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Reply to referee E. Zehe 

Dear  Erwin  Zehe,  the  authors  thank  you  very much  for  your  valuable  comments  which  help  to 

improve  our  paper  significantly! We  hope  that we  could  fully  address  all  points.  Concerning  the 

discussion about our bias correction procedure, we will reduce its weight in the paper and we will set 

a focus on index interpretation relative to catchment properties and input data. 

This  is  an  interesting  study  that  defines  and  uses  smart  signature  indices  based  on  the  flood 

frequency  curve and on event  runoff coefficient  to assess change  impacts on catchment  response 

behavior. The study  is based on a sound data base,  the manuscript  is well structured manuscript  ‐ 

though  some  copy  editing  by  a  native  speaker  is  still  necessary.  The  presented  findings  are 

potentially  of  high  interest  for  the  audience  of  HESS.  Unfortunately  the  authors  miss  many 

opportunities  to work  out  potentially  very  interesting  findings  of  the  proposed  study.  I  strongly 

encourage the authors to better work out the hydrological insights within major revisions. I hope the 

authors find the following major and minor points useful for this task: 

The revised paper will much more focus on the hydrological insights gained by the signature indices. 

 
Major points:  

‐ The author should better discuss the potential of the proposed  indices to assess quality of model 

predictions where model is defined as code, parameter set for a given catchment and meteorological 

input data.  Even with observed  rainfall  LARSIM performs poor  for  instance with  respect  to peaks 

flows,  and  very  poor  during  summer  events  (30  ‐40  %  overestimation  of  runoff  coefficients  for 

catchments Kronweiler and Kellerbach). Model performance  is not acceptable for Gensingen. These 

findings  should  be  better  stressed  and  discussed.  Especially  the  poor  performance  in  Gensingen 

needs to be discussed in as it indicates that soil moisture accounting in LARSIM might be ill suited for 

Loess soils. 

 
This  is  correct:  The  indices  reveal  quite  poor model  performance  for  Gensingen.  For  this  gaging 

station,  it  has  to  be  assumed  that  the water  balance  is  not  closed.  Therefore,  the  corresponding 

indices show large differences in runoff behavior. 

 
‐  The  author miss  the  opportunity  to  interpret  and  discuss  the  obvious  shortcoming  of  the  bias 

correction  in  Cosmo.  Bias  corrected  rainfall  data  do  not  necessarily  cause  a  better  model 

performance. At least this cannot be inferred from figure 6.  

This is correct: The indices reveal the shortcomings of the bias correction of the COSMO data: We will 

discuss this in more detail in the revised manuscript. 

The authors should always compare both bias corrected and uncorrected rainfall to simulations with 

the observed  rainfall  input  and  to  the  signature derived  from observed discharge. This will  show, 



which COSMO version performs better  in comparison  to observed  rainfall  input and how close/far 

COSMO driven simulations are from the real integral catchment behavior. 

Our point of view  is, that comparison with observed discharge makes not very much sense because 

of  the  large  differences  between measured  and  simulated  discharge  shown  in  Figure  4  (resulting 

from  model  errors  &  water  balance  problems  at  Gensingen).  Therefore,  we  use  the  simulated 

discharge form measured rainfall as our baseline for figure 5. Figure 6 then gives an estimate on the 

effect of bias correction on hydrologic behavior, wheras  in Figure 7, we extract the climate change 

signal.  Direct  comparison  to measured  discharge would  only  be  reasonable,  if model  errors  and 

errors introduced by bias correction are smaller. In our case, we have to conclude that our data sets 

are not applicable to really quantify the effect of climate change. This will be done in a future study, 

where we have to improve the bias correction method. 

‐ The proposed bias correction is furthermore a non linear transformation and will destroy the spatial 

covariance and  the  temporal autocorrelation of  the simulated  rainfall  field  (which  is only  invariant 

under  linear  transformations). For me  such a procedure  is a quick  fix  to  improve  the model, good 

engineering but no science! It destroys the main advantage of dynamic models i.e. to create rainfall 

with  an  auto  correlation  structure  and  spatial  correlation  structure  that  is  consistent  with 

atmospheric physics. This seems to be not wise, and does not necessarily  increase the hydrological 

value of the data.  

