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Abstract 12 

Controlled experiments have provided strong evidence that changing land cover (e.g. 13 

deforestation or afforestation) can affect the water balance. However a similarly strong 14 

influence has not been detected in analyses of collated streamflow data from catchments with 15 

mixed land cover. We tried to explain this paradox using streamflow observations from 278 16 

Australian catchments, a ‘top-down’ inference method (fitting the Zhang formulation of the 17 

Budyko model); and a ‘bottom-up’ dynamic hydrological process model (the Australian 18 

Water Resources Assessment system Landscape model, AWRA-L). Analysis with the Zhang 19 

model confirmed the previously reported absence of a strong land cover signal in the 20 

streamflow data set. The process model was able to predict a lack of signal in the 21 

heterogeneous catchment data set, as well the land cover influence observed in controlled 22 

experiments. This suggested there are likely to be methodological issues with the top-down 23 

analysis approach. To test this, synthetic experiments were performed in which the Zhang 24 

model was used to analyse synthetic AWRA-L streamflow simulations for the 278 25 

catchments. This suggested three reasons why the Zhang model did not accurately quantify 26 

the land cover signal: (1) measurement and estimation errors in land cover, precipitation and 27 
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streamflow, (2) the importance of additional climate factors; and (3) the presence of 44 

covariance in the streamflow and catchment attribute data. These methodological issues are 45 

likely to prevent the use of top-down methods to try and detect and accurately quantify a land 46 

cover signal in data from catchments with mixed land cover. However, our findings do not 47 

rule out physical processes that diminish land cover influence in catchments with mixed land 48 

cover. 49 
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 56 

1. Introduction 57 

There is strong experimental evidence that changing land cover (e.g. deforestation or 58 

afforestation) can affect the local water balance. Such an influence has been detected at 59 

various scales, from site water balance and atmospheric water flux studies to small 60 

catchments undergoing change (see review by e.g. van Dijk and Keenan, 2007 and references 61 

therein). Controlled catchment experiments have demonstrated a change in mean catchment 62 

streamflow after land cover change (typically forest planting or logging; Bosch et al., 1982; 63 

Bruijnzeel, 1990; Andréassian, 2004; Bruijnzeel, 2004; Brown et al., 2005; Farley et al., 64 

2005). They appear to provide clear evidence that land cover characteristics affect mean 65 

streamflow, although this influence is moderated by a range of climate and catchment 66 

characteristics as well as vegetation attributes beyond broad land cover class alone 67 

(Andréassian, 2004; Bruijnzeel, 2004; van Dijk and Keenan, 2007). These conclusions could 68 

be corroborated by analysis of collated longer term mean streamflow (Q) estimates from 69 

multiple catchments, provided only catchments with (near complete) forest cover and 70 

herbaceous cover were selected (Holmes et al., 1986; Turner, 1991; Zhang et al., 1999; 71 

2001). The collated data were still dominated by small experimental catchments, however, 72 

and such experiments are not without their challenges (discussed further on). 73 

Subsequent studies have attempted to detect a similar land cover influence by statistically 74 

analysing Q from many catchments with mixed land cover. In such data sets, climate is the 75 

primary reason for variation in response and therefore needs to be controlled for. Several 76 

studies do this by ‘fitting’ an additive formulation of a Budyko model1 (Budyko, 1974) that 77 

explicitly represents two (e.g., ‘forest’ and ‘herbaceous’) or a small number of land cover 78 

types (Zhang et al., 2004; van Dijk et al., 2007; Oudin et al., 2008; Donohue et al., 2010; Peel 79 

et al., 2010). Such an approach has been described as a ‘top-down’ analysis (sensu Klemeš, 80 

1983; Sivapalan et al., 2003). In formula: 81 

         (1) 82 

                                                           
1 Defined here as any rational function that embodies the same conceptual model as the 

original (see various examples in e.g. Oudin et al., 2008). 
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where Qj, Pj, and PEj are the longer-term average streamflow, precipitation and potential 93 

evaporation2 (in mm per time unit) for catchment j, FCi,j is the fractional cover of land cover 94 

type i in catchment j, and wi a dimensionless model parameter that characterises the 95 

hydrological behaviour of land cover class i and may be interpreted as a measure of the 96 

efficiency with which vegetation accesses and uses stored water. The influence of land cover 97 

is subsequently tested by finding the wi values that minimise the root mean square error 98 

(RMSE) between observed and estimated streamflow averages, and interpreting the found 99 

parameter values. The cited studies performed such an analysis using collated data for 221 100 

(Donohue et al., 2010) to 1508 (Oudin et al., 2008) catchments. They report either a much 101 

smaller land cover influence than found in controlled experiments (Zhang et al., 2004; van 102 

Dijk  et al., 2007; Oudin et al., 2008; Donohue et al., 2010; Peel et al., 2010); no statistically 103 

significant influence (Zhang et al., 2004; van Dijk et al., 2007; Oudin et al., 2008; Peel et al., 104 

2010); or even an influence opposite to that expected – at least for some land cover classes 105 

(Oudin et al., 2008; Peel et al., 2010) or climate types (van Dijk et al., 2007; Peel et al., 106 

