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Response to interactive comment from G. Heuvelmans on Evaluation of the transfer-
ability of hydrological model parameters for simulations under changed climatic condi-
tion

Thank you for the comments and suggestions. In the text below we try to answer all the
questions formulated. We believe the comments and suggestions from G. Heuvelmans
were very helpful in improving the manuscript. If you consider that it is still not enough,
please do not hesitate in contacting us. We want to express our apologies if some of
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the explanation in some cases is too scant and/or unclear.

Response to General Comments: The idea of using climatic conditions, defined using
annual precipitation, is based on some recent studies which show a link between model
parameters and climatic conditions (e.g., Merz et al., 2011, Vaze et al., 2011). In this
study, the distribution of model parameters of the HYMOD model, for two different
sub-periods is shown in Figure 1 and provides empirical support for the argument that
model parameters and climate conditions are linked.

Additionally, Fig. 2 shows the percentage change in the median value of parame-
ters of the HYMOD and TOPMODEL models, when moving from dry to wet calibration
periods. The HYMOD parameters Cmax (maximum storage capacity), Alpha (param-
eter that partitions the water in excess of storage capacity between quick and slow
reservoir) and Kq (inverse of time constant) increased by nearly 5%. Bexp, which char-
acterises the spatial variability of the catchment, decreased by a similar amount. For
TOPMODEL, the parameter Szm (which controls the effective depth of the catchment
soil profile) decreased when moving from dry to wet calibration period. However, the
parameter TO (which defines the transmissivity of the catchment soil profile when satu-
rated to the surface) and Td (the time constant for the vertical flux) increased for the wet
calibration dataset. This observation is in close agreement with the study of Bastola
et al. (2009) which observed low values of Szm on river basins receiving high rainfall
or characterized as having a high wetness index, and a high value of Td for basins
receiving high rainfall compared to basins receiving lesser rainfall. However, such re-
lationships should be treated with caution due to the uncertainty in model parameters,
data and objective criteria.

Furthermore, as rightly pointed out by the reviewer, the criterion for splitting the data
in wet, average and dry conditions is the crucial point of the method. These threshold
values were used firstly to divide the observation period 1961 to 1990 into three sub-
periods of 10 wet (higher than green line in Fig 3), 10 dry (less than red line), and 10
average (years falling between two lines). The values are chosen iteratively such that
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each sub period contains 10 years of data. The threshold values for the observational
period (1971-2000) are shown in Figure 3.

If the splitting criterion is not representative of the expected future climate change then
the transfer of parameters between wet and dry sub datasets would say nothing about
the transfer of parameters from present to future climatic conditions. Therefore, the
threshold valued identified during the calibration period were not used to define the
climatic condition for the future. But instead, the threshold values are recalculated for
the future period based on 30 years of future data, such that each of the three sub-
periods contain 10 years of data. Figure 4 shows the threshold value for the future time
period for both the Boyne and Moy river basins. The information will be added to the
revised manuscript.

The above figure and discussion will be included in the revised manuscript to improve
the clarity in the methodology presented in this study.

