

monitoring task for several important physical parameters to determine more credible
results for watershed management.

3.2 Uncertaing of parameters
o e

Fig. 3 and F@, 5 illustratel the variation of Exg foriDaing River watershed as a function
of variation m each of the 20 parameters considered in this study. By observing the
dotty plot from Fig. 3, it was evident that the main sources of streamflow uncertainty
were initial SCS CN |I value (CN2), available water capacity of the layer (SOL_AWC),
maximum canopy storage (CANMX), base flow alpha factor for bank storage (AL-
PHA_BNK), saturated hydraulic conductivity (SOL_K), and soil evaporation compen-
sation factor (ESCO). Among the apove six parameters, SOL_AWC and CANMX were
the most identifiable parameters fo?ﬁfaing River watershed. This could be explained by

e %«wfthat SOL_AWC represented soil moisture characteristics or ;‘!lgnt available water. This

parameter pla)fd-an important role in evaporation, which wes associated with runoff
(Burba and Verma, 2005). It hagd also been suggested that the soil water capacity hads
an inverse relationship with various water balance components (Kannan et al., 2007).
Therefore, an increase in the SOL_AWC value would result in a decreasegl ”é%.ﬁmate
of base flow, tile drainage, surface runoff, and,hence, water yield. As shown in Fig. 3,
the optimal range of SOL_AWC was between [0, 0.2] and better results could be obtaine
in this interval. f i : 1],
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(and Arnold, 2001; Lenhart et al.
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,@T u/g\,,ud, uL\v = w&dwiﬁ
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S«'al‘le,

ies. However presence of multlple peaks in the Nash-
Sutcliffe model efficiency for CN2 and ESCO indicated th/at,eskmatlon of these pa-
rameters might not be feasible. ‘l/oe,s

However, jt should be noted that non-identifiability of a parameter diet not indicate that
the model m&s not sensitive to these parameters. Generally, CN2 was considered as
ce of uncertainty dealing with stream flow simulation (Eckhardt

@ fhis study,4F showed that CN2 exhibited
non-identifiability in.stream flow simufation. This is similar to the study proposed by
Kannan et al.X2006).) The potential cause would be that there was an expilicit provi-
siopirthe SWAT model to update the CN2 value for each day of simulation based on
ava||able water content in the soil profile. Therefore, a change in the initial CN2 value
would not greatly affect water balance gomponents. Estimation of non-identifiable pa-
rameters, such as CN2 and ESCO for, Daning River watershed, would be difficult as
there may be many combinations of thége parameters that would result in ré_mllar model
performance.

Figures 4 an Ilustratet the cumulative parameter frequency for both stream flow
and sediment i in aing River watershed. As shown in Fig. 4, the parameters were not
uniformly or normaIIy distributed, especially SOL_AWC CANMX and ESCO. ESCO
representsl the influence of capillarity and soil © %n Soil evaporation in each

~—y layer, a change in the ESCO valugtherefore affected the entire water balance compo-

25
-
w

nent. When there were higher ESCO values, the estimated base flow, tile drainage and
surface runoff increased. The greater uncertarnty of this parameter indicated that the
soil evaporation probably played a gregter role in the whole evaporation process, pos-

sibly due to the high air temperatu e in TGRA. In comparison, other parameters such
as CN2 and SOL_K, were close to, unrf‘ér lstrlbutron while they were also more or
less skewed. This r(on -linearity further 4 that the ncertamty in model input did

not translate directly into uncertainty in model outputs but might rather,appear srgnm-
cantly dampened or magnified in the output (Sahrabi, 2002). This resuilt mﬂ
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o \J presence of multiple peaks in non-identifiability parameters (CN2 and ESCO) indicate
o0 ’

14y

ralhar

important opinion that.the model output was influenced by the set of paramete;»tkln a
single para?ger (Beven and Binley, 1992).

Similar to,Stream flow simulation, even though many of the parameters were sensi-

tive and affected the sediment simulation, only a small number of the sensitive param-

s eters were identifiable. As shown in Fig. 5, the factors of uncertainty for sediment were

CN2, Manning’s value for main channel (CH_NZ2), maximum canopy storage (CANMX),

base flow alpha factor for bank storage (ALPHA_BNK), exp.Re-entrainment parame-

ter for channel sediment routing (SPEXP), lin.re-entrainment garameter for channel

sediment routing (SPCON), channel cover factor (CH_COV),channel erodibility factor

10 (CH_EROD). Clearly, the parameter samples were very dense around the maximum

limit (Fig. 6). From-Eiga—3-4—6-and-6—-H-equid-be-suymmappel that the parame-
ters with greater uncertainty of stream flow mainly eame from surface correigggding
process and the parameters with greater uncerfainty of sediment focused or}\ annel
response process. The results matched well with those of Yang et al. (2011) and Shen

15 etal. (2010). Saumwat i ting Mo L\\-‘«)VW wF;r %, 4)';/
and b, s be sod

4 Conclusions

In this study, the GLUE method was employed to assess the parameter uncertainty in
SWAT model applied in the Daning River Watershed of the Three Gorges Reservoir
Region (TGRA), China. The results indicate’{ that only a few of the parameters were

(identifiable parameters such as CANMX, ALPHA_BNK, SOL K could be obtained op-
timal parameter range using calibration method without much difficulties. Conversely;

that calibration of these parameters might be feasible. In addition, multiple combina-
s tions of parameters contributed the same, £y g during hydrologic modeling in TGRA.
Care must be taken when calibrating the SWAT with non-identifiable parameteré”e’ac#“"&
these might lead to equifinality of the parameter values. Under such cases, a user
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3 should check if the final parameter values correspond to theé/vatershed characteristics
cb and its underlying hydrologic processes. It was anticipated¥his study would provide a

M "J}Z} practical and flexible implication for hydrologi modeling related to policy development
\ﬁ:aﬂy in the Three Gorges Reservoir Region (TGRA) and other similar areas.

5 It is suggested that more detailed measureg&ﬂata and rpare precipitation stations

M\’Qﬁ should be obtained in the future for hydrology modeling GRA. And also further

M stu&i should be continyed in the field of mode! structure and input to quantify hydrol-
%1/ ogY mddel uncertainty in, TGRA.
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