2010). 107 

It seems contradictory that land cover change should have a marked effect on the water 108 

balance of a catchment when it has homogeneous land cover, but not when it has mixed land 109 

cover. Some possible physical and methodological causes have been suggested for this 110 

paradox. Physical explanations include: 111 

1. Catchment size. The nature of controlled experiments puts a limit to the size of catchments 112 

that can be manipulated and the majority of experiments have been carried out on catchments 113 

smaller than 1 km2 (see e.g. tabulated data in Andréassian, 2004; Brown et al., 2005). 114 

Conversely, data sets of ‘real-world’ catchments with mixed land cover tend to have average 115 

catchment sizes in the order of hundreds to thousands km2 (see respective studies listed 116 

earlier). A known issue with small catchments is the risk of ungauged subterranean transfers 117 

(e.g. Bruijnzeel, 1990), which could lead to overestimation of the influence of land cover 118 

change on streamflow. Conversely, while land surface-atmosphere feedbacks perhaps can 119 

safely be ignored for small catchments, that may not be the case for large catchments, where 120 

land cover certainly influences overall evaporative energy and may even modulate 121 

precipitation (for discussion see Donohue et al., 2007; van Dijk and Keenan, 2007) 122 

                                                           
2 In ‘evaporation’ we include all evaporation and transpiration fluxes. 
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2. Catchment hydrological processes. As catchment experiments require small and well 132 

defined watersheds they may be expected to have greater relief in comparison to larger 133 

catchments. Greater relief may mean shallower soils, less infiltration and therefore more 134 

storm flow, a more efficient surface drainage network, and lesser evaporation losses from 135 

streams, wetlands and groundwater-using vegetation (van Dijk et al., 2007).  136 

3. Land cover characteristics. Experimental catchments may be expected to have a more 137 

‘idealised’ and homogenous vegetation cover and fewer activities and structures designed to 138 

reduce storm runoff. In afforestation studies, the selection of ‘suitable’ catchments may have 139 

created a bias towards low complexity land cover, whereas land cover after clearing is 140 

unlikely to be representative of established agricultural landscapes. Large mixed land cover 141 

catchments may include surface runoff intercepting features (e.g. hillside farm dams, tree 142 

belts) and unaccounted surface water or groundwater use (Calder, 2007; van Dijk et al., 143 

2007). In addition, forest clearing in experimental studies may be associated with soil 144 

disturbance, which may enhance streamflow generation for reasons that are not directly 145 

attributable to land cover per se (Bruijnzeel, 2004). The consequence may be that the contrast 146 

in hydrological response between forested and non-forested land may be greater in 147 

experimental catchments than in non-experimental catchments. 148 

There are also some potential methodological issues: 149 

4. Other overriding climate and terrain factors. Confident detection and attribution of a land 150 

cover influence requires that other factors are considered and controlled for. Budyko theory 151 

controls for the two most important determinants of the long-term water balance, P and PE. 152 

One might question whether the Budyko framework is sufficiently powerful to evaluate the 153 

effect in addition to P and PE alone, and if so, whether indeed land cover is the next most 154 

important variable. Additional factors potentially as, or more important than, land cover 155 

include the phase difference between seasonal P and PE patterns (Budyko, 1974; Milly, 156 

1994) and other aspects of their temporal behaviour (e.g. rainfall intensity). Depending on 157 

their covariance with land cover, these attributes may attenuate or enhance any land cover 158 

signal. 159 

 5. Covariance between land cover and climate. Covariance between land cover and climate 160 

is commonly present in collated catchment data sets due to the correlation between natural 161 

biomes and climate, and because of the role of landscape and climate in land use and land 162 

Deleted: from 



cover change decisions. For example, catchments with considerable remnant and plantation 164 

forests will usually be found more commonly in regions with greater relief and typically 165 

associated greater P and lower PE than their lowland counterparts. Applying an additive 166 

response model to a data set with covariance between candidate predictors makes erroneous 167 

results more likely. Van Dijk et al. (2007) attempted to control for this effect and concluded 168 

that it influenced the results, but was probably not the only cause for their counterintuitive 169 

results. 170 

6. Measurement error. Analyses of data from small catchments have not been able to detect a 171 

significant change in stream flow when land cover is changed in less than 15–20% of a 172 

catchment (Bosch et al., 1982; but see Trimble et al., 1987; Stednick, 1996). Arguably, this 173 

can be attributed to the influence of measurement noise on the analysis. Statistically, 174 

therefore it might be expected that it is harder to detect a land cover signal in large 175 

catchments with land cover mixtures than it is for catchments with homogeneous land cover. 176 

Using additive Budyko models requires estimates not only of Q, but also of catchment 177 

average P, PE and fractional cover (FC) of the land cover classes of interest. Errors will 178 

occur in each of these and may affect the analysis results, even more so if errors are not 179 

random. For example, Oudin et al. (2008) speculated that systematic precipitation 180 

measurement errors affected their analysis.  181 

1.2 Objective 182 

In this study, we aim to test the hypothesis that methodological issues prevent the use of ‘top 183 

down’ analysis to accurately detect and quantify land cover influences by analysing data sets 184 

of catchments with mixed land cover. To test this, we used mean streamflow observations 185 

from 278 non-experimental Australian catchments, the Zhang formulation of the Budyko 186 

model, and a ‘bottom-up’ dynamic hydrological process model with explicit representation of 187 

vegetation characteristics (AWRA-L). Synthetic experiments were performed in which the 188 

