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Abstract

Controlled experiments have provided strong evidehat changing land cover (e.qg.
deforestation or afforestation) can affect the watdance. However a similarly strong

influence has not been detected in analyses dadtedlistreamflow data from catchments with

mixed land cover. We tried to explain this pargdeing streamflow observations from 278 _ - - Deleted: ‘land cover

7777777777777777777777777777 T { Deleted: ’

T { Deleted: model

Budyko model); and a ‘bottom-up’ dynamic hydrolagiprocess model (the Australian
Water Resources Assessment system Landscape mAYdRIA-L). Analysis with the Zhang

model confirmed the previously reported absencesifong land cover signal the

streamflow data setfhe process model was able to predict a lack aofasim the "

N
N

heterogeneous catchment data set, as well thectarat influence observed in controlled N

AWRA-L

Deleted: However, absence of evidence
does not equate to the proof of absence,

i i i i i i Deleted: was able to reconcile the
experiments. This suggested there are likely tméthodological issues with the top-down streamflow data from the 278 catchment
with experimental knowledge

analysis approac(o test this, synthetic experimentere performed in which the Zhang (pejeted: expermens

catchments. Thisuggestethree reasons why the Zhang model did not accyrgtelntify - { Deleted: demonstrated

the land cover signal: (1) measurement and estimatirors in land cover, precipitation and



44 | streamflow, (2) the importance of additional climéctorsand(3) the presence of

45  covariance in the streamflow and catchment atteilolatta. These methodological issues are

46 | likely to prevent the use pf top-down metbadtry and detect and accuratgjyantifyaland - { peleted: any
47 | cover signal in data from catchments with mixedilaaver However, oufindings do not - { Deleted: our

48  rule out physical processes that diminish land cavfiuence in catchments with mixed land

49 covejp __ — | Deleted: , including atmospheric
- feedback associated with rainfall
interception.
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1. Introduction

There is strong experimental evidence that changimd cover (e.g. deforestation or
afforestation) can affect the local water balaigieeh an influence has been detected at
various scales, from site water balance and atneosgpWater flux studies to small
catchments undergoing change (see review by engDije and Keenan, 2007 and references
therein). Controlled catchment experiments haveahsitnated a change in mean catchment
streamflow after land cover change (typically foqganting or logging; Boscét al., 1982;
Bruijnzeel, 1990; Andréassian, 2004; BruijnzeeD£®rownet al., 2005; Farlegt al.,

2005). Theyappear tgrovide clear evidence that land cover charactesisiffect mean
streamflow, although this influence is moderatecbgnge of climate and catchment
characteristics as well as vegetation attributg®ha broad land cover class alone
(Andréassian, 2004; Bruijnzeel, 2004; van Dijk &wknan, 2007). These conclusions could
be corroborated by analysis of collated longer tav@an streamflowq) estimates from
multiple catchments, provided only catchments \{iar complete) forest cover and
herbaceous cover were selected (Holetes., 1986; Turner, 1991; Zhaagal., 1999;

2001). The collated data were still dominated bglsexperimental catchments, howeyver

and such experiments are not without their cha#lsr{discussed further on)

i Several s

: large

primary reason for variation in response and tleesheeds to be controlled for. Several .

J
)
)

o

Deleted: (Zhanget al., 2004; van Dijlet

studiesdo this by, ‘fitting’ an additive formulation of a Budyko modéBudyko, 1974) that al., 2007; Oudiret al., 2008; Donohuet
*************************************************************** s al., 2010; Peetdt al., 2010).

explicitly represents twqe(g, ‘forest’ and ‘herbaceous’) or a small numberaofd cover " { Deleted: Most of these
types(Zhanget al., 2004; van Dijkt al., 2007; Oudiet al., 2008; Donohuet al., 2010; Peel . { Defeted: inversely applied

Deleted: i.e.
et al., 201Q). Such an approach has been desasbadtop-down’ analysis (sensu Klemes, { Deleted: using
1983; Sivapalaet al., 2003). In formuta

Q; = %:FC; ;f(B;,PE;,w;] 1)

! Defined here as any rational function thatbodieghe same conceptual model as the - { Deleted: represents

original (see various examples in e.g. Oudin et28i08).
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whereQ, P;, andPE; are the longer-term average streamflow, precipiteand potential

hydrological behaviour of land cover classd may be interpreted as a measure of the

efficiency with which vegetation accesses and sga®d waterThe influence of land cover

is subsequently tested by finding thevalues that minimise the root mean square error

(RMSE) between observed and estimated streamflenages, and interpreting the found

parameter values. Tluéed studiesperformed such an analysis using collated dat@Zar

(Donohue et al., 2010) to 1508 (Oudin et al., 2aG28rhments. They repgeither a much

smaller land cover influence than found in congdlexperiments (Zhareg al., 2004; van
Dijk et al., 2007; Oudiet al., 2008; Donohuet al., 2010; Pedt al., 2010); no statistically
significant influence (Zhanet al., 2004; van Dijlet al., 2007; Oudiet al., 2008; Pedt al.,
2010); or even an influence opposite to that exgukbetat least for some land cover classes
(Oudinet al., 2008; Peaddt al., 2010) or climate types (van Dgkal., 2007; Pedalt al.,

2010).

