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The paper presents a modeling exercise to illustrate the effect of different assumptions
to compute the advective travel time distributions on the total solute mass delivered
to surface waters. In particular the authors analyze a single catchment in Sweden
and compute the travel time distribution under two possible scenarios: 1) flow follows
primarily preferential pathways, in this case the encountered hydraulic conductivity is
relatively constant, 2) the flow occurs through different soil types thus encountering
high variable hydraulic conductivity. The manuscript then analyze for the two different
scenarios the potential mass delivered in the case of a unit injection over the whole
basin surface and a first order decaying solute.
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The paper is well written, the methods are sound and clear. However, in the present
form, the new scientific contribution is not clear and it appears as a marginal incre-
mental step with respect to Darracq et al. 2010a,b. In their revision the authors should
explain more clearly the scientific advance contained in the paper. The generality of the
results is also somewhat questionable, as I will detail in the following, and I believe it
should be properly discussed. Finally I will propose some changes on the presentation
and interpretation of the results.

I believe that the authors misinterpreted the result shown in Figure 3 when they say
that "For λτg in the order of 1 or greater, larger travel time variability increases the total
mass delivery αC . Scenario 2 then yields the largest αC because it has the largest
fraction of transport pathways with advective travel times much longer than τg, along
which a significant mass fraction can reach the recipient, even for large characteristic
attenuation product λτg". Intuitively, however, for large values of λτg the solute mass
attenuates rapidly during the transport pathway and therefore only cells with short travel
time can deliver significant amount of mass. In this specific case therefore, αC is higher
in the second scenario because it has a larger fraction of very fast transport pathways,
as stated by the same authors at the beginning of page 4732. This is better highlighted if
we look at the probability density function of the travel times pdf(τ) for the two scenarios
reported in the figure below. They have been obtained by digitalizing and differentiating
the cumulative distribution reported in Figure 2. They are not smooth because of the
digitalization procedure but I trust that they are quite close to the real ones.

To better quantify this effect it is useful to introduce the function:

αC(< τ) =
∫ τ

0
pdf(τ)e−λτdτ,

which expresses the mass fraction delivered from cells that have a transport pathway
with advective travel time shorter than τ . Consistently, the quantity αC used in the
manuscript for the whole catchment can be computed as αC(<∞).
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The second figure reported below shows the function αC(< τ) for λτg = 100 for the two
scenarios. As expected, almost all the mass delivered in the second scenarios comes
form cells with travel time shorter than τg = 6.1 year. This is the opposite of what stated
in the text. Therefore the fact that the second scenario can lead to larger mass deliv-
ered depends on the peculiar characteristic of the catchment studied that has a relative
large proportion of short travel times due to, as stated by the authors, very permeable
soils near surface waters. The generality of this results, which is highlighted in the ab-
stract as one of the main conclusion, is therefore questionable. Can the authors argue
that this patterns is generally expected in river basins? In principle one can observe, in
the absence of this very permeable soils, that scenario 2 has relative less short travel
times with respect to scenario 1, thus obtaining opposite results.

Moreover I think that the presentation of the results Figure 3 and the consequent dis-
cussion are misleading. In fact it may seem that under certain conditions (e.g. λτg > 1)
scenario 2 exports more solute mass than scenario 1. However the authors are com-
paring different solutes with different attenuation rates λ, because the analysis keep
constant the product λτg > 1 and the two scenarios have different τg. As far as I have
understood, the two different scenarios represent two different possible flow pathways,
or better they represent two extreme scenario that envelope all the possible interme-
diate ones. Therefore it would be interesting to compare the mass of a specific solute
exported in the two flow-path scenarios, keeping therefore the same λ. The differences
in the two ways to illustrate the result are shown in the last Figure attached here. From
the second panel it is clear that for λ < 100 the scenario 2 always exports less solute
mass. Only for very fast decaying rate scenario 2 export more mass, but this is due, as
discussed before for the peculiar characteristic of this catchment. I would suggest to
rework the presentation and the discussion in this terms.

For full disclosure I attached below the matlab code to generate the figures.

clear all
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close all

scenario1=[-3 0
-2.71951 0.00045423
-2.43496 0.00145423
-2.22358 0.00245423
-2.04878 0.00345423
-1.94309 0.00777202
-1.81707 0.0146805
-1.63821 0.0241796
-1.47561 0.0362694
-1.32114 0.0518135
-1.21138 0.0759931
-1.08943 0.0932642
-0.98374 0.112263
-0.894309 0.134715
-0.813008 0.156304
-0.691057 0.187392
-0.54878 0.234888
-0.406504 0.284111
-0.288618 0.336788
-0.182927 0.389465
-0.0934959 0.446459
-0.00406504 0.502591
0.0650407 0.558722
0.142276 0.61399
0.215447 0.671848
0.272358 0.721934
0.361789 0.779793
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0.447154 0.829879
0.53252 0.881693
0.650407 0.932642
0.731707 0.958549
0.845528 0.978411
0.95935 0.994819
1.10163 1];