Budyko model was used to analyse process model simulations for the 278 catchments. To 189 

paraphrase, we use the more complex model (AWRA-L) to create a virtual laboratory. We 190 

then perform a virtual experiment and use a simpler model (the Budyko model) as an 191 

analytical tool to interpret the results. If our experiment can reproduce (and therefore 192 

reconcile) the contradictory results of earlier studies described above, this would seem to 193 

confirm our hypothesis. 194 
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1.3 Caveats  197 

The way in which we use models in this experiment is not unique but somewhat unusual in 198 

the hydrological literature, and comments on earlier versions of this paper suggest our 199 

objectives can be misunderstood. It may be worthwhile to state what our objectives are 200 

explicitly not:  201 

• We do not aim to validate or falsify the dynamic process model (AWRA-L) we used 202 

in this experiment. We also do not aim to prove that the model structure and 203 

parameter values used here are the best possible description of reality, or better than 204 

other model or models. Any model can only ever be a flawed and simplified 205 

abstraction of reality (Oreskes et al., 1994). We only use the AWRA-L model because 206 

we understand its behaviour well and because it is able to reproduce two key features 207 

also observed in real data sets that are discussed in more detail further below. Any 208 

other model able to meet this criterion would have been suitable for the experiment. 209 

• We do not aim to prove that the methodological issues described are the only or even 210 

the main cause for the paradox discussed. Their presence certainly would not negate 211 

the plausibility and presence of additional methodological or physical explanations, 212 

and we will discuss some of these.   213 

• Similarly, we do not propose that we can use the more complex model to detect or 214 

demonstrate a land cover influence. This is neither necessary (we refer to the 215 

empirical evidence discussed) nor possible (a model cannot provide proof). We will 216 

discuss this point in more detail further on. 217 

• We do not aim to falsify or discredit Budyko type models as a useful and predictive 218 

theory, and do not question the usefulness of ‘top-down’ analysis as a paradigm. We 219 

focus here on only one very specific application, that is, whether analysing collated 220 

data from heterogeneous catchments by fitting a form of the Budyko model (a 221 

composite Zhang curve model) is able to accurately detect land cover influence. 222 

 223 
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2. Methods 230 

2.1 Data 231 

The streamflow data used here were identical to the data used by Van Dijk and Warren 232 

(2010), which is a subset of 278 out of around 326 records used in previous studies 233 

(Guerschman et al., 2008; Guerschman et al., 2009; Van Dijk, 2009; Van Dijk, 2010a) and 234 

very similar in composition to Australian catchment data used in other studies (e.g. Zhang et 235 

al., 2004; Peel et al., 2010). Catchment boundaries were derived from a 9” resolution digital 236 

elevation model (Fig. 1) and catchments with major water regulation infrastructure were 237 

excluded. The 278 catchments that were selected had data for at least five, not necessarily 238 

consecutive years between 1990 and 2006 (median 16 years). Woody vegetation cover 239 

fraction was mapped on the basis of Landsat Thematic Mapper imagery for 2004 and daily 240 

precipitation and Priestley-Taylor PE was interpolated at 0.05° resolution from station data 241 

(Jeffrey et al., 2001). Catchment areas varied from 23–1937 (median 278) km2, tree cover 242 

from 0-90% (median 25%), P from 404–3138 (median 836) mm year-1, PE from 766–2096 243 

(median 1265) mm year-1 and Qobs from 4–1937 (median 114) mm year-1. 244 

[FIGURE 1 HERE] 245 

2.2 Budyko model 246 

Oudin et al. (2008) tested five different Budyko models formulations and found little 247 

difference in their explanatory power. We chose the model of Zhang et al. (2001) because it 248 

was used successfully to detect land cover influence in a global streamflow data set of 249 

(mostly small) catchments with homogeneous land cover. For a single land cover class, the 250 

model can be written as: 251 
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 252 

For a catchment with a two land cover classes, forest and herbaceous vegetation, Eq. (2) can 253 

be rewritten as (cf. Eq. (1)): 254 
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 258 

2.3 Dynamic model 259 

The dynamical model used is the Australian Water Resources Assessment system Landscape 260 

hydrology (AWRA-L) model (version 0.5; Van Dijk, 2010b; Van Dijk and Renzullo, 2011).  261 

AWRA-L can be considered a hybrid between a simplified grid-based land surface model and 262 

a non-spatial catchment model applied to individual grid cells. Where possible process 263 

equations were selected from literature and selected through comparison against 264 

observations. Prior estimates of all parameters were derived from literature and analyses 265 

carried out as part of model development. Full technical details on the model can be found in 266 

Van Dijk (2010b) but some salient aspects are summarised here. The configuration used here 267 

considers two hydrological response units (HRUs): deep-rooted tall vegetation (‘forest’) and 268 

shallow-rooted short vegetation (‘herbaceous’). The water balance of a top soil, shallow soil 269 

and deep soil compartment are simulated for each HRU individually and have 30, 200 and 270 