It seems contradictopat land cover change should have a marked effetite water

balance of a catchment when it has homogeneousctarat, but not when it has mixed land

cover. Some possible physical and methodologiasdeahave been suggested for this

Jparadoy. Physical explanations include: -

1. Catchment size. The nature of controlled experiments puts a ltimithe size of catchments

_ - { Deleted: (out of a total number of 221 }

and 1508 reported in the various studies)

that can be manipulated and the majority of expenis have been carried out on catchments

smaller than 1 kin(see e.g. tabulated data in Andréassian, 2004yBed al., 2005).
Conversely, data sets of ‘real-world’ catchmentthwixed land cover tend to have average

catchment sizes in the order of hundreds to thalssknf (see respective studies listed

earlier). A known issue with small catchments s tisk of ungauged subterranean transfers

(e.g. Bruijnzeel, 199Q)which could lead to overestimation of the infloerof land cover

- { Deleted: . J
- { Deleted: se J
- { Deleted: have found }
- { Deleted: is paradoxical ]
- { Deleted: ‘land cover }
o [ Deleted: ' }
- { Deleted: In addition )

change on streamflayConverselywhile land surface-atmosphere feedbacks pert@aps c

safely be ignored for small catchments, that maybeahe case for large catchments, where

land cover certainly influences overall evaporagwergy and may even modulate
precipitation (for discussion see Donolaial., 2007; van Dijk and Keenan, 2007)

2 In ‘evaporation’ we include all evaporation ananspiration fluxes.
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2. Catchment hydrological processes. As catchment experiments require small and well
defined watersheds they may be expected to haategnelief in comparison to larger
catchments. Greater relief may mean shallower,de#s infiltration and therefore more
storm flow, a more efficient surface drainage nekyvand lesser evaporation losses from

streams, wetlands and groundwater-using vegetétamDijk et al., 2007).

3. Land cover characteristics. Experimental catchments may be expected to havera
‘idealised’ and homogenous vegetation cover an@&fewtivities and structures designed to
reduce storm runoff. In afforestation studies,dbkection of ‘suitable’ catchments may have
created a bias towards low complexity land covérengas land cover after clearing is
unlikely to be representative of established adftical landscapes. Large mixed land cover
catchments may include surface runoff intercepliiagures (e.g. hillside farm dams, tree
belts) and unaccounted surface water or groundwate(Calder, 2007; van Dig al.,

2007).In addition, forest clearing in experimental saglinay be associated with soll

disturbance, which may enhance streamflow gener&ioreasons that are not directly

attributable to land cover per se (Bruijnzeel, 2004e consequence may be that the contrast

in_ hydrological response between forested and noesfed land may be greater in

experimental catchments than in non-experimentahoaents.

There are also some potential methodological issues

4. Other overriding climate and terrain factors. Confident detection and attribution of a land
cover influence requires that other factors aresitctamed and controlled for. Budyko theory
controls for the two most important determinantsheflong-term water balande andPE.
One might question whether the Budyko frameworuificiently powerful to evaluate the

effectjn addition toP andPE alone, and if so, whether indeed land cover is\thé most - { Deleted: from

important variable. Additional factors potentiallg or more important thatand cover
include the phase difference between sead®aadPE patterns (Budyko, 1974; Milly,
1994) and other aspects of their temporal beha@magr rainfall intensity)Depending on

their covariance with land cover, these attribumey attenuate or enhance any land cover

signal.

5. Covariance between land cover and climate. Covariance between land cover and climate
is commonly present in collated catchment datadigtsto the correlation between natural

biomes and climate, and because of the role oflzaqk and climate in land use and land
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cover change decisions. For example, catchmenisoeitsiderable remnant and plantation
forests will usually be found more commonly in @ with greater relief and typically
associated greatérand lowerPE than their lowland counterparts. Applying an aduiti
response model to a data set with covariance bateaedidate predictors makes erroneous
results more likely. Van Dijk et al. (2007) attemgtto control for this effect and concluded
that it influenced the results, but was probablithe only cause for their counterintuitive

results.

6. Measurement error. Analyses of data from small catchments have aehltable to detect a
significant change in stream flow when land cogecthanged in less than 15-20% of a
catchment (Boscht al., 1982; but see Trimbét al., 1987; Stednick, 1996). Arguably, this
can be attributed to the influence of measuremeiseron the analysis. Statistically,

therefore it might be expected that it is hardedtd@tect a land cover signal in large

catchments with land cover mixtures than it isdatchments with homogeneous land cover.

Using additive Budyko models requires estimatesomdt of Q, but also of catchment
averageP, PE and fractional coverHC) of the land cover classes of interest. Error$ wil
occur in each of these and may affect the anatgsigits, even more so if errors are not
random. For example, Oudin et al. (2008) specultitatisystematic precipitation

measurement errors affected their analysis.

