
Additional Material 

 

5) Pg. 3827, last paragraph: why are the results in Garcia and Giraldo (2011) 

“numerically quite different”? Please explain. 

The following Figures represent the mean the mean µ (Fig. 1), and  the standard deviation σ 

(Fig. 2), of AMDR PDF, from the  referenced work when R= RB (García and Giraldo, 2011), 

and from the present paper (where R=RB*RD). Therefore, from these Figures, is possible to 

indentify the spatial differences between the two works. 
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Fig. 1. Predicted changes of µ of AMDR PDF: (a) R=RB y (b) R) R=RB*RD. The 
dark-grey squares show the sites with statistically significant changes. The dashed 
lines represent negative changes. 
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Fig. 2. The same as Fig. 1, but for σ of AMDR PDF. 

 

6) Section 3.2: the authors use non-stationary statistical model to describe AMDR 

time series. However, have they first checked that there is statistical evidence against 

the use of a stationary model? 

The GAMLSS procedure was applied using two-parameter distributions, in order to guarantee 

the parsimony of fitted models. Due to the huge volume of data, the fit procedure was 

automated. GAMLSS tools allow the validation of stationarity hypothesis of distribution 

parameters.  

An example is presented for site 16 (Fig. 3(a)), for the GKSS/CLM model considering calls to 

GAMLSS function (R software). It is noted that, in addition, the summary of adjustment gives 

the p-values associated with the linear fit (constant and linear term).  

The results in this particular case, for a significance of 0.05, are: - there is no trends of µ 

parameter (-0.01264, p-value=0.01963), while - the parameter σ presents a decreasing trend (-

0.006798 , p-value=0.05695) 
 

mod2 = gamlss( 

  datos$value~cs( datos$date , df=dfmu[bestmodel] , c.spar=c(-1.5,2.0) ) , 



  sigma.fo=~cs( datos$date , df=dfsigma[bestmodel] ) , 

  data=datos , family=modelnames[bestmodel] , trace=F , control=control 

       ) 

 

Where an adjustment with smoothing functions using family=WEI (considering the application 

of SBC), was invoked. The summary of the results for this line is the following: 

 
******************************************************************* 
> summary(mod2) 

 

        The following object(s) are masked _by_ .GlobalEnv : 

 

         date value  

 

******************************************************************* 

Family:  c("WEI", "Weibull")  

 

Call:  gamlss(formula = datos$value ~ cs(datos$date, df = dfmu[bestmodel],   

    c.spar = c(-1.5, 2)), sigma.formula = ~cs(datos$date, df = dfsigma[bestmodel]),      

family = modelnames[bestmodel], data = datos, control = control,   

    trace = F)  

 

Fitting method: RS()  

 

------------------------------------------------------------------- 

Mu link function:  log 

Mu Coefficients: 

                                                           Estimate  Std. Error  t value  

Pr(>|t|) 

(Intercept)                                                28.29777   10.629037    2.662   

0.00940 

cs(datos$date, df = dfmu[bestmodel], c.spar = c(-1.5, 2))  -0.01264    0.005306   -2.382   

0.01963 

 

------------------------------------------------------------------- 

Sigma link function:  log 

Sigma Coefficients: 

                                          Estimate  Std. Error  t value  Pr(>|t|) 

(Intercept)                              13.562944    7.073711    1.917   0.05881 

cs(datos$date, df = dfsigma[bestmodel])  -0.006798    0.003519   -1.932   0.05695 

 

------------------------------------------------------------------- 

No. of observations in the fit:  81  

Degrees of Freedom for the fit:  4.000016 

      Residual Deg. of Freedom:  76.99998  

                      at cycle:  2  

  

Global Deviance:     635.7243  

            AIC:     643.7243  

            SBC:     653.3022  



******************************************************************* 

 

If the previous results are compared with the results of the call for a lineal adjustment to 

parameters µ y σ, in the following form: 

 
mod3 = gamlss( 

  datos$value~datos$date , 

  sigma.fo=~datos$date , 

  data=datos , family=modelnames[bestmodel] , trace=F , control=control 

       ) 
 

the result should be: 

 
******************************************************************* 
> summary(mod3) 

 

        The following object(s) are masked _by_ .GlobalEnv : 