1000 mm plant available water storage respectively. Groundwater and surface water 271 

dynamics are simulated at catchment scale. Minimum meteorological inputs are gridded daily 272 

total precipitation and incoming short-wave radiation and daytime temperature. Maximum 273 

evaporation and transpiration given atmosphere and vegetation conditions are estimated using 274 

the Penman-Monteith model (Monteith, 1965). Actual transpiration is calculated as the lesser 275 

of maximum transpiration and maximum root water uptake given soil water availability. 276 

Rainfall interception is estimated separately using a variable canopy density version of the 277 

event-based Gash model (Gash, 1979; Van Dijk et al., 2001a,b) to account for observed high 278 

rainfall evaporation rates (for discussion see e.g. van Dijk and Keenan, 2007). The influence 279 

of vegetation on the water balance occurs in a number of ways: compared to short vegetation, 280 

forest vegetation is parameterised to have lower albedo, greater aerodynamic conductance, 281 

greater wet canopy evaporation rates, lower maximum stomatal conductance, thicker leaves, 282 

access to deep soil and ground water, and adjust less rapidly to changes in water availability.  283 

Van Dijk and Warren (2010) evaluated AWRA-L with the configuration and 284 

parameterisation used here against a range of in situ and satellite observations of water 285 

balance components and vegetation dynamics. This included evaluation against Qobs from the 286 

catchments used in this analysis, as well as flux tower latent heat flux observations at four 287 
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sites across Australia including both forest and herbaceous sites (Van Dijk and Warren, 292 

2010). Latent heat flux patterns for dry canopy conditions were reproduced well. Comparison 293 

of total latent heat flux was difficult due to the large uncertainty in rainfall interception 294 

evaporation estimated from the flux tower measurements. Streamflow records were 295 

reproduced with an accuracy that was commensurate to that achieved by other rainfall-runoff 296 

models with a similar calibration approach.  297 

2.4 Experiments 298 

1. Can the paradoxical  results be reproduced and be reconciled with the process model? 299 

We did two tests to see whether we could reproduce the paradoxical results of published top-300 

down analyses of collated streamflow data from non-experimental catchments. First, we 301 

fitted the two parameter Zhang model (Eq. (3)) by minimising the standard error of estimate 302 

(SEE) against Qobs from the 278 catchments (using Solver in Microsoft ExcelTM). We 303 

interpreted the derived w(forest) and w(herbaceous) parameter values and implied land cover 304 

to assess whether we obtained the same paradoxical results of earlier studies in catchments 305 

with mixed land cover. 306 

Next, we investigated whether the AWRA-L could reconcile the apparent contradiction, 307 

which means meeting two conditions. First, the model needs to reproduce the observed 308 

streamflow from the 278 catchments satisfactorily. We considered this to be the case if the 309 

predictions were as good as that of the calibrated two-parameter Zhang model, or better. 310 

Second, the model needs to be in agreement with experimental catchment studies of land 311 

cover change. One test of this would be to reproduce streamflow changes observed in an 312 

actual paired catchment experiment, but unfortunately we did not have the daily streamflow 313 

and meteorological data required from such an experiment available, and one example would 314 

have limited statistical significance. Instead, we used AWRA-L to simulate streamflow from 315 

the 278 catchments under conditions of full forest and full herbaceous cover, respectively. 316 

We compared the resulting water balance estimates with the empirical relationships for the 317 

respective land cover type reported by Zhang et al. (2001), who propose two alternative 318 

models to estimate Q. The first method (Zhang-A) is to use Eq. (3) with values of 319 

w(forest)=2.0 and w(herbaceous)=0.5, with PE estimated using the Priestley-Taylor formula 320 

and a ‘standard’ land cover with assumed albedo and aerodynamic conductance. The second 321 

method (Zhang-B) is to use the same approach, but substitute PE by values of 1410 and 1100 322 

mm year-1 for forest and herbaceous cover, respectively. The latter reduces the physical 323 
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realism of the model, but provides a convenient alternative to where PE estimates are not 333 

readily available, and has been shown to agree well with other empirical relationships 334 

(Holmes et al., 1986; Turner, 1991) and data from catchments with homogeneous land cover 335 

(Zhang et al., 2001). We emphasise that our objective does not require that the process model 336 

explains more variation than the Zhang models in one or both cases; equal or similar 337 

performance would be sufficient. The critical difference is that fitting the Zhang models is 338 

expected to lead to two substantially different parameter sets, producing two mutually 339 

inconsistent models in the respective applications. By contrast, the process model uses one 340 

parameter set only for both cases and therefore produces internally consistent results. That the 341 

process model parameters were estimated a priori rather than optimised is not essential but 342 

arguably preferable. 343 

In summary, if the tests described above would be successful, we would be able to conclude 344 

that the paradoxical results of top-down analyses can be reproduced, and appear to be at least 345 

partly due to methodological problems. The subsequent analyses were designed to try and 346 

analyse three potential methodological problems, viz.: measurement errors, an overriding 347 

influence of other environmental factors, and covariance between land cover and climate. 348 