1.2 Objective

In this study, we aim to test the hypothesis thathodological issues prevent the usg of ‘top - { Deleted: simple

of catchments with mixed land cover. To test this,used mean streamflow observations
from 278 non-experimental Australian catchments,Zhang formulation of the Budyko
model, and a ‘bottom-up’ dynamic hydrological preeenodel with explicit representation of
vegetation characteristi¢6 WRA-L) . Synthetic experiments were performed in which the
Budyko model was used to analyse process modelations for the 278 catchmeni®

paraphrase, we use the more complex model (AWR#-Icyeate a virtual laboratory. We

then perform a virtual experiment and use a simpledel (the Budyko model) as an

analytical tool to interpret the results. If oupeximent can reproduce (and therefore

reconcile) the contradictory results of earliedsts described above, this would seem to

confirm our hypothesis.

_ - { Deleted: methods
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1.3 Caveats

The way in which we use models in this experimsmtdt unique but somewhat unusual in__ -

the hydrological literature, and comments on eaviésions of this paper suggest our

objectives can be misunderstood. It may be wortleathi state what our objectives are

explicitly not:

We donot aim to validate or falsify the dynamic process elddWRA-L) we used

in this experiment. We also ot aim to prove that the model structure and

parameter values used here are the best possgdgpton of reality, or better than

other model or models. Any model can only ever Hawed and simplified

abstraction of reality (Oreskes et al., 1994). \Wk ose the AWRA-L model because

we understand its behaviour well and becauseaiblis to reproduce two key features

also observed in real data sets that are discussadre detail further below. Any

other model able to meet this criterion would hbgen suitable for the experiment.

We donot aim to prove that the methodological issues diesdrare the only or even

the main cause for the paradox discussed. Thesepoe certainly would not negate

the plausibility and presence of additional methodizal or physical explanations,

and we will discuss some of these.

Similarly, we donot propose that we can use the more complex modistext or

demonstrate a land cover influence. This is neitieeessary (we refer to the

empirical evidence discussed) nor possible (a meal@hot provide proof). We will

discuss this point in more detail further on.

We donot aim to falsify or discredit Budyko type models assa&ful and predictive

theory, and dmot guestion the usefulness of ‘top-down’ analysia garadigm. We

focus here on only one very specific applicatitiat is, whether analysing collated

data from heterogeneous catchments by fitting ia fofrthe Budyko model (a

composite Zhang curve model) is able to accuratetgct land cover influence.

Deleted: The emphasis on
methodological issues does not negate the
plausibility of additional, physical causes,
and we will discuss some of these.
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2. Methods
2.1 Data

The streamflow data used here were identical ta#ta used by Van Dijk and Warren
(2010), which is a subset of 278 out of around IZ2®rds used in previous studies
(Guerschmaget al., 2008; Guerschma al., 2009; Van Dijk, 2009; Van Dijk, 2010a) and
very similar in composition to Australian catchmeata used in other studies (e.g. Zhang
al., 2004; Peedt al., 2010). Catchment boundaries were derivat ft 9” resolution digital
elevation model (Fig. 1) and catchments with majater regulation infrastructure were

consecutive years between 1990 and 2006 (medigadr8). Woody vegetation cover

fraction was mapped on the basis of Landsat Thervdpper imagery for 2004 anigily
precipitation and Priestley-Tayl®E was interpolated at 0.05° resolution from statiatad
(Jeffrey et al., 2001 )Catchment areas varied from 23-1937 (median RT8)tree cover
from 0-90% (median 25%, from 404-3138 (median 836) mm y&aPE from 766—2096
(median 1265) mm yeamndQ,,s from 4-1937 (median 114) mm yéar

[FIGURE 1 HERE]
2.2 Budyko model

Oudin et al. (2008) tested five different Budykodats formulations and found little
difference in their explanatory power. We choserttoelel of Zhang et al. (2001) because it
was used successfully to detect land cover inflaen@ global streamflodata set of
(mostly small) catchments with homogeneous laneg:cdvor a single land cover class, the

model can be written as:

P
2
1+ i + \/\{PEJ
PE P @)

For a catchment with a two land cover classessfard herbaceous vegetation, Eq. (2) can

Q:

be rewritten as (cf. Eq. (1)):

_ - [ Deleted: good

)

o [ Deleted: (based on quality codes)
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Q = FC( forest) P — + FC(herbaceous) P - )
P PE P PE
1+— +w(forest)] — 1+—— + w(herbaceous)| —
PE P PE P

