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Abstract 7 

The study aims at estimating flow duration curves (FDC) at ungauged sites in France and 8 

quantifying the associated uncertainties using a large dataset of 1080 FDCs. The 9 

interpolation procedure focuses here on 15 percentiles standardised by the mean annual 10 

flow, which is supposed to be known at each site. In particular, this paper discusses the 11 

relevance of different catchments grouping procedures on percentiles estimation by regional 12 

regression models.  13 

First, five parsimonious FDC parametric models were tested to approximate FDCs at gauged 14 

sites. The results show that the model based on Empirical Orthogonal Functions (EOF) 15 

expansion outperforms the other ones. In this model each FDC is interpreted as a linear 16 

combination of regional amplitude functions with weights – the parameters of the model - 17 

varying in space. Here, only one amplitude function was found sufficient to fit well most of the 18 

observed curves. Thus the considered model requires only two parameters to be estimated 19 

at ungauged locations.  20 
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Second, homogeneous regions were derived according to hydrological response on one 2 

hand, and geological, climatic and topographic characteristics on the other hand. 3 

Hydrological similarity was assessed through two simple indicators: the concavity index (IC) 4 

that represents the shape of the standardizeddimensionless FDC and the seasonality ratio 5 

(SR) which is the ratio of summer and winter median flows. These variables were used as 6 

homogeneity criteria in three different methods for grouping catchments: (i) according to their 7 

membership in one of an a priori French classification into Hydro-Eco-Regions (HERs), (ii) by 8 

applying a regression tree clustering and (iii) by using hydrological neighbourhood obtained 9 

by canonical correlation analysis. 10 

Finally, regression models between physiographic and/or climatic variables and the two 11 

parameters of the EOF model were derived considering all the data and thereafter for each 12 

group obtained through the tested grouping techniques. Results on percentiles estimation in 13 

cross validation show a significant benefit to form homogeneous regions before developing 14 

regressions, particularly when grouping methods use hydrogeological information.  15 
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1 Introduction  21 

A Flow Duration Curve (FDC) is the cumulative frequency distribution of observed flows 22 

during a period of interest (month, season, year, or entire period of record). It plots specified 23 

flows against their corresponding probability of exceedance that can be also interpreted as 24 

the percent of time these specified values are equalled or exceeded. FDC is a commonly 25 

used tool in water management applications, since it displays the full range of flows, 26 

including low flows and flood events (Vogel and Fennessey, 1995; Smakhtin, 2001). Here 27 

long-term flow duration curves were considered and derived from observed daily flows 28 

available at each site. 29 

There have been numerous approaches for estimating FDC characteristics at ungauged 30 

locations, particularly low-flow percentiles, using regression equations under different 31 

climates (see Castellarin et al. (2007) for a recent review). Despite their interest for water 32 

management issues FDCs have until now received very little attention in France. The present 33 

study is to our knowledge the first attempt to develop regional flow duration models in this 34 
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country. Previous works have concentred on mapping mean river flow statistics including 1 

long-term mean annual and monthly flows (Sauquet, 2006; Sauquet et al., 2008). These 2 

results cannot be ignored. A straightforward method for taking benefits from knowing the 3 

mean annual flow qa is to consider percentiles expressed as proportions of the long-term 4 

mean flow of the corresponding catchment as variables of interest. Regionalization can thus 5 

focus on the shape of the FDC. The dimensionless FDC and the mean annual flow qa are 6 

estimated separately and their combination provides the expected percentiles.  7 

This approach, known as “index flow approach”, has been previously adopted by numerous 8 

authors (e.g., Holmes et al., 2002; Singh et al., 2001; Castellarin et al., 2004; Ganora et al., 9 