2. Are measurement errors responsible?  349 

One explanation for the reduced or absent land cover impact inferred from catchments with 350 

mixed land cover is the possible impact of measurement results. P, PE, Q and forest cover 351 

fraction (FC) are all prone to estimation errors. In principle, this could affect values for the 352 

two Zhang model parameters that were optimised. To test for this, we performed a synthetic 353 

experiment in which measurement ‘noise’ was added to the streamflow estimates produced 354 

by the process model (Qsim). (We did not use the actually observed streamflow as this already 355 

contained measurement noise). First, a simulated measurement error of 10% was added to all 356 

278 original values of FC and mean P, PE and Qsim. The errors were drawn independently for 357 

each variable and each catchment. For FC an error was added that was drawn from a normal 358 

(Gaussian) distribution with mean of zero and standard deviation of 0.1; the result was 359 

limited within the range 0 to 1. The values of P, PE and Qsim were multiplied with a factor 360 

drawn from a normal distribution with mean of one and standard deviation of 0.1. Next, the 361 

two Zhang model parameters were optimised to the resulting ‘noisy’ FC, P, PE and Qsim 362 

values for all 278 combined. This experiment was repeated 3000 times, each time with a 363 

sample of 278 catchments. The resulting 3000 pairs of w values were compared to those fitted 364 
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to the original FC, P, PE and Qsim values (without added noise), to assess whether 374 

measurement noise led to parameter values suggestive of a smaller than expected land cover 375 

influence. 376 

3. Are additional environmental factors responsible?  377 

The premise of the Budyko framework is that mean P and PE are the main determinants of 378 

streamflow. Beyond this, however, other climate factors or terrain factors may be more 379 

important than land cover category. To investigate this possibility, we analysed the AWRA-L 380 

simulations for the forest and herbaceous scenarios using the Zhang model. For each 381 

catchment, we calculated the model parameter (w) value corresponding to the streamflow 382 

simulated for each land cover scenario (i.e., full forest or full herbaceous cover) using the 383 

following inverted model form (cf. Eq. (2)): 384 
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 385 

For each land cover category, we attempted to find catchment attributes that could explain the 386 

variance in inferred w values. We used the same step-wise regression approach used in earlier 387 

analyses of the same streamflow data (Van Dijk, 2009; 2010a). In summary, candidate 388 

predictors were selected from a range of catchment attributes based on the parametric and 389 

non-parametric (ranked) correlation coefficients (r and r*, respectively). Linear, logarithmic, 390 

exponential and power regression equations were calculated for all potential predictors, and 391 

the most powerful one selected. The residual variance was calculated and the same procedure 392 

was repeated. The catchment attribute data available included measures of catchment 393 

morphology (catchment size, mean slope, flatness); soil characteristics (saturated hydraulic 394 

conductivity, dominant texture class value, plant available water content, clay content, solum 395 

thickness); climate indices (mean P, mean PE, humidity index P/PE, remotely sensed actual 396 

evapotranspiration, average monthly excess precipitation); and land cover characteristics 397 

(fraction woody vegetation, fractions non-agricultural land, grazing land, horticulture, and 398 

broad acre cropping, remotely sensed vegetation greenness). Full details on data sources and 399 

catchment climate, terrain and land cover attributes can be found in Van Dijk (2009; 2010a). 400 

4. Is covariance between land cover and climate responsible?  401 



Our catchment data set shows a modest amount of covariance between forest cover (FC) and 402 

P/PE (r=0.44). Earlier analyses showed that this can affect the ability to accurately determine 403 

land cover influence (see van Dijk et al., 2007, for a detailed example). We performed a 404 

further synthetic experiment using the AWRA-L model to test the magnitude of this problem: 405 

1) Each of the 278 catchments was assigned a new ‘virtual land cover’ by randomly drawing a 406 

new value for FC from a normal distribution with the same mean and standard deviation as 407 

the observed FC values  (0.284 and ±0.224, respectively). Values were truncated to remain 408 

within the range 0 and 1.  409 

2) For each catchment, the AWRA-L model was run with the new FC values and the original 410 

meteorological inputs. 411 

3) The two Zhang model parameters were fitted to the resulting 278 Qsim values. 412 

The experiment was repeated 3000 times (each time with all 278 catchments), and the results 413 

were analysed to determine whether there was a relationship between any (randomly 414 

introduced) covariance between the FC and P/PE values on the one hand, and the inferred 415 

land cover influence on the other. 416 

3. Results 417 

3.1 The paradox ical results  can be reproduced and reconciled by the process 418 

model 419 

Indicators of the agreement between Q observed in the 278 catchments and values estimated 420 

by the optimised two-parameter Zhang model (Eq. (3)) and the AWRA-L model are listed in 421 

Table 1. For comparison, the performance of the originally proposed Zhang-A and Zhang-B 422 

models and an optimised Zhang model (Eq. (2)) are also shown.  423 

[TABLE 1 HERE] 424 

Calibrating the Zhang model parameters led to an improvement in model performance and 425 

reduction in bias, when compared to the original models. However, reducing the Zhang 426 

model to a one-parameter model (that is, making the model insensitive to land cover), did not 427 

degrade model performance (optimised values were w(forest)=1.91 and w(herbaceous)=1.98 428 

versus w=1.95, respectively). These results support previously published result that fitting a 429 