2.3 Dynamic model

The dynamical model used is the Australian WatesoReces Assessment system Landscape
hydrology (AWRA-L) model (version 0.5; Van Dijk, 20b; Van Dijk and Renzullo, 2011).
AWRA-L can be considered a hybrid between a singalifjrid-based land surface model and
a non-spatial catchment model applied to individyrad cells. Where possible process
equations were selected from literature and seldbt®ugh comparison against
observations. Prior estimates of all parametergwerived from literature and analyses
carried out as part of model development. Full béedl details on the model can be found in
Van Dijk (2010b) but some salient aspects are suisathhere. The configuration used here
considers two hydrological response units (HRUsgmdrooted tall vegetation (‘forest’) and
shallow-rooted short vegetation (‘herbaceous’). Wager balance of a top soil, shallow soll
and deep soil compartment are simulated for eadd HRividually and have 30, 200 and
1000 mm plant available water storage respectivetgundwater and surface water

dynamics are simulated at catchment scale. Minirmgteorological inputs are gridded daily

Rainfallinterception is estimated separately using a viriesnopy density version of the - { Deleted: rainfal

event-based Gash model (Gash, 1979; Van &i@., 2001a,b) to account for observed high
rainfall evaporation rates (for discussion seewag.Dijk and Keenan, 2007). The influence
of vegetation on the water balance occurs in a murabways: compared to short vegetation,
forest vegetation is parameterised to have lowssdad, greater aerodynamic conductance,
greater wet canopy evaporation rates, lower maxirsiomatal conductance, thicker leaves,

access to deep soil and ground water, and adgsstdidly to changes in water availability.

Van Dijk and Warren (2010) evaluated AWRA-L witletbonfiguration and
parameterisation used here against a range dliasd satellite observations of water
balance components and vegetation dynamics. Tthisded evaluation again®t,s from the

catchments used in this analysis, as well as 8wet latent heat flux observations at four
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sites across Australia including both forest andb&eeous sites (Van Dijk and Warren,
2010). Latent heat flux patterns for dry canopydittons were reproduced well. Comparison
of total latent heat flux was difficult due to tlege uncertainty in rainfall interception
evaporation estimated from the flux tower measurgmestreamflow records were

reproduced with an accuracy that was commensuwdtet achieved by other rainfall-runoff

models with a similar calibration approagh. -

Deleted: Improved model
parameterisations are currently being
developed but for the current analysis
AWRA-L was used with prior estimates.

1. Can the paradoxical , results be reproduced and be reconciled with the process model ? - { Deleted: land cover paradox )

We did two tests to see whether we could reprothe@aradoxical results of published top-

down analyses of collated streamflow data from ergperimental catchments. First, we - { Delleted: (?ensu Klemes, 1983; Sivapalin
7777777777777777777777777777777777777777777 etal., 2003

fitted the two parameter Zhang model (Eq. (3)) byimising the standard error of estimate
(SEE) againsQ,s from the 278 catchmentssing Solver in Microsoft ExcEYf). We

interpreted the derived(forest) andw(herbaceous) parameteralues and implied land cover

to assess whether we obtained the same paradosstdds of earlier studies in catchments

with mixed land cover.

Next, we investigated whether the AWRA-L could necite the apparent contradictipn - [ Deleted: the land cover paradox }

streamflow from the 278 catchmemtstisfactorily We considereghis to be the casetifie - { Deleted: performance to be acceptable |

predictions were as good as that of the calibratedparameter Zhang modeir better.
Second, the model needs to be in agreement witbremental catchment studies of land
cover change. One test of this would be to reprediiceamflow changes observed in an
actual paired catchment experiment, but unfortupate did not have the daily streamflow
and meteorological data required from such an éxget available, and one example would
have limited statistical significance. Instead,wged AWRA-L to simulate streamflow from
the 278 catchments under conditions of full foeesd full herbaceous cover, respectively.
We compared the resulting water balance estimaitegive empirical relationships for the
respective land cover type reported by Zhang €Rab1), who propose two alternative
models to estimat®. The first method (Zhang-A) is to use Eq. (3) wittiues of
w(forest)=2.0 andw(herbaceous)=0.5, withPE estimated using the Priestley-Taylor formula
and a ‘standard’ land cover with assumed albedca@nddynamic conductance. The second
method (Zhang-B) is to use the same approach,ubstitutePE by values of 1410 and 1100
mm yeatr" for forest and herbaceous cover, respectively.|@tter reduces the physical
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realism of the model, but provides a conveniemrabtive to wher@E estimates are not
readily available, and has been shown to agreewitillother empirical relationships
(Holmeset al., 1986; Turner, 1991) and data from catchenaith homogeneous land cover

(zZhang et al., 2001)We emphasise that our objective does not rediu@iethe process model

explainsmor e variation than the Zhang models in one or botlesasqual or similar

performance would be sufficient. The critical difface is that fitting the Zhang models is

expected to lead to two substantially differeniapagter sets, producing two mutually

inconsistent models in the respective applicati@yscontrast, the process model uses one

parameter set only for both cases and therefordupss internally consistent results. That the

process model parameters were estimated a pribdrghan optimised is not essential but

arqguably preferable.