The  two  issues, whether  the  bias  correction  destroys  the  spatial  covariance/correlation  and  the 
temporal autocorrelation of the CCLM precipitation or not, are tested with the following procedure. 
To address  the problem of  the spatial covariance/correlation,  the  time series of every grid point  is 
extracted and Pearson’s correlation coefficient  is calculated between the extracted time series and 
all other time series of the remaining grid boxes. The result is a correlation map for every extracted 
time series with the dimension of the original precipitation field (figure 1 shows an example). With 
the dimension of x and y equals 20 each, there are 400 correlation maps generated. To answer the 
question from above, the differences of the fields before and after the bias correction are calculated 
for an absolute comparison. In one case the whole field is considered and in a second case, only the 
area  ±  5  grid  points  of  the  origin  of  the  extracted  time  series  are  considered.  These  absolute 
differences are then averaged to yield a more compact format. 

In addition, two‐sampled t‐tests are carried out for every grid point, to test  if there are differences 
between the mean correlation coefficients on a 95% significance  level. For the calculation, the 400 
correlation maps before and after the bias correction are used. Every grid point in the 20x20 domain 
consists of a vector of 400 correlation coefficients in each map. The t‐test now uses these 400 values 
before the bias correction and compares the mean of them with the mean of the 400 values after the 
bias  correction  (H0:  mean  before  =  mean  after,  H1:  mean  before  ≠  mean  aŌer,  significance 
level=95%). This procedure is repeated for every grid point, resulting in 400 t‐tests. 

The  results  of  the  difference  are  shown  in  figure  2.  The  left  boxplot  with  the  whole  domain 
considered and the right boxplot for the ± 5 grid points region. The example in figure 1 is calculated 
for  the extracted  time  series  in  the box  [1,1] on  the  lower most  left corner. There  the correlation 
coefficient r=1. Near this origin are the highest values of r, as expected, but there are considerably 
high values throughout the rest of the domain around r = 0.6‐0.7. This  is valid for the C20 and the 
A1B scenario. The mean differences of the C20 correlation coefficients (shown in table 1) range from 
‐2.22*10‐16 to + 2.22*10‐16 for the whole domain (figure 2:  left boxplot) and from ‐0.034 to 0.039 
for the region covered by the origin ± 5 grid points (figure 2: right boxplot). The differences for the 
A1B scenario are given in the boxplots of figure 3. They range from ‐2.22*10‐16 to + 2.22*10‐16 for 



the whole domain as well and from ‐0.38 to 0.05 for the ± 5 grid points region. In summary, there are 
only minor changes in the spatial correlation caused by the bias correction. 

The results of the t‐tests are shown  in figure 4. The black dots  indicate grid boxes with a significant 
change  in correlation  terms after  the bias correction. From 400 gridboxes  there are 78  (20%) grid 
boxes significant for the C20 scenario and 86 (22%) grid boxes for the A1B scenario.  

 
Table 1: Mean spatial differences of the Pearson correlation coefficients (r after bias correction minus r before bias 
correction). 

  whole domain  origin ± 5 grid boxes

min  max  sd min max sd

C20  -2.22*10-16  2.22*10-16  1.006114e-16 
 

-0.034 0.039 0.01 
 

A1B  -2.22*10-16  2.22*10-16  9.987485e-17 -0.38 0.05 0.01 
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Figure 1: Example of a correlation map for the C20 (left) and the A1B scenario (right) 20x20 grid boxes. Pearson’s 
correlation coefficient is calculated for the extracted time series [1,1] in the lower most left corner and all other time series. 
The black contours show the correlation coefficients before the bias correction, the red contours after the bias correction. 
Only for the same grid box where the time series has been extracted results r=1.  
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Figure 2: Boxplots of the averaged differences between the C20 correlation maps with Pearsons’s rho. 
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Figure 3: Boxplots of the averaged differences between the A1B correlation maps with Pearsons’s rho. 
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Figure 4: Contour maps of the p‐values from the two‐sampled t‐tests at the 95%‐significance level for the C20 (left) and the 
A1B scenario (right). Black dots mark the grid boxes with significant changes.  

