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We thank Dr Crow for his comments on the paper, which have helped us to greatly
improve the manuscript. Dr Crow’s comments are reproduced below, with our response
to each comment provided as a bullet point.

This is a very well-written manuscript on a methodologically sound data assimilation
analysis. It’s examination of the added utility associated with assimilating ASCAT sur-
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face soil moisture retrievals into an operational model represents a significant contri-
bution to the hydrological data assimilation literature. However, I do have two (related)
major concerns that should be addressed prior to publication.

Major 1) Page 5439 (lines 15-20). The primary focus of the manuscript is on the cor-
rection of bias in the SIM_NRT results (relative to the baseline SIM_DEL case). This
focus is surprising given that the assimilated ASCAT have been pre-processed to be
non- biased relative to SIM_NRT surface soil moisture predictions. As far as I can
see - the only way the assimilation of a non-biased observation can invoke a biased
response in analyzed model states is for there to be some type of non-linearity in the
forecast model (i.e. some reason why the impact of positive filtering innovations are
not simply canceled by negative filtering innovations in the long term...as they would be
in any linear model). Consequently, I think the author’s need to describe exactly what
type of nonlinear mechanism is responsible for the non-mean-zero response they see
to the assimilation of a mean-zero observation. Judging from Figure 8c it might have
something to do with the nonlinear relationship between evaporation and soil moisture
(soil moisture tends to accumulate because positive soil moisture perturbations do not
impact ET due to energy-limited conditions but negative perturbations push the model
into water-limited ET conditions which reduces ET...thus the net impact over time is
to decrease ET which, in turn, produces a net increase in root-zone soil moisture?).
The authors are obviously aware of this issue and address it directly on lines 20-25 of
page 5439...but I had trouble following their exact reasoning there (e.g. "signal of the
low-biased response to individual precipitation events"...not sure what that means) and
it doesn’t seem like a complete explanation is possible without invoking some type of
model non-linearity.

2) A second (highly related) concern is that, if the non-mean-zero response of the
SIM_NRT case is actually due to a model non-linearity, than the known cause of the
bias problem appears to be detached from the proposed solution. The bias is explicitly
caused by a bias in the NRT forcing data but then the analysis involves a bias solution
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that requires a specific non-linearity in the model. So it seems like the authors are
proposing an ad hoc solution that is detached from the true source of the problem. This
raises the possibility of the (generally positive) results presented here being somewhat
non-robust. For example, a purely-linear model would experience the same bias due
to overly-dry NRT forcing but (after rescaling) ASCAT soil moisture data assimilation
would have no discernible impact on this bias. Or, again for example, if SIM_NRT soil
moisture was POSITIVELY biased, than the model non-linearity would actually cause
ASCAT soil moisture data assimilation to exacerbate this positive bias. This might be
an unfair perception...but the revised manuscript should address this concern.

• We agree with both aspects of this comment, and have changed the manuscript
accordingly. Since submitting the original article, the reasons why the assimila-
tion generated a net increase in w2 (or a reduction of the dry bias) have been
further investigated. As suggested by the reviewer this is due largely to nonlinear
aspects of the model. Below, the reasons for this result are discussed, together
with the implications of this, and an outline of the changes that have been made
to the paper to address these issues.

This study attempted to assimilate ASCAT near-surface soil moisture to correct
for errors in SIM associated with the use of NRT forcing. The NRT forcing errors
were dominated by a dry bias in the NRT precipitation fields, which resulted in the
SIM_NRT w1 and w2 being biased dry. In ISBA, w1 varies rapidly, and has a very
short memory, so that the SIM_NRT and SIM_DEL w1 timeseries only diverged
briefly immediately following each rain event, and were in general well converged
in between rain events. In contrast, w2 has a much longer memory, and it slowly
developed a larger bias due to the accumulation of biased precipitation events.
In this instance a bias-aware assimilation will not be useful, since the principle
variable that is being analysed (root-zone soil moisture) is not observed, and a
bias aware assimilation of soil moisture cannot estimate the bias in layers for
which no observations or knowledge of the truth is available (de Lannoy et al,
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2006). Another option to address the SIM_NRT root-zone soil moisture biases
(or at least increase the coupling between the w1 and w2 biases) would be to
include parameter estimation in the DA scheme, however this would certainly
result in decoupling the solution and cause of the NRT w2 biases, and has not
been pursued.