Hll

1 both

: above

i were

1 indeed

reconciled

in the application of the top-

that the paradoxical result$ top-down analysesan begeproducedand appear to be at Ieas\\\\{')e"Eteel
e v\ | Deleted

partly due to methodological problems. The subsetamalyses were designed to try and " ( peieted
analyse three potential methodological problerizs,measurement errors, an overriding \\\{ Deleted
: . : . "\ { Deleted:
influence of other environmental factors, and c@rare between land cover and climate. \Fe.::ed
eleted:

down method

(| W U | W, W | W

2. Are measurement errors responsible?

One explanation for the reduced or absent landrdaygact inferred from catchments with
mixed land cover is the possible impact of measergnesultsP, PE, Q and forest cover
fraction (C) are all prone to estimation errors. In princighes could affect values for the

two Zhang model parameters that were optimisede$ofor this, we performed a synthetic

experiment in which measurement ‘noise’ was addetig, streamflow estimatgsoduced - { Deleted:

model

by the process mod@s). (We did not use the actually observed streamflothssalready

contained measurement noideyst, a simulated measurement error of 10% wasdti all

278 original values dfC and meatp, PE andQg,. The errors were drawn independently for
each variable and each catchment. Roan error was added that was drawn from a normal
(Gaussian) distribution with mean of zero and stadidieviation of 0.1; the result was
limited within the range 0 to 1. The valuesfoPE andQs,, were multiplied with a factor
drawn from a normal distribution with mean of omel &tandard deviation of 0.1. Next, the
two Zhang model parameters were optimised to theltiag ‘noisy’ FC, P, PE and Qg

values for all 278 combined. This experiment waeatded 3000 timegach time with a

sample of 278 catchmenfBhe resultingd000pairs ofw values were compared to those fitted
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to the originalFC, P, PE andQy,,, values (without added noise), to assess whether
measurement noise led to parameter values suggesdtavsmaller than expected land cover

influence.
3. Are additional environmental factorsresponsible?

The premise of the Budyko framework is that mea@amdPE are the main determinants of
streamflow. Beyond this, however, other climatadesor terrain factors may be more
important than land cover category. To investighaie possibility, we analysed the AWRA-L
simulations for the forest and herbaceous scenasiog the Zhang model. For each
catchment, we calculated the model parameievdlue corresponding to the streamflow
simulated for each land cover scenario (i.e.,farkst or full herbaceous cover) using the

following inverted model form (cf. Eq. (2)):

kP _P_
_ Qgm(scenario) PE

)
P @)

For each land cover category, we attempted todaidhment attributes that could explain the

variance in inferredv values. We used the same step-wise regressionagpused in earlier
analyses of the same streamflow data (Van Dijk92@010a). In summary, candidate
predictors were selected from a range of catchiwtributes based on the parametric and
non-parametric (ranked) correlation coefficiemtar{dr’, respectively). Linear, logarithmic,
exponential and power regression equations weoalleéd for all potential predictors, and
the most powerful one selected. The residual veeavas calculated and the same procedure
was repeated. The catchment attribute data availabluded measures of catchment
morphology (catchment size, mean slope, flathesdl)characteristics (saturated hydraulic
conductivity, dominant texture class value, plargikable water content, clay content, solum
thickness); climate indices (meBnmeanPE, humidity indexP/PE, remotely sensed actual
evapotranspiration, average monthly excess pratigit); and land cover characteristics
(fraction woody vegetation, fractions non-agrictdfuand, grazing land, horticulture, and
broad acre cropping, remotely sensed vegetatiangess). Full details on data sources and

catchment climate, terrain and land cover attribetn be found in Van Dijk (2009; 2010a).

4. |s covariance between land cover and climate responsible?
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Our catchment data set shows a modest amount afiaoce between forest cov&d) and

land cover influence (see van Dgkal., 2007, for a detailed example). We performed

further synthetic experiment using the AWRA-L mottetest the magnitude of this problem:

1) Each of the 278 catchments was assigned a newaViend cover’ by randomly drawing a
new value folFC from a normal distribution with the same mean stashdard deviation as
the observedC values (0.284 and £0.224, respectively). Valuesviruncated to remain
within the range 0 and 1.

2) For each catchment, the AWRA-L model was run whih new~C values and the original
meteorological inputs.

3) The two Zhang model parameters were fitted to éselting 2784y, values.

The experiment was repeated 3000 tifegch time with all 278 catchmentand the results

were analysed to determine whether there was tareship between any (randomly
introduced) covariance between #@ andP/PE values on the one hand, and the inferred

land cover influence on the other.