 
Because precipitation is not normal distributed, one of the assumptions of Pearson’s rho is violated. 
Therefore, the same procedure is repeated with Spearman’s rho, which does not assume any specific 
distribution.  In  figure 5  the  same example of  the correlation map  is  shown as  in  figure 1 but with 
Spearman’s  rho.  There  are  differences  in  the  spatial  structure  compared  to  figure  1  and  the 
correlation coefficients are higher  throughout  the domain. The deviations after  the bias correction 
are of the magnitude ‐0.1. Averages of the mean deviations are shown in the boxplots in figure 6 and 
7. They all  show  that  the differences are  close  to  zero  in  the average. So  far,  there are no major 
differences  to  the  results  of  the  Pearson  correlation,  but  the  t‐test  results  support  the  opposite 
hypothesis (figure 8).  The results of the t‐test favor the H1 hypothesis (the means are different) this 
time for every grid point, although the absolute values of the differences of the means are not very 
large  (as  seen  from  the  boxplots).  In  summary,  the  spatial  correlation  is  significantly  changed  for 
every grid point. 
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Figure 5: Example of a correlation map for the C20 (left) and the A1B scenario (right) 20x20 grid boxes. Spearman’s 
correlation coefficient is calculated for the extracted time series [1,1] in the lower most left corner and all other time series. 
The black contours show the correlation coefficients before the bias correction, the red contours after the bias correction. 
Only for the same grid box where the time series has been extracted results r=1. 
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Figure 6: Boxplots of the averaged differences between the C20 correlation maps with Spearman’s rho. 
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Figure 7: Boxplots of the averaged differences between the A1B correlation maps with Spearman’s rho. 
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Figure 8: Contour maps of the p‐values from the two‐sampled t‐tests at the 95%‐significance level for the C20 (left) and the 
A1B scenario (right). Black dots mark the grid boxes with significant changes. 



Comparison of the temporal auto-correlation 
 

 
Figure 9: Contour maps of the time lag until the auto‐correlation coefficients of precipitation are significant on the 95%‐
confidence level, the C20 before bias correction (left)  and the C20 scenario after bias correction(right). The black contour 
lines enclosed the Nahe catchment. 

 
Figure 10: Contour maps of the time lag until the auto‐correlation coefficients of precipitation are significant on the 95%‐
confidence level, the A1B before bias correction (left)  and the A1B scenario after bias correction(right The black contour 
lines enclosed the Nahe catchment. 

In figure 9, we show the spatial distribution of the decorrelation time (on the 95%‐confidence level) 
of precipitation for the C20 scenario . The range of the decorrelation time within the Nahe catchment 
is from 1 to 5 days. The highest decorrelation time occurs  in the western and southern part of the 
catchment while  the decorrelation  times  in  the northern and eastern part are only around 1  to 2 
days. 

After  applying  the bias  correction,  the  south‐western decorrelation  times drop  from >5 days  to 2 
days (in the southern part) and reduce more slightly in the western part. 

For  the  A1B  scenario  there  are  neither  major  changes  in  the  spatial  distribution  nor  in  the 
magnitudes (figure 10). 



 

 

 
 

 
Figure 11: Spatial distribution of the auto‐correlation coefficient (ra) differences (after bias correction minus before bias 
correction). White color indicates missing values due to non‐significance. Top: lag=1 day, middle: lag=2 days, bottom: lag=3 
days. 

The  impact  of  the  bias  correction  on  the  auto‐correlation  coefficients  (figure  11)  is  a minor  one, 
although the differences vary in space. As the magnitudes of the differences of ra indicate, there are 
only changes of about 1%‐5%. 



Assuming this bias correction scheme as stationary under change is to me a very unlikely assumption. 

I see that the authors cannot fully address all these  issues within their study. They should however 

show that they are aware of these shortcomings. 

Of  course,  this  assumption  can  hardly  be  hold  for  the  future.  But  the  same  is  true  for  linear 
correction method,  such as  scaling methods, e.g.  ratios of means may also alter  in  the  future and 
may not account for possible (non‐linear) dynamic changes in the future (discussed in e.g. Maraun et 
al. 2010:27). Another limitation is given by the fact that the LandCaRe2020 CCLM runs are not driven 
with  reanalysis‐data  (ECHAM5 was at  the beginning of  the nesting  chain), which  restricts  the bias 
correction to distribution‐wise methods (e.g. Maraun et al. 2010:27). 

Stationary transfer functions are presumed by many other as well (e.g. vanRoosmalen 2011:141), but 
of course this is associated with a relatively high degree of uncertainty. 

 
‐ The authors need  to address  the problem how  to  judge when a change  in one of  their signature 

indices is significant. What is noise and what is a real fingerprint of change.  