Budyko model to observations from non-experimental catchments does not show the 430 
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expected land cover signal. In other words, we were able to reproduce previously found 434 

paradoxical results in this synthetic experiment. 435 

Table 1 also shows that, despite the lack of parameter optimisation, AWRA-L performs 436 

slightly better than the calibrated Zhang models. The AWRA-L predictions of mean 437 

streamflow for the same 278 catchments, but this time for a hypothetical scenario of full 438 

forest and herbaceous cover, are compared to the original Zhang-A and Zhang-B model in 439 

Fig. 2. AWRA-L is able to reproduce the approximate differences between forest and 440 

herbaceous catchments predicted by the original Zhang models, although the forest scenario 441 

predictions agree better with the Zhang-B model than with the Zhang-A model (Fig. 2). It 442 

follows that the process model (1) can satisfactorily predict streamflow from the 278 443 

catchments with mixed land cover, and (2) produces a land cover signal of similar magnitude 444 

as captured by the Zhang et al. (2001) models. Therefore, the process model can reconcile the 445 

paradoxical results of the top-down analysis. 446 

[FIGURE 2 HERE] 447 

As further evidence, the paradoxical results could also be reproduced by top-down analysis of 448 

the process model streamflow estimates. If a one-parameter Zhang model was fitted to the 449 

modelled Qsim with hypothetical full forest or herbaceous cover, w values 3.6 and 1.0 where 450 

found, respectively – producing curves quite similar to the original Zhang-A and Zhang-B 451 

models. However, when the two-parameter Zhang model was fitted to the Qsim obtained with 452 

actual FC values, the resulting values were much closer, at 2.22 and 1.79, respectively, 453 

predicting only a very small land cover signal (average forest water use is only 2% greater 454 

than herbaceous water use). This shows that the paradoxical results can also be reproduced 455 

with idealised, modelled streamflow data. 456 

3.2 Measurement errors are at least partly responsi ble   457 

The introduction of noise in the data led to higher average optimised w values: 2.7 (range 0.6-458 

9.4) for forest and 2.3 (1.3-9.2) for herbaceous cover. Probably more importantly, however, 459 

for 39% of the 3000 replicates the optimised w value for forest was actually lower than for 460 

herbaceous cover. It follows that random errors in the observations are likely to reduce the 461 

detectable influence of land cover on streamflow. 462 

3.3. Underlying climate factors may be responsible   463 
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The distribution of w values calculated from simulated streamflow for individual catchments 475 

appeared approximately log-normally distributed and therefore all values were log-476 

transformed before step-wise regression analysis. The ratio P/PE itself did not explain 477 

significant variance in either land cover scenario (r2<0.04).  478 

Somewhat unexpectedly, the most powerful predictor of variation in w values varied between 479 

the forest and herbaceous cover scenarios. In the full forest cover scenario, PE itself 480 

explained 45% of the variance in log-transformed w values (see Fig. 3a). Other predictors did 481 

not explain any of the residual variance. In the full herbaceous cover scenario, depth-482 

weighted average event precipitation (DWAEP, calculated as the sum of squared daily 483 

rainfall totals divided by total rainfall) explained 33% of the variation (Fig. 3b), whereas 484 

mean event precipitation (total rainfall divided by the number of rain days) explained 27% of 485 

variation (instead of, not in addition to the variation explained by DWAEP). Both are 486 

indicators of the irregularity of rainfall distribution (see Van Dijk, 2009 for definitions). 487 

Other predictors did not explain any of the residual variance.  488 

It is concluded that other climate factors than P/PE alone may have considerable influence on 489 

catchment mean streamflow and be expressed in w values. 490 

[FIGURE 3 HERE] 491 

3.4 There is structure in the data set that is at l east partly responsible 492 

Using streamflow simulated for randomly generated hypothetical forest cover fractions 493 

(N=3000), Zhang model parameter values of 3.4±0.7 (range 1.9–6.1) and 1.1±0.1 (0.9–1.4) 494 

were fitted for forest and herbaceous cover, respectively. These average values are relatively 495 

close to the w values of 3.6 and 1.0 fitted for the full forest and herbaceous cover scenarios 496 

(experiment 1). In some experiments the optimised Zhang parameters were similar to the ‘full 497 

cover’ ones, whereas in other experiments they were very close (Fig. 4a) (it is noted that 498 

w(herbaceous) never exceed w(forest), unlike in the measurement error experiment). It would 499 

be tempting to conclude that the covariance between FC and P/PE in the original data set 500 

(r=0.44) was the main cause for the underestimation of land cover influence.  However, no 501 

relationship was found between the fitted parameter pair and the covariance between forest 502 

cover and P/PE that was introduced into the data set (Fig. 4a).  Nonetheless, the manipulation 503 

of the data must have introduced another form of hidden structure in the data set that affected 504 

the optimised parameter values.  505 
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4. Discussion  513 

4.1 The paradox ical results  can be reproduced and methodological issues are 514 

likely to be responsible 515 

Despite their simplicity, Budyko models have shown impressive skill in predicting mean 516 

catchment Q from P and PE alone, when compared to more complex dynamic catchment 517 

models. Indeed in comparison with the more complex AWRA-L model, the Zhang model 518 

could achieve very similar performance in explaining the observed catchment streamflow 519 

averages, although only after calibration. It was this same calibration, however, that produced 520 

land cover parameter values that could not be reconciled with the results of experimental 521 

catchment studies, thus reproducing the paradoxical results from previous studies. Our results 522 

demonstrate that a dynamic hydrological process model can reconcile these results, and 523 

therefore, that there appear to be methodological problems with the use of Budyko models as 524 

a detection method in this application.  525 

The synthetic experiments demonstrated that all methodological issues tested for 526 