3. Results

model

Indicators of the agreement between Q observetki278 catchments and values estimated
by the optimised two-parameter Zhang model (EQ.48) the AWRA-L model are listed in
Table 1. For comparison, the performance of thgimaily proposed Zhang-A and Zhang-B

models and an optimised Zhang model (Eq. (2)) e shown.
[TABLE 1 HERE]

Calibrating the Zhang model parameters led to garéarement in model performance and
reduction in bias, when compared to the originatleis. However, reducing the Zhang
model to a one-parameter model (that is, makingrbdel insensitive to land cover), did not
degrade model performance (optimised values wgoeest)=1.91 andw(herbaceous)=1.98

Budyko model to observations from non-experimecéathments does not show the

- [ Deleted: analysis

- [ Deleted: land cover
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expected land cover signal. In other wordsywege able taeproducgoreviously found __ - { Deletea:

could
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paradoical results in this synthetic experiment o {[ T
Table 1 also shows that, despite the lack of paremoptimisation, AWRA-L performs
slightly better than the calibrated Zhang modele AWRA-L predictions of mean
streamflow for the same 278 catchments, but this for a hypothetical scenario of full
forest and herbaceous cover, are compared to igiearZhang-A and Zhang-B model in
Fig. 2. AWRA-L is able to reproduce the approximdiféerences between forestand - { Deleted: non-
herbaceous catchments predicted by the originah@haodels, although the forest scenario
predictions agree better with the Zhang-B modeh thidh the Zhang-A model (Fig. 2). It
follows that the process model (1) gatisfactorilypredict streamflow from the 278 - { Deleted: accurately
catchments with mixed land cover, andg2)duces dand cover signgbf similar magnitude - ( Deleted: can reproduce
2s captured by the Zhang et al. (2001) models.eTtw, the process model canreconcileiﬁef[ z:::::: :“;erved —
paradoxical results of the top-down analysis. *\ | experiments
{ Deleted: ,
[FIGURE 2 HERE]
As further evidence, the paradox resultscould also be reproduced by top-down analysis of
the process model streamflow estimates. If a omarpater Zhang model was fitted to the
modelledQsm With hypothetical full forest or herbaceous coveralues 3.6 and 1.0 where
found, respectively — producing curves quite simitathe original Zhang-A and Zhang-B
models. However, when the two-parameter Zhang medsilfitted to th&,, obtained with
actualFC values, the resulting values were much close?,2# and 1.79, respectively,
predicting only a very small land cover signal (aege forest water use is only 2% greater
than herbaceous water use). This shows that tleelparal resultscan also be reproduced - { Deleted: land cover

with idealised, modelled streamflow data.
3.2 Measurement errors are at least partly responsi  ble

The introduction of noise in the data led to higaeerage optimised values: 2.7 (range 0.6-
9.4) for forest and 2.3 (1.3-9.2) for herbaceouscoProbably more importantly, however,
for 39% of the 3000 replicates the optimisedalue for forest was actually lower thizm
herbaceous cover. It follows that random errothéobservations are likely to reduce the
detectable influence of land cover on streamflow.

3.3. Underlying climate factors may be responsible



475
476
477
478

479
480
481
482
483
484
485
486
487
488

489
490

491

492

493
494
495
496
497
498
499
500
501
502
503
504
505

The distribution ofv values calculated from simulated streamflow falividual catchments
appeared approximately log-normally distributed thedefore all values were log-

transformed before step-wise regression analysis.raitioP/PE itself did not explain

_ - [ Deleted: =0.1-

o [ Deleted: 2

Somewhat unexpectedly, the most powerful predicteariation inw values varied between
the forest and herbaceous cover scenarios. Inuthiofest cover scenari®k itself

explained 45% of the variance in log-transformedhlues (see Fig. 3a). Other predictors did
not explain any of the residual variance. In tHeHarbaceous cover scenario, depth-
weighted average event precipitation (DWAEP, catad as the sum of squared daily
rainfall totals divided by total rainfall) explaide&3% of the variation (Fig. 3b), whereas
mean event precipitation (total rainfall dividedthg number of rain days) explained 27% of
variation (instead of, not in addition to the véioa explained by DWAEP). Both are
indicators of the irregularity of rainfall distriban (see Van Dijk, 2009 for definitions).

Other predictors did not explain any of the residaaiance.

[FIGURE 3 HERE]
3.4 There is structure in the data set thatis at|  east partly responsible

Using streamflow simulated for randomly generatgglotthetical forest cover fractions
(N=3000), Zhang model parameter values of 3.4+0mged .9—6.1) and 1.1+0.1 (0.9-1.4)
were fitted for forest and herbaceous cover, rdspdy. These average values are relatively
close to thev values of 3.6 and 1.0 fitted for the full forestlgherbaceous cover scenarios
(experiment 1). In some experiments the optimideging parameters were similar to the ‘full

cover’' ones, whereas in other experiments they weng close (Fig. 4a) (it is noted that

relationship was found between the fitted paramgaérand the covariance between forest
cover andP/PE thatwasintroduced into the data set (Fig. 4a). Nonetlsldg® manipulation
of the data must have introduced another formadénm structure in the data set that affected

the optimised parameter values.
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513 4. Discussion

514 | 4.1 The paradox jcal results can be reproduced and methodological issues are - - Deleted: ‘land cover )
o [ Deleted: ’ J

515 likely to be responsible

516 Despite their simplicity, Budyko models have shampressive skill in predicting mean

517 catchment Q fron® andPE alone, when compared to more complex dynamic catahm

518 models. Indeed in comparison with the more compM#RA-L model, the Zhang model

519  could achieve very similar performance in explagnihe observed catchment streamflow

520 averages, although only after calibration. It was same calibration, however, that produced