Instead, in this work we proceeded with a bias-blind assimilation in the hope that
the ASCAT observations, even after being corrected to the SIM_NRT climatol-
ogy, are accurate enough to detect the errors in the SIM_NRT w1 caused by
the under-estimated precipitation, allowing the data assimilation to correct for the
erroneous precipitation as it occurs. While in a linear model a bias-blind assimila-
tion of unbiased observations would not be expected to affect the model biases,
in practise land surface models are nonlinear, and it is common to see change
in the mean soil moisture from assimilation of unbiased (relative to the model)
observations (e.g., Muñoz Sabater et al (2009) ). In fact, some temporal corre-
lation in the analysis updates is desirable in any land surface assimilation: given
the dissipative nature of the land surface, analysis updates that are purely white
would have a very limited impact on model forecasts.

The results of the assimilation experiment showed that despite the observations
being unbiased relative to the model, the assimilation had a strong tendency to
add moisture to w2 (particularly in the summer), with a mean net positive incre-
ment of 0.1 mm day−1, resulting in a net increase in the model root-zone soil
moisture. While this result is consistent with the assimilation having correctly
updated the model in response to the underestimated NRT precipitation, an in-
vestigation of the assimilation system and model physics indicated that there may
also be other causes of the net addition of moisture.

Firstly, scatterplots of the Kalman gain for updating w2 (K2) vs. the obser-
vation departures show a very clear tendency for increased K2 when the ob-
servation departure becomes more positive. For example, averaged across
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the whole experiment, the mean K2 for positive observation departures was
0.063m3m−3, while for negative observation departures it was 0.030m3m−3.
The main cause of this is the observation operator, which is a 24 hour in-
tegration of the forecast model (SIM), followed by conversion to the obser-
vation equivalent variable (w1). That is, for yo = w1 and x = [w1, w2]T ,
H = [d(w1)t+24/d(w1)t, d(w1)t+24/d(w2)t]T . During periods of rain, H2 =
d(w1)t+24/d(w2)t is reduced, since the signal in w1 of w2 is overridden by the
precipitation. As a result, H2 and consequently K2 tends to be smaller when the
model w1 is wetter. An additional (although lesser) influence on K2 came from
the observations errors used in R, which were estimated by calculating the sen-
sitivity of the retrieval algorithm to noise in the ASCAT backscatter observations.
Scatterplots of these error values values show a clear tendency to decrease as
the ASCAT observation becomes wetter (at least within the range of most of the
ASCAT data used here). This results in higher K2 for wetter ASCAT observations.
In combination these two factors lead to tendency towards higher K2 when the
observation departure (=ASCAT - w1) was more positive, giving the assimilation
a clear preference towards adding net moisture to the model.

It is difficult to determine how the above issues should be addressed within the
EKF framework. The relationship between the ASCAT observation value and ob-
servation error could be eliminated by reverting to a constant R, as is more often
used in soil moisture assimilation. For the H2 term, since w1 will not be influ-
enced by w2 during precipitation events, the tendency for H2 to decrease under
these conditions is physically correct. However, the model error should also be
larger during periods of rain, to reflect the large uncertainties in the precipitation
observations used to force the model (recall that the timing of precipitation events
is reasonable, while the volume is often incorrect), and this is not accounted for
in the current Simplified EKF. Consequently, adopting an additive forecast error
term (Q) (not used here, but used in related studies with the full EKF) that is
parametrised to depend on the model rainfall would help to offset the reductions
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in H2 after rain, giving a more symmetric relationship between K2 and rainfall.
Work is currently underway to incorporate a rainfall-dependent Q into the EKF
(Mahfouf, 2010).

While the above behaviour of K will cause the assimilation to favour adding mois-
ture to the model surface, this is partly offset by the non-linear response of the
model to the applied updates. In particular, when the ISBA model soil moisture
is perturbed away from the model’s preferred trajectory, the rate at which it will
converge back to its preferred (typically incorrect) trajectory depends on the soil
moisture state. Specifically, the model will return to its preferred climatology more
rapidly in wetter conditions, than in drier conditions. This is evident in Table 1 of
Thirel at al (2010) - see the second and eighth lines of data, showing the impact
on the model forecast stream flow ("no assim") of applying positive and negative
10% perturbations to the model soil moisture. The positive perturbation resulted
in a larger initial change in the forecast stream-flow than the negative perturba-
tion, because the stream-flow is more sensitive to soil moisture for wetter soils.
However, the influence of the positive perturbation on the stream-flow forecasts
reduced much more rapidly than that of the negative perturbations, so that after
21 days the impact on the stream-flow was less for the positive perturbation than
for the negative perturbation. Consequently it will be more difficult for an assim-
ilation to correct a dry bias in the model, since the positive increments will be
more quickly lost, than for a wet bias.