(measurement errors, the presence of other important uncontrolled factors, structure in the 527 

catchment data set) can contribute to the failure to accurately quantify land cover influence 528 

with the Budyko model used. In all cases, underestimation of the land cover signal was the 529 

most likely result. Desirable aspects of Budyko models are their conceptual simplicity and the 530 

minimal number of parameters. However, in qualifying the principle of Occam’s Razor, 531 

Albert Einstein (1934) proposed that “the supreme goal of all theory is to make the irreducible 532 

basic elements as simple and as few as possible without having to surrender the adequate 533 

representation of a single datum of experience”.  On the basis of our results we conclude that, for 534 

the purpose at hand, Budyko models fail at the second part of this statement; that is, they are 535 

too simple to adequately quantify the influence of land cover in collated data sets of 536 

streamflow from catchments with mixed land cover.  537 

Although we only tested one particular Budyko model, previous studies suggest that 538 

conclusions would likely have been very similar if any other Budyko model had been used, 539 

due to the identical conceptual structure and similar function form (see e.g. Oudin et al., 540 

2008). Moreover, we argue that the methodological issues with heterogeneous data sets such 541 

as the one we analysed are not limited to the application of Budyko models but are likely to 542 

prevent accurate detection with other top-down approaches as well.  543 
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There have been attempts to increase the predictive performance of the Budyko models by 551 

including additional variables, often within a stochastic framework (e.g. Porporato et al., 552 

2004). Those not related to land cover include absolute PE values (Peel et al., 2010), solar 553 

radiation, phase differences between the seasonal P and PE patterns (Donohue et al., 2010), 554 

and the daily distribution of precipitation (see review in Gerrits et al., 2009). Our results 555 

suggest that some of these factors may indeed exert a similarly large or larger influence on 556 

catchment response. However, trying to control for these additional factors introduces further 557 

parameters and observations with associated uncertainty, and ultimately such an approach 558 

must fall prey to the very issue that top-down approaches are intended to avoid, that is, 559 

creating an underdetermined (or undetermined) problem in which competing hypotheses 560 

create similar outcomes and therefore cannot be tested. 561 

This is obviously not avoided by the use of dynamic process models. However such models 562 

are arguably more suitable to make process assumptions more explicit and allow these to be 563 

tested against different types of observations with different spatial and temporal 564 

characteristics. In light of this, we question whether it is advisable to calibrate any 565 

hydrological model to heterogeneous data sets such as the one analysed here. Arguably, it is 566 

sufficient to demonstrate that the observations can be explained satisfactorily by a (more 567 

complex) theory and therefore are not falsified by experimental knowledge. In this context, 568 

the Budyko framework may be a valuable benchmark test, whose predictive power should be 569 

matched or exceeded by a competing theory (cf. Van Dijk and Warren, 2010). It is however 570 

perhaps less useful as a suitable inference method to detect second order processes in 571 

complex data sets. 572 

Strictly speaking, our results are only valid for one particular data set. However, all factors 573 

we investigated negatively affected accurate quantification of the land cover signal. We 574 

consider it inevitable that at least some of these aspects (e.g. measurement errors, mixed land 575 

cover) will be encountered in any heterogeneous streamflow data set from large catchments 576 

with mixed land cover. Zhang et al. (2001) showed that this need not prevent detection of 577 

land cover impacts in data from catchments that represent ‘extreme’ scenarios and in 578 

controlled experiments. In particular paired catchment experiments are much more likely to 579 

adequately control for climate and terrain factors and thereby allow accurate quantification of 580 

the land cover influence. Apart from experimental issues associated with such necessarily 581 

small-scale experiments (such as subterranean leakage),  a critical issue in the extrapolation 582 
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of the results from such experiments will be the degree to which hydrological processes and 594 

land cover characteristics are representative for those in larger, non-experimental catchments 595 

(see van Dijk and Keenan, 2007 for a discussion). More complex process models probably 596 

have a role to play here, as the influence of such representational errors may be investigated 597 

in model experiments. 598 

4.2 The role of physical causes for the paradoxical  result  599 

We did not explore physical causes of the inability to adequately detect a land cover signal in 600 

previous Budyko model applications in large catchment data sets, but they may also play a 601 

role. The AWRA-L model was not considered suitable to explore all potential processes in-602 

depth; for example, it does not simulate land surface-atmosphere feedbacks, impacts of 603 

human interferences such as farm dams, roads and soil management, and redistribution of 604 

water through overland and subsurface flow within hill slopes. The model does describe some 605 

other potential feedback mechanisms, including evaporation from streams and riparian areas 606 

and (in an implicit manner) the lateral redistribution of groundwater. The role of these in 607 

simulations can be evaluated by comparing Qsim values generated with observed forest cover 608 

to estimates calculated as the weighted average of Qsim for the extreme land cover scenarios. 609 