This  is a good point, but  it cannot be  fully addressed  in  this paper, because we mainly wanted  to 
show  the high  sensitivity of our  indices on  changes  in model  input.  Especially  the  indices derived 
from distribution of ERC depend on  a partly subjective event separation procedure, which may lead 
to a visible change in index pattern. But in contrast, indices from FDC are not very sensitive to noise. 

 
Minor points  

‐ The  future paper  should clearly  stress  the  scope of  the  study, which  is  for me clearly  the use of 

these signatures to address for different purposes as outlined above. 

We will clearly focus the paper on the interpretation of our results 

 

‐  Line  25 what  is meant with  vertical  distribution  of  soil moisture,  infiltration  and  percolation  as 

processes  or  the  soil  moisture  profiles?  The  lateral  pattern  of  soil  moisture  can  be  of  equal 

importance. 

This  only means  the  distribution  of water  along  the  different  reservoirs  (in  the  catchment). Our 
model is a quite simple storage approach with no soil moisture profiles simulated. 

 
‐ The catchments are not small but lower mesoscale catchments, please comment on apparent soils 

and provide data on specific runoff behavior (independent of catchment size). 

Runoff behavior of the three catchments can be characterized by  long term runoff rates and mean 
runoff coefficients as a result of soils, geology, topology and climate. Kronweiler, a catchment with 
steep slopes,  low water storage capacity of soils and geology, high precipitation and  low potential 
evapotranspiration  shows  the highest  runoff  rate and  runoff coefficients and a high  seasonality of 
discharge.  Catchment  Kellenbach with more moderate  slopes  and  a  slightly  higher  field  capacity 
shows a lower runoff rate and runoff coefficients caused by lower MAP. Gensingen, the catchments 
with  the  flattest  topology and a very high  field capacity but  low MAP and high ET, has  the  lowest 
runoff rate and runoff coefficients of the three catchments with a low seasonality of discharge too. 

 



Table 1: Selected catchment properties  

Catchment 
property 

 Kronweiler 
(65 km²) 

Kellenbach 
(362 km²) 

Gensingen 
(196 km²) 

MAP (mm/y)  928 673 545  
potET (mm/y)  535 540 614 
Long term  
runoff rate 
(l/s*km²) 

year 14.0 7.2 2.3 
winter 23.1 10.9 2.8 
summer 5.2 3.6 1.7 

Mean runoff 
coefficient 
(93-08) 

year 0.23 0.17 0.04 
winter 0.41 0.28 0.08 
summer 0.09 0.07 0.03 

Field capacity 
of total soil 
column (mm) 

 288  356  605 

Land use  43 % arable land 
2.6 % built-up area 
54 % forest 

58 % arable land  
2.5 % built-up area 
39 % forest 

74 % arable land, 
orchards, vineyards 
5 % built-up area 
20 % forest 

Soils 
(FAO85) 

 Gleyic and humic 
podzols with 
cambisols 

Gleyic podzols with 
few cambisols, 
luvisols and 
fluvisols at 
headwaters 

Humic podzols and 
cambisols at upper 
reaches and luvisols, 
gleysols and regosols 
at lower reaches  

 

The first part of the table will be included in the revised manuscript. 
 
‐ The model description is far too brief to grasp the underlying concepts. It should provide the main 

concepts and model structure. 

The model description will be extended. The text will be changed to: “ 

 
“The  water  balance  model  LARSIM  (Large  Area  Runoff  Simulation  Model)  allows  a  continuous 
process‐  and  area‐detailed  simulation  of  the  medium‐scale  mainland  water  cycle  (Ludwig  and 
Bremicker, 2006). In simplistic terms, the watershed is subdivided into 1‐D elements linked by a flood 
routing  scheme.  To  account  for  sub‐grid  variability,  interception,  snow  accumulation  and  melt, 
evapotranspiration and soil water movement (including runoff generation) are simulated separately 
for 16 distinct land‐use classes within each element. The land‐use specific soil column is simulated by 
a modified form of the Xinanjiang approach (Todini 1996). Runoff concentration within each element 
is simulated by three parallel linear reservoirs: one for groundwater discharge, one for interflow, and 
one for direct runoff. Direct runoff comprises fast subsurface runoff and overland flow. Flood routing 
within  the  river sections  is performed with a kinematic wave approach.The  temporal  resolution of 
the water balance calculation is one hour. The model needs as meteorological input spatial fields of 
precipitation, temperature, air pressure, wind speed, global radiation and relative humidity.” 
 