 

         date value  

 

******************************************************************* 

Family:  c("WEI", "Weibull")  

 

Call:  gamlss(formula = datos$value ~ datos$date, sigma.formula = ~datos$date,      

family = modelnames[bestmodel], data = datos, control = control,   

    trace = F)  

 

Fitting method: RS()  

 

------------------------------------------------------------------- 

Mu link function:  log 

Mu Coefficients: 

             Estimate  Std. Error  t value  Pr(>|t|) 

(Intercept)  28.29775   10.629039    2.662   0.00940 

datos$date   -0.01264    0.005306   -2.382   0.01963 

 

------------------------------------------------------------------- 

Sigma link function:  log 

Sigma Coefficients: 

              Estimate  Std. Error  t value  Pr(>|t|) 

(Intercept)  13.562949    7.073711    1.917   0.05881 

datos$date   -0.006799    0.003519   -1.932   0.05695 

 

------------------------------------------------------------------- 

No. of observations in the fit:  81  

Degrees of Freedom for the fit:  4 

      Residual Deg. of Freedom:  77  

                      at cycle:  2  



  

Global Deviance:     635.7243  

            AIC:     643.7243  

            SBC:     653.3021  

******************************************************************* 
 

In conclusion, the results (p-value) from lineal fitting and the corresponding from smoothing 

functions, are the same. 

 

 

8) A much more extensive discussion of the statistical modeling should be provided. 

After reading the manuscript, I still have several questions: 1) how did the authors 

select their final distribution? 2) What distribution was generally chosen?  

1) In order to execute the GAMLSS fit procedure, it should be taking into account that 

data$value is a vector with yearly AMDR values, and data$date is a vector of years. The 

most important part of the algorithm, which do the selection and optimization of statistical 

model, is detailed below. The algorithm begins by setting up control through the 

gamlss.control function. The gamlss.control function has the default setting in 

gamlss function, which control the parameters of the outer iterations algorithm (Stasinopoulos 

et al., 2008). 

After establishing control, find.hyper function finds the hyperparameters (degrees of 

freedom for smoothing terms) by minimizing the profile GAIC based on the global deviance. 

The procedure is executed for each statistical model (LN, GA, WEI and GU), beginning with 

hyperparameters values between [0.001,1] to encourage a quick convergence. The right side 

value of the hyperparameter interval can be increase, if it is necessary. 

The statistical model is fitted using gamlss function and the optimal values of 

hyperparameters found with find.hyper function. The values Akaike information criterion 

(mod2$aic), the Schwartz Bayesian criterion (mod2$sbc) and the hyperparameters values 

(mod2$mu.df-2 and mod2$sigma.df-2) are stored in several vectors. Finally, the best 

model is selected, which corresponds with the minimal value in the SBC vector. Again, the 

gamlss function is used to compute the GAMLSS fit with the best model and its optimal 

values of hyperparameters. 

 
******************************************************************* 
modelnames = c( "LN" , "GA" , "WEI" , “GU” ) 

 

control = gamlss.control( c.crit=0.1 , n.cyc=20, 
     mu.step=0.1 , sigma.step=0.1 , nu.step=0.1 , tau.step=0.1 ,  
     gd.tol=5 , iter=0 , trace=F , autostep=TRUE , save=TRUE ) 
 

for ( m in 1:length(modelnames) ) { 



 

 mod1 = quote( 

gamlss( 

   datos$value~cs( datos$date , df=p[1] , c.spar=c(-1.5,2.0) )  

   sigma.fo=~cs( datos$date , df=p[2] , c.spar=c(-1.5,2.0) ) , 

   data=datos , family=modelnames[m] , trace=FALSE , control=control 

   ) 

  ) 

 

 upperlimit=c(1,1) 

 

 repeat { 

  op1 = find.hyper( model=mod1 , 

    parameters=c(0.001,0.001) , 

    lower=c(0.001,0.001) , 

    upper=c(upperlimit[1],upperlimit[2]) , 

steps=c(1e-06, 1e-06) , penalty=3.5 , 

trace=FALSE ) 