scenario2=[-3 0.00
-2.67073 0.00318135
-2.39024 0.00677202
-2.21545 0.0128169
-2.13821 0.0146805
-2.04878 0.0172712
-1.86585 0.0259067
-1.69919 0.0328152
-1.52846 0.044905
-1.3252 0.0569948
-1.05691 0.0863558
-0.747967 0.132124
-0.49187 0.178756
-0.292683 0.220207
-0.0731707 0.272884
0.162602 0.336788
0.373984 0.397237
0.52439 0.435233
0.756098 0.468048
0.882114 0.488774
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1.0122 0.515544
1.09756 0.531952
1.13415 0.552677
1.22358 0.562176
1.26829 0.573402
1.36585 0.594128
1.45528 0.61399
1.53252 0.641623
1.5935 0.658031
1.64228 0.674439
1.71545 0.696891
1.77642 0.715026
1.83333 0.727116
1.86992 0.746114
1.89837 0.764249
1.96748 0.78152
2.02439 0.800518
2.0935 0.824698
2.14228 0.839378
2.1748 0.873921
2.23171 0.892919
2.28455 0.906736
2.34553 0.917962
2.43496 0.935233
2.5122 0.946459
2.58943 0.959413
2.61382 0.982729
2.73577 0.988774
2.81301 0.992228
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3 1.00];

dx=0.001;
x1=dx:dx:10^scenario1(end,1);
cdf1=interp1(10.^scenario1(:,1),scenario1(:,2),x1);
x2=dx:dx:10^scenario2(end,1);
cdf2=interp1(10.^scenario2(:,1),scenario2(:,2),x2);

pdf1=diff(cdf1)/dx;
x1=x1(2:end)-dx/2;
mean_1=sum(pdf1.*x1)*dx

pdf2=diff(cdf2)/dx;
x2=x2(2:end)-dx/2;
mean_2=sum(pdf2.*x2)*dx

figure
semilogx(x1,pdf1,x2,pdf2)
legend(’scenario 1’,’scenario 2’)
xlabel(’Travel time (yr)’,’fontsize’,12);
ylabel(’pdf(\tau)’,’fontsize’,12);

tg1=0.73; %geometric mean scenario 1
tg2=6.1; %geometric mean scenario 2

figure
l1=100/tg1;
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l2=100/tg2;
semilogx(x1,cumsum(exp(-l1*x1).*pdf1*dx),x2,cumsum(exp(-l2*x2).*pdf2*dx))
legend(’scenario 1’,’scenario 2’)
xlabel(’Travel time (yr)’,’fontsize’,12);
ylabel(’\alpha_C(<\tau)’,’fontsize’,12);

figure
l1=0.1/tg1;
l2=0.1/tg2;
semilogx(x1,cumsum(exp(-l1*x1).*pdf1*dx),x2,cumsum(exp(-l2*x2).*pdf2*dx))
legend(’Scenario 1’,’Scenario 2’)
xlabel(’Travel time (yr)’,’fontsize’,12);
ylabel(’\alpha_C(\tau)’,’fontsize’,12);

%plot of figure 3 of the paper
ltg_vec=[0.01 0.1 1 10 100 1000];
alpha1=zeros(length(ltg_vec),1);
alpha2=zeros(length(ltg_vec),1);
for cont=1:length(ltg_vec)

l1=ltg_vec(cont)/tg1;
l2=ltg_vec(cont)/tg2;
alpha1(cont)=sum(exp(-l1*x1).*pdf1)*dx;
alpha2(cont)=sum(exp(-l2*x2).*pdf2)*dx;

end
figure
subplot(211)
semilogx(ltg_vec,alpha1,’-b.’,ltg_vec,alpha2,’-g.’,ltg_vec,exp(-ltg_vec),’-r.’,’linewidth’,1)
legend(’Scenario 1’,’Scenario 2’,’Scenario 0’)
xlabel(’\lambda \tau_g’,’fontsize’,12);
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ylabel(’\alpha_C’,’fontsize’,12);

%"new" figure 3
l_vec=[0.01 0.1 1 10 100 1000];
alpha1=zeros(length(l_vec),1);
alpha2=zeros(length(l_vec),1);
for cont=1:length(ltg_vec)

alpha1(cont)=sum(exp(-l_vec(cont)*x1).*pdf1)*dx;
alpha2(cont)=sum(exp(-l_vec(cont)*x2).*pdf2)*dx;

end
subplot(212)
semilogx(l_vec,alpha1,’-b.’,l_vec,alpha2,’-g.’,l_vec,exp(-l_vec),’-r.’,’linewidth’,1)
legend(’Scenario 1’,’Scenario 2’,’Scenario 0’)
xlabel(’\lambda (yr^{-1})’,’fontsize’,12);
ylabel(’\alpha_C’,’fontsize’,12);
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Fig. 1.
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Fig. 2.
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Fig. 3.
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