‐  Bias  correction:  from  a  statistical  point  of  view  rainfall  simulation  is  a  mixed  problem,  the 

occurrence of a rainy day is a discrete event (yes or no), given the condition that rainfall occurs, the 

distribution of rainfall amounts per time step is a continuous. I do not see that this scheme accounts 

for this mixed nature of the problem. There is, by the way, a huge bunch of literature that suggests 

alternatives  by means  of  statistical  downscaling  (compare  to  the  dynamical  downscaling  of GCM 

output  used)  here  for  instance  by  Buerger  or  Bardossy.  These  alternatives  should  be  clearly 

acknowledged. 



This problem do not occur while using empirical distribution within the quantile matching, because 
0mm  are  part  of  this  distribution  in  contrast  to  the  parametric  gamma  distribution.  So  if  the 
probability of 0mm in the CCLM is for example lower compared to observations, then 0mm remains 
(normally  the  case  for modeled  precipitation).  The  very  low  precipitation  values  from  the  CCLM 
(drizzle  error)  are  all  corrected  to  0mm  as well,  because  their  probability  is  still  lower  than  the 
probability of 0mm in the observations.  
 
‐ Is there any spatial structure in the bias between COSMO and observed precipitation time series? If 

yes the proposed invers distance scheme might be not the best way to interpolate the scheme to all 

grid points.  I miss  at  least one  statement  that within  the bias  correction data  at different  spatial 

aggregation levels are compared (jump in scales). 

 
Figure 12: Spatial distribution of the precipitation bias in mm/day. The points are the location of precipitation stations 
and the colours indicate the magnitude of the bias. Filled points have a positive bias, unfilled points a negative. 

The bias of  the difference  in mean daily precipitation  (CCLM minus Station,  figure 12)  tends  to be 

positive in the northern and eastern part of the Nahe catchment and rather negative in the western 

(Hunsrück)  and  negative  in  the  southern  region  (Palatinate  Forest).  Thus,  the  assumption  of 

homogeneity within the spatial distribution of the bias is violated. A linear interpolation is therefore 

maybe not appropriate. It seems that the bias depends on orography (negative in western Hunsrück 

and  Palatinate  Forest  in  the  south,  positive  in  the  flatter  north‐east  area);  however,  the  bias  is 

positive  in  the  northern  Hunsrück.  Considering  the  sub‐catchments  Gensingen  (east),  Kellenbach 

(north) and Kronweiler (west), only Kronweiler may be affected by the assumption of homogeneity. 

The bias changes sign at the vicinity of the Kronweiler catchment, whereas it is more or less constant 

(positive) for the other two catchments. 



‐ Please briefly provide details how the end point of the event is defined. 

p. 3579, l. 3‐5: Text will be changed to: 

“Second, to define events, each runoff time series was screened starting from the largest peak flow 

and proceeding to the second  largest peak flow and so forth according to the following method. A 

peak  flow was  assumed  to  be  the  peak  flow  of  a  potential  event,  if  the  ratio  of  direct  runoff  to 

baseflow at  time of  the peak was  larger  than 2 and  there was no  larger  flow  in  the previous and 

following 12 h. For each peak flow, the start and end of an event was searched within a given time 

period by  finding  the  time where  the direct  runoff becomes  lower  than  a  given  threshold, which 

depends on the direct runoff at the time of the peak flow. If no starting point was found, the search 

was repeated by gradually increasing the time period and the threshold. With this iterative approach, 

the  direct  runoff  at  the  beginning  and  end  of  an  event  is  as  small  as  possible  (Merz  et  al.  2006, 

Norbiato et al. 2009).” 

‐ Notation and indices in Eq. 10 should be explained. 

BiasFDCMidslope: percent bias in slope of the mid‐segment: 

         
     ,100

2loglog

loglogloglog

7.0,12.0,2

7.0,22.0,27.0,12.0,1 





FDCFDC

FDCFDCFDCFDC
slopeBiasFDCmid  

where FDCi,p  is the runoff with exceedance probability p of FDC number  i (red and blue triangles  in 

Fig. 2), e.g. FDC1,0.2 is the runoff with exceedance probability p=0.2 of FDC number 1.  

‐ The Bias FHV  is defined based on the difference  in  integral upper two percent. Please explain the 

choice. 

Because of the short time series (10 years), it is not possible to apply extreme value statistics. But, by 
evaluating  the upper 2% of all values we  focus on  the  rainfall driven periods with high discharges 
without being too sensitive on single extreme peaks. 
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