521 land cover parameter values that could not be @lgohwith the results of experimental

522 | catchment studies, thus reproducing the paradbresults fronprevious studies. Our results. - - Deleted: found in

523 | demonstrate that a dynamic hydrological processetnzech reconcilghese resulisand

Deleted: this paradox

524 | thereforethat there appear to ogethodological problepwith the use of Budyko models as

525 | a detection method in this application { peteted: i liely 10 be a

)
)
Deleted: it }
)
)

T { Deleted: rather than a physical reality

526  The synthetic experiments demonstrated that alhaugtiogical issues tested for

527 (measurement errors, the presence of other impgarteontrolled factors, structure in the
528 catchment data set) can contribute to the failor@cturately quantify land cover influence
529  with the Budyko model used. In all cases, underesdton of the land cover signal was the
530 most likely result. Desirable aspects of Budyko eiedre their conceptual simplicity and the
531  minimal number of parameters. However, in qualifythe principle of Occam’s Razor,

532  Albert Einstein (1934) proposed thaite supreme goal of all theory is to make the irreducible

533  basic elements as simple and as few as possible without having to surrender the adequate

534  representation of a single datum of experience”. On the basis of our results we conclude that, f
535 the purpose at hand, Budyko models fail at thersgpart of this statement; that is, they are
536 too simple to adequately quantify the influencéaofl cover in collated data sets of

537  streamflow from catchments with mixed land cover.

538 Although we only tested one particular Budyko mogedvious studies suggest that

539  conclusions would likely have been very similaarify other Budyko model had been used,
540 due to the identical conceptual structure and ainfilnction form (see e.g. Oudin et al.,

541  2008). Moreover, we argue that the methodolog&slés with heterogeneous data sets such
542  as the one we analysed are not limited to the equin of Budyko models but are likely to

543  prevent accurate detection with other top-down eagnes as well.
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There have been attempts to increase the predmifermance of the Budyko models by
including additional variables, often within a stastic framework (e.g. Porporato et al.,
2004). Those not related to land cover include kips®E values (Peel et al., 2010), solar
radiation, phase differences between the seafamad PE patterns (Donohuet al., 2010),

and the daily distribution of precipitation (se&iesv in Gerritset al., 2009). Our results
suggest that some of these factors may indeed &sémtilarly large or larger influence on
catchment response. However, trying to controttiese additional factors introduces further
parameters and observations with associated uirdgytand ultimately such an approach
must fall prey to the very issue that top-down apphes are intended to avoid, that is,
creating an underdetermined (or undetermined) proth which competing hypotheses

create similar outcomes and therefore cannot bedes

This is obviously not avoided by the use of dynapmimcess models. However such models
are arguably more suitable to make process assomspiiore explicit and allow these to be
tested against different types of observations ditferent spatial and temporal

characteristics. In light of this, we question wieatit is advisable to calibratey

hydrological model to heterogeneous data sets asithe one analysed here. Arguably, it is_ - { Deleted:

S
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can be reconciled

(
(
[ Deleted:
{

the Budyko frameworknaybe,a valuable benchmark test, whose predictive pela@uld be {Deleted: with
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ <~ 7| Deleted: can
matched or exceeded bampeting theory (cf. Van Dijk and Warren, 2010)s NOWeVE" { peleted
perhapgess usefuas a suitable inference methioddetect second order processes in \\\ { Deleted: a successful
\\ ‘. | Deleted: should be able to reproduce ol
complex data sets '\ | exceed

' \\{ Deleted:

, but

Strictly speaking, our results are only valid foleqparticular data set. However, all factors { Deleted:
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we investigated negatively affected accurate gfieation of the land cover signal. We
consider it inevitable that at least some of theesmects (e.g. measurement errors, mixed land
cover) will be encountered in any heterogeneogssiflow data set from large catchments
with mixed land cover. Zhang et al. (2001) showet this need not prevent detection of
land cover impacts in data from catchments thatesgmt ‘extreme’ scenarios and in
controlled experiments. In particular paired catehtrexperiments are much more likely to
adequately control for climate and terrain factomd thereby allow accurate quantification of
the land cover influence. Apart from experimensslies associated with such necessarily
small-scale experiments (such as subterraneangepka critical issue in the extrapolation



594  of the results from such experiments will be thgrde to which hydrological processes and
595 land cover characteristics are representativenfuse in larger, non-experimental catchments
596 (see van Dijk and Keenan, 2007 for a discussiomyretomplex process models probably
597 have arole to play here, as the influence of saphesentational errors may be investigated

598 in model experiments.