The former were on average 10% smaller than the latter, representing an average 1.4% of 610 

catchment rainfall and 1.7% of catchment streamflow. In other words, within the model 611 

structure there is indeed scope for water not used in herbaceous areas to be evaporated in 612 

second instance from forest areas or the drainage network, thereby attenuating land cover 613 

influences. We are not able to validate the magnitude of the simulated fluxes against 614 

experimental data however. 615 

Consideration of the main causes of simulated hydrological changes associated with land 616 

cover change provides some further insight into reasons why large catchments with mixed 617 

land cover might behave differently from small homogenous ones. It appears that the main 618 

cause of the different hydrological response is predicted to be the greater rainfall interception 619 

losses from forest vegetation (Fig. 5). The approximate difference represents around 10-15% 620 

of rainfall, which is consistent with published experiments (e.g. Roberts, 1999) although 621 

much greater differences can occur under maritime conditions (e.g. Schellekens et al., 1999; 622 

McJannet et al., 2007). A priori it would seem plausible that that the associated rapid return of 623 

moisture to the atmosphere may influence rainfall generation downwind (cf. D'Almeida et al., 624 

2007; Pielke et al., 2007; van Dijk and Keenan, 2007). If this is indeed the case, then accurate 625 
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prediction of the influence of land cover change on the water balance of large catchments 633 

may depend on the spatial distribution of precipitation and how it is measured and 634 

represented in models. 635 

[FIGURE 4 HERE] 636 

5. Conclusions 637 

Although land cover is known to affect the water balance, attempts to quantify a similar 638 

influence in collated streamflow data from catchments with mixed land cover have not been 639 

successful. We conclude that this paradox is probably at least partly a consequence of 640 

methodological problems in the use of top-down methods to analyse such data sets. More 641 

specifically:  642 

1. Budyko models are too simplistic to adequately detect and quantify the influence of land 643 

cover in complex collated data sets of streamflow from catchments with mixed land cover, 644 

due to the measurement and estimation errors, additional climate factors, and the 645 

heterogeneous and structure nature of the data.  646 

2. Using a dynamic hydrological process model, we were able to reconcile streamflow 647 

response from 278 catchments with mixed land cover with experimental knowledge. This 648 

emphasises that the absence of proof (from the top-down analysis method presented here) 649 

does equal the proof of absence of land cover influence. 650 

3. At least some of these methodological issues are likely to be found in any heterogeneous 651 

streamflow data set from catchments with mixed land cover.  652 

4. There are reasons to suspect there may also be physical causes for the failure to adequately 653 

detect a land cover signal in large catchments. This includes the possibility of atmospheric 654 

feedback mechanisms associated with rainfall interception. 655 

 656 
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 786 

Table 1. Performance indicators of the original Zhang et al. (2001) models (Zhang-A and 787 

Zhang-B; see text for explanation), the Zhang model with one and two calibrated parameters, 788 

respectively, and the AWRA-L with prior parameter estimates. SEE=standard error of 789 

estimate, MAE=mean absolute error, and Bias=mean bias (all in mm year-1); Rel. Bias=mean 790 

relative bias and FOM=fraction of values overestimated by model (in %). 791 

SEE MAE Bias Rel. Bias FOM 

Zhang-A 119 97 79 44% 91% 

Zhang-B 136 114 86 47% 86% 

Zhang - 2 parameter 84 54 4 2% 62% 

Zhang - 1 pararameter 84 54 4 2% 62% 

AWRA-L 78 50 1 1% 54% 

 792 

793 



 794 

 795 

Fig. 1. Location of the 278 Australian catchments for which streamflow data were used in the 796 

analysis. 797 

798 
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 802 

Fig. 2. Comparison of AWRA-L simulated streamflow for the 278 catchments for scenarios 803 

of forest cover (green triangles) and herbaceous cover (orange circles) shown in two different 804 

ways. Also shown are the two models proposed by Zhang et al. (2001): (a) Zhang-A and (b) 805 

Zhang-B. 806 
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Fig. 3. Relationship between the catchment variable that explained most of the variance in 813 

(log-transformed) Zhang model parameter (w) values inferred from the synthetic land cover 814 

experiment, (a) potential evaporation (PE) for forest catchments and (b) depth-weighted 815 

average event precipitation (DWAEP) for herbaceous catchments. 816 

817 
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Fig. 4. Zhang model parameter values fitted to synthetic streamflow estimates for 278 821 

catchments produced by AWRA-L with random forest cover fractions assigned to each of the 822 

catchments. Data points represent the results of 3000 replicate experiments. (a) Zhang model 823 

parameter data pairs fitted in each experiment showing a well-defined relationship; (b) the 824 

difference between log-transformed parameter values versus the correlation between 825 

synthetic forest cover fraction (FC) and catchment humidity (P/PE) introduced in the 826 

experiment, showing no relationship (r=0.11). 827 
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  829 

Fig. 5. Contribution of different evaporation terms to the increase of streamflow after forest 830 

removal estimated by the AWRA-L model, expressed as a percentage of rainfall. Values 831 

represent fluxes averaged over three groups of catchments, intended to represent (from left to 832 

right) water-limited (P/PE<0.75), transitional, and energy-limited (P/PE>1.25) environments. 833 

Es=soil and open water evaporation; Et=transpiration; Ei=rainfall interception losses. 834 
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