Response to minor comments: p. 5893, | 26-28: it is stated that geographical trans-
ferability is more problematic than temporal transferability. This is true if the spatial
variation of catchment and rainfall properties that are relevant for runoff generation is
larger than the temporal variation of these properties. But if you are simulating the
impact of future land use or climate change scenarios, then the temporal variation
might become larger than spatial variation, so that temporal parameter transfers might
become more problematic than spatial transfers. Response: We agree with the re-
viewer that if the temporal variation of catchment characteristics and rainfall properties
is greater than spatial the temporal transferability could be problematic. The statement
is suitably modified to improve clarity. - p. 5894 line 10-11: “...only relatively few stud-
ies have looked into the temporal transferability of model parameters’. | don'’t think this
is the case: in a ‘standard’ study, only split-sample tests are performed subdividing a
dataset in a calibration period followed by a validation period. This is a kind of temporal
transferability. Response: We agree with reviewer that split- sample test are usually
performed by subdividing a dataset in a calibration period followed by a validation pe-
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riod. The statement has been rewritten in the revised manuscript. - p. 5898 line 5-9:
when did you consider a parameter set as behavioural? Which NSE, volume error etc.
did you use as threshold value to distinguish between behavioural and non-behavioural
sets? Moreover, | do not understand what is meant with ‘count efficiency’ and with the
last criterion. Response: In this study, the threshold value of 0.6 (NSE) was selected
as a threshold value to differentiate between behavioural and non behavioural param-
eter sets. The selection of threshold values were made based on a sensitivity analysis
where the width of the prediction interval (AQ), count efficiency (CE) and the number
of behavioural simulations (NB), were estimated for different threshold values, namely
NSE of 0.3, 0.5, and 0.7. For all models the AQ, CE and NB increased with a de-
crease in value of the threshold and vice versa. However, the rate of decrease of AQ,
CE, and NB are (5%, 15%, 40%, respectively for AQ, CE and NB) much smaller when
moving the threshold value from 0.3 to 0.5 than when moving it from 0.5 to 0.7 (25%,
37% and 73%, respectively for AQ, CE and NB). The criterion to evaluate the perfor-
mance of each model includes; a) The performance of the median prediction, b) the
percentage of observation encapsulated within the prediction interval (CE) and c) the
average width of the 90% prediction interval (AQ) for each model during the calibra-
tion and validation period. The definitions for each criterion are included in the revised
manuscript. - p. 5898, line 16-19: here, only 1 criterion is mentioned, whereas on
line 5-9, 4 criteria are presented. Why this difference? Response: we express our
apology. The text has been modified to improve clarity. - p. 5899, line 7-8: If | get it
right, there is not always a loss in NSE; for HYMOD, for example, the calibration for the
dry period seems to result in a higher NSE for the wet than for the dry period. . The
same applies to the NAM model. Response: the text has been suitably modified in the
revised version. - p. 5899, line 16-19: can this difference in model structure explain the
observed differences in model performance? Can this be explained in terms of runoff
generating mechanisms? Response: Unlike HYMOD and NAM, TANK uses two out-
lets to simulate surface runoff. This nonlinear structure in the surface reservoir allows
TANK to represent diverse hydrograph types. TOPMODEL uses an exponential store
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where output is exponentially related to storage. The exponential store is generally
considered to be a tool for recession and base flow simulation but, as part of a rainfall
runoff model, it can also play an important role in the simulation of high flow events.
The above discussion is included in the revised manuscript. - p. 5900 (bottom): figure
5 is referred to on line 24, but the lines following this reference seem to refer to figure
4. | can't find any discussion or conclusion about the results presented on figure 5.
Response: Fig 5 shows the monthly flow simulated with dry and wet basin simulators
for two sub-periods (dry and wet). In terms of seasonal simulations, both simulations
are alike. The above discussion for figure 5 is included in the revised manuscript. -
p. 5901 line 9-10: It is stated that the predictions are similar with and without param-
eter updates. From Table 2, it can also be concluded that using different parameter
sets for different climatic conditions, does not really improve the model predictions.
Sometimes, the performance for the time variant parameters is even worse than the
performance obtained with the time invariant parameters. This might mean two things:
1. That parameter updates are not really needed, because the same parameter set
delivers predictions with a similar degree of reliability in varying climatic conditions. 2.
That the updating scheme is inadequate (for example, because you ignore the impact
of extreme events). What is the most probable explanation in this study? Response: It
is true that if the splitting criterion is not representative for the expected future climate
change, the updating scheme will be inadequate. However, the threshold value, that
differentiates different climatic periods, is in fact derived from the future projection (de-
rived from HADCMS3 A2 data sets). Therefore, it is more likely that same parameter sets
deliver predictions with a similar degree of reliability in varying climatic conditions. This
discussion is included in the revised manuscript. Merz, R., J. Parajka, and G. Bléschl
(2011), Time stability of catchment model parameters: Implications for climate impact
analyses, Water Resour. Res., 47, W02531, doi:10.1029/2010WR009505. Vaze, J.,
Post, DA., Chiew, FHS., Peraud, JM., Viney, N., Teng, J. (2010), Climate nonstation-
arity - Validity of calibrated rainfall-runoff models for use in climate change studies, J.
Hydrol., 394: 447-457. doi:10.1016/j.jhydrol.2010.09.018. Bastola, S., Ishidaira, H.,
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and Takeuchi, K. (2008), Regionalisation of hydrological model parameters under pa-
rameter uncertainty: A case study involving TOPMODEL and basins across the globe,
J. Hydrol., 357(3—4), 188—206.

List of figures

Figure 1 Histograms of the behavioural sets of model parameters estimated with dry
and wet calibration data sets.

Figure 2 Percentage change in model parameter when moving from dry calibration to
wet calibration period (a) HYMOD (b) TOPMODEL.

Figure 3 Division of the observation period 1961 to 1990 into three sub-periods of,
10 wet (higher than Green continuous solid line), 10 dry (less than red line), and 10
average (year falling in between two lines) (a) Moy river basin and (b) Boyne river basin

Figure 4 Division of the future projection 2071 to 2100 into three sub-periods of, 10
wet (higher than Green continuous solid line), 10 dry (less than red line), and 10
average (year falling in between two lines) (a) Moy river basin and (b) Boyne river basin

Please also note the supplement to this comment:
http://www.hydrol-earth-syst-sci-discuss.net/8/C3944/2011/hessd-8-C3944-2011-
supplement.pdf

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 8, 5891, 2011.
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a) HYMOD (b) TOPMODEL.
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Fig. 2. Figure 2 Percentage change in model parameter when moving from dry calibration to

wet calibration period
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Fig. 3. Figure 3 Division of the observation period 1961 to 1990 into three sub-periods of, 10
wet (higher than Green continuous solid line), 10 dry (less than red line), and 10 average (year
falling in betwe
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Fig. 4. Figure 4 Division of the future projection 2071 to 2100 into three sub-periods of, 10
wet (higher than Green continuous solid line), 10 dry (less than red line), and 10 average (year
falling in betwe
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