599 4.2 The role of physical causes for the paradoxical result

600 | We did not explore physical cauggighe inability to adequately detect a land covenaign - [ Deleted: for ]

601  previous Budyko model applications in large catchiata sets, but they may also play a
602 role. The AWRA-L model was not considered suitablexplore all potential processes in-
603 depth; for example, it does not simulate land siefatmosphere feedbacks, impacts of

604 human interferences such as farm dams, roads dndamagement, and redistribution of
605  water through overland and subsurface flow withihstopes. The model does describe some
606 other potential feedback mechanisms, including exaton from streams and riparian areas
607 and (in an implicit manner) the lateral redistribatof groundwater. The role of these in

608 simulations can be evaluated by comparyg values generated with observed forest cover
609 to estimates calculated as the weighted avera@e,dbr the extreme land cover scenarios.
610 The former were on average 10% smaller than ther|aepresenting an average 1.4% of
611  catchment rainfall and 1.7% of catchment streamflovother words, within the model

612  structure there is indeed scope for water not usédrbaceous areas to be evaporated in
613 second instance from forest areas or the drainetyeork, thereby attenuating land cover
614 influences. We are not able to validate the mageitf the simulated fluxes against

615 experimental data however.

616 ’ Consideration of the main cauggsimulated hydrological changes associated with land - { Deleted: for )

617  cover change provides some further insight inteaaa why large catchments with mixed

618 land cover might behave differently from small h@m@anous ones. It appears that the main

619 ’ causeof the different hydrological response is predictetiédhe greater rainfall interception - - { Deleted: for )
620 losses from forest vegetation (Fig. 5). The appraxe difference represents around 10-15%

621  of rainfall, which is consistent with published eximents (e.g. Roberts, 1999) although

622 | much greater differences can occur ugdaritime, conditionge.g. Schellekenst al., 1999; - [ Deleted: some }

o [ Deleted: circumstances ]

623 | McJanneet al., 2007)A priori it would seem plausible that that the associadpitirreturn of
77777777777777777777777777777777777777777777777 T { Deleted: Despite uncertainty around the }

624  moisture to the atmosphere may influence rainfafiggation downwind (cf. D'Almeidet al., physicsof rainfall interception, a
625 2007; Pielkeet al., 2007; van Dijk and Keenan, 2007). If tlsisnideed the case, then accurate




633  prediction of the influence of land cover changdlmwater balance of large catchments
634 may depend on the spatial distribution of prectmtaand how it is measured and

635 represented in models.
636 [FIGURE 4 HERE]
637 5. Conclusions

638  Although land cover is known to affect the watelabae, attempts to quantify a similar

639 influence in collated streamflow data from catchteemith mixed land cover have not been

640 | successful. We conclude that this paradgx@bably at least partlg consequence of __ - { Deleted: ‘land cover

641  methodological problems in the use of top-down éshto analyse such data sets. More { Deeted:

642  specifically:

643 1. Budyko models are too simplistic to adequatetiedt and quantify the influence of land
644  cover in complex collated data sets of streamflanfcatchments with mixed land cover,
645 due to the measurement and estimation errors,iaddalitclimate factors, and the

646 heterogeneous and structure nature of the data.

647 2. Using a dynamic hydrological process model, veeevable to reconcile streamflow

648 response from 278 catchments with mixed land cestér experimental knowledge. This

649 | emphasises that the absencembf (from the top-downanalysismethodpresented heye - { Deleted: evidence

o [ Deleted: s

650 does equal the proof of absence of land coveréntte.

651 3. At least some of these methodological issuefikaly to be found in any heterogeneous

652 streamflow data set from catchments with mixed lemwer.

653 4. There are reasons to suspect there may alsbysecal causes for the failure to adequately
654 detect a land cover signal in large catchmentss iAgiudes the possibility of atmospheric
655 feedback mechanisms associated with rainfall iefeion.

656
657
658

659
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Table 1. Performance indicators of the original Zhang e(2001) models (Zhang-A and

Zhang-B; see text for explanation), the Zhang medil one and two calibrated parameters,

respectively, and the AWRA-L with prior parametetimates. SEE=standard error of

estimate, MAE=mean absolute error, and Bias=meas (all in mm yeal); Rel. Bias=mean

relative bias and FOM=fraction of values overestedaby model (in %).

SEE MAE Bias Rel. Bias FOM
Zhang-A 119 97 79 44% 91%
Zhang-B 136 114 86 47% 86%
Zhang - 2 parameter 84 54 2% 62%
Zhang - 1 pararameter 84 54 2% 62%
AWRA-L 78 50 1 1% 54%
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796  Fig. 1. Location of the 278 Australian catchments for ehétreamflow data were used in the
797  analysis.
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823  catchments. Data points represent the results@d B&plicate experiment&) Zhang model
824  parameter data pairs fitted in each experiment siwpe well-defined relationshigh) the

825 difference between log-transformed parameter valaesus the correlation between

826  synthetic forest cover fractiofrC) and catchment humidity?(PE) introduced in the

827  experiment, showing no relationshig=0Q.11).
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Fig. 5. Contribution of different evaporation terms to therease of streamflow after forest
removal estimated by the AWRA-L model, expressed psrcentage of rainfall. Values
represent fluxes averaged over three groups oficents, intended to represent (from left to
right) water-limited P/PE<0.75), transitional, and energy-limite/lPE>1.25) environments.

Es=soil and open water evaporatidistranspirationEi=rainfall interception losses.