 

    if( (op1$par[1]+0.3)<upperlimit[1] & 

(op1$par[2]+0.3)<upperlimit[2] || 

sum(upperlimit)>=8 ) { 

      break 

    } 

    if((op1$par[1]+0.3)>=upperlimit[1]) { 

     upperlimit[1]=upperlimit[1]+1 

    } 

    if((op1$par[2]+0.3)>=upperlimit[2]) { 

     upperlimit[2]=upperlimit[2]+1 

    } 

 

 } 

 

 mod2 = gamlss( 

  datos$value~cs( datos$date , df=op1$par[1] , c.spar=c(-1.5,2.0) ) , 

  sigma.fo=~cs( datos$date , df=op1$par[2] ) , 

  data=datos , family=modelnames[m] , trace=F , control=control 

  ) 

 

 ##### Estimadores de desempeno del modelo 

 modelaic[m] = mod2$aic 

 modelsbc[m] = mod2$sbc 

 dfmu[m] = round( mod2$mu.df-2 , 2 ) 

 dfsigma[m] = round( mod2$sigma.df-2 , 2 ) 

 

} ##### for ( m in 1:length(modelnames) ) ##### 
 
##### Selecciono el mejor modelo, de acuerdo con el criterio sbc () 

bestmodel = which( modelsbc==min(modelsbc) ) 

 

mod2 = gamlss( 



  datos$value~cs( datos$date , df=dfmu[bestmodel] , c.spar=c(-1.5,2.0) ) , 

  sigma.fo=~cs( datos$date , df=dfsigma[bestmodel] ) , 

  data=datos , family=modelnames[bestmodel] , trace=F , control=control 

       ) 

******************************************************************* 

 

2) The Fig. 3 show the spatial pattern of  "best fit" distribution, with different colours. It could 

be concluded, the LN was generally chosen for models METO-HC/HAD and INM/RCA. 

However, there are some clusters, specially for KNMI/RACMO and SMHI/RCA. 
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Fig. 3. “Best fit” maps to a particular distribution, according with the GAMLSS 
analysis. The RCMs considered are: (a) GKSS/CLM, (b) METO-HC/HAD, (c) 
KNMI-RACMO, (d) INM-RCA, (e) SMHI/RCA, and (f) MPI-M-REMO. 

 

The following Table with the total number of sites considered for each distribution, is presented. 

 



Table. Number of sites with “best fit” for each GAMLSS model and RCM considered. 
 

PDF    Gamma  Lognormal Weibull Gumbel 

GKSS/CLM   48  57  15  0 

METO-HC/HAD  4  116  0  0 

KNMI/RACMO  33  68  19  0 

INM/RCA   6  114  0  0 

SMHI/RCA   45  68  7  0 

MPI-M/REMO   37  70  13  0 

 

9) Figure 3: based on this figure, I find it a bit hard to believe that the statistical 

models are really able to describe the data. I would be interested in seeing the 

corresponding residual plots used to assess the goodness of fit. I am not sure that the 

statement on pg. 3828, line 6 (“the good fit of the GAMLSS statistical model to 

simulated AMDR time”) is really supported by the results presented. 

10) Figure 3: please add the corresponding time series from the data. It would be 

interesting to see whether the models can actually reproduce the patterns in the 

data. 

11) Pg. 3825, lines 20-24: the authors mention how they checked the goodness of the 

fit but don’t state whether the residuals supported their choice of models. 

 

Taking into account each RCM, the time series together with the IRD data, worm-plot, qq-plot, 

and a summary of quantile residuals, are presented in the following figures (Fig. 4 to Fig. 9). 
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Fig. 4. GAMLSS analysis on site 16 for GKSS/CLM RCM. (a) Time series of 
AMDR from RCM (grey) and IRD data (black), together with the centiles curves 
(5, 10, 25, 50, 75, 90 and 95%) in dashed lines; (b) worm plot and (c) qq plot with 
residual statistics. The hypothesis of normality is rejected if the Filliben coefficient 
is less than 0.984. 
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Fig. 5. The same as Fig. 4, but METO-HC/HAD RCM. 
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Fig. 6. The same as Fig. 4, but KNMI/RACMO RCM. 
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Fig. 7. The same as Fig. 4, but INM/RCA RCM. 
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Fig. 8. The same as Fig. 4, but SMHI/RCA RCM. 
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Fig. 9. The same as Fig. 4, but MPI-M/REMO. 