In summary the SEKF assimilation was biased, with a tendency to make larger
increments when the observation departure was positive. This was then offset by
a tendency for the positive increments to be forgotten by the model more rapidly
than negative increments. While the influence of these two phenomena on the
model bias will have offset each other to some extent, it is impossible to determine
by how much, and what their net combined effect on the model bias is. Hence,
the finding that the assimilation reduced the biases in the ISBA model cannot be
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assumed to imply that this was due to the ASCAT data correctly detecting errors
in the NRT w1. In response to this the paper has now been substantially rewritten
to include much of the above discussion. While the basic experiments presented
are unchanged, the presentation of the results and the conclusions drawn from
these results have been updated. Specifically, any implication that the results of
these experiments necessarily reflect positively on the skill of the ASCAT data
has been removed, and a discussion has been added of the consequences of
the above issues for assimilating near-surface soil moisture data into ISBA with
the SEKF, as well as the steps that could be taken to better address these issues
in the future.

1) p.5434 (lines 22-25). I had problems getting a grasp on the author’s definition of
the observation operator here. In (3), H is defined as a diagnostic operator (mapping
between states and observations at the same time) so why is a dynamic model inte-
gration with a 24-hr forecast window required to define it? This makes it sound like the
observation operator is mapping between two quantities at different times. . .which is
inconsistent with the definition of H in (3). This is probably just my ignorance...but it
should be clarified.

• In the SEKF used here H consists of a 24-hour integration of the forecast model
(taking the state vector forward in time), followed by a conversion to the observa-
tion equivalent variable (the diagnostic operator). Accordingly, the observations
are 24-hours later than the analysis time. This has now been explained more ex-
plicitly in the paper, and the t index has been removed from equation 3 to reduce
the implication that the ith observation and ith analysis update occur at the same
time.

2) p.5437 (lines 10-20). Equation 1 has be inverted in order to output VSM and perform
the mapping discussed here (ASCAT SDS to VSM in the SIM_NRT range)...right? If
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so, that should be clarified here.

• Yes, equation 1 was inverted. This sentence has been updated to state this
explicitly.

3) p.5434 (lines 12). In the SEKF, does P evolve during the forecast step? The text
here seems to suggest that it does but then doesn’t describe how it evolves.

• Yes, since a 24 hour forecast is included in the observation operator, applying
H to B carries B0 forward in time, so that HB0H

T represents the model error
in the observed variables (w1) at the end of the 24-hour forecast. In line with
comment 1, the temporal evolution of B0 through the assimilation cycle has now
been explicitly described.

4) p.5437 (lines 20-25). Isn’t the fact that the transferred soil moisture are unbiased
(despite having the same max/min bounds) just due to non-equal skewness in the
two soil moisture distributions? I don’t know if you need any exotic explanation for
this...maybe just say that it’s well-known that modeled and remotely-sensed soil mois-
ture almost never demonstrate the same pdf (i.e. the same 1st, 2nd AND 3rd order
statistical moments)?

• Yes. This was the exact point we were attempting to make: even though the
ASCAT data have been re-scaled in such a way that they match range of the
ISBA model, there are still differences between the PDFs, which was expected
given the fundamental differences between the two variables. These sentences
have been changed as suggested above.

5) Figure 4 – explicitly define what is meant by “improvement in RMSE” in the caption.
At first glance, I wrongly interpreted positive values to indicated degradation.
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• The caption has been changed to "reduction in RMSE".

6) p.5444 – define “discharge ratio”

• "(discharge ratio=forecast discharge / observed discharge)" has been added at
first reference to the discharge ration.

7) The data assimilation evaluation strategy applied here is very similar to the “data
denial” approach applied in Bolten et al. (2010) (i.e. use good retrospective forcing
to create a baseline, degrade using realistic real-time data and evaluation data as-
similation based on its ability to recover the baseline). A citation using be useful to
establish that this is an appropriate and accepted methodology for evaluating a land
data assimilation system.

Bolten, J.D., W.T. Crow, T.J. Jackson, X. Zhan and C.A. Reynolds,"Evaluating the utility
of remotely-sensed soil moisture retrievals for operational agricultural drought moni-
toring," IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 3, 57-66, 10.1109/JSTARS.2009.2037163, 2010.

• This paper has now been referenced in the introduction. Additionally, the contrast
in the results obtained by Bolten et al (2010) (as well as Crow et al 2010) has also
been mentioned in the discussion. Those two papers use TRMM precipitation as
their degraded forcing, which is of much lower quality that the NRT SAFRAN
forcing used here. Hence the evaluation criteria used in this paper was far more
ambitious (and the results were less conclusive).
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