2009) leading to various procedures to estimate normalised percentiles. The simplest model 10 

assumes that the shapes of the FDC at all sites within the study area are show a low 11 

variability identical. In practice, dimensionless FDCs from monitored catchments within the 12 

same region are pooled and averaged to create the representative shape. Since the 13 

hypothesis of similarity may be too restrictive, the alternative way has been chosen here: a 14 

reliable mathematical model with few parameters, which vary in space and are estimated at 15 

gauging stations, approximates the dimensionless FDC. The main advantages of the 16 

adopted approach are: 17 

- It The choice of the index value ensures consistency between river flow 18 

statisticspercentiles to be consistent with the mean annual runoff at ungauged sites, i.e. 19 

estimates are expected to be in the range of qa (qa and percentiles) through the choice 20 

of the index value. 21 

- The only few parameters involved in the procedures can be easier to interpret and their 22 

small numberIt reduces the computational effort in each step of the regionalisation 23 

procedurenumber of steps in the regionalisation procedure (only few parameters are 24 

involved in the procedures). 25 

- It enables to distinguish the part related to the water balance (i.e. qa) from the 26 

characteristic response of the catchment to climate to rainfall  (i.e. the parameters of the 27 

shape of the dimensionless FDC) and thus to better identify the most important sources 28 

of spatial variability of FDC properties. 29 

The last step of the procedure involved empirical relationships between the variables of 30 

interest and basin descriptors. Indeed this approach is by far the most often employed in 31 

regionalisation. In practice empirical formulas, usually established by multivariatemultiple 32 

regression, may perform poorly when applied at large scale due to high variability of 33 

hydrological behaviours, providing estimates with large errors. A way to improve the 34 

performance is to delineate homogeneous subregions assuming that pooled river 35 
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catchments with similar hydrological, physiographical and meteorological characteristics will 1 

behave in a similar manner before developing separate regional regressions (Smakhtin, 2 

2001).  3 

The identification of homogeneous regions - both in theory and practice - has received much 4 

attention in hydrology, but no general methodology has emerged. Hence different ways to 5 

form homogeneous regions can be found in the literature, leading to fixed geographically 6 

regions (either spatially contiguous or not) or hydrological neighbourhoods around each 7 

target site. In the neighbourhood approach, each site is supposed to have its own 8 

homogeneous region formed by gauging stations. Examples of contiguous regions defined 9 

for estimating regional FDCs are provided by (Singh et al., 2001) in the Himalayan region of 10 

India based on a pre-existing partition into hydrometeorological subregions, and by (Laaha 11 

and Blöschl, 2006a) in Austria where grouping according to seasonality indices was tested. 12 

Geographically non-contiguous regions are usually identified using multivariate techniques 13 

such as multiple regression, principal component analysis or classification procedures, all of 14 

them incorporating catchment characteristics as well as flow statistics (e.g., Isik and Singh 15 

(2008) in Turkey; Nathan and MacMahon (1990) in Australia; Laaha and Blöschl (2006a, 16 

2006b) and Laaha et al. (2009) in Austria, Vezza et al. (2010) in Italy and Ganora et al. 17 

(2009) in northwestern Italy and Switzerland). Two main neighbourhood methods are 18 

commonly used. Both used auxiliary variables to define a hydrological catchment descriptors 19 

space where distances are computed: the region of influence developed by Burn (1990a,b) 20 

(e.g., Holmes et al. (2002) in the UK) and the canonical correlation analysis (CCA) promoted 21 

by Ouarda et al. (2001).  22 

Since the a priori efficiency of the grouping methods for regionalizing FDC characteristics is 23 

unknown, we here assess the relative performance of three of them: (i) contiguous regions 24 

obtained manually from expertise; (ii) regions obtained through Classification and Regression 25 

Trees algorithm (CART) and (iii) neighbourhood based on canonical correlation analysis 26 

(CCA). The choice of these methods was motivated (i) by a pre-existing partition established 27 

in France to answer some basic questions related to the European Water Framework 28 

directive, (ii) by published works demonstrating the potential of CART models in river flow 29 

regime regionalisation in France (Snelder et al., 2009) and (iii) by the wish to test a well-30 

established method formerly developed to address issues in flood estimation. 31 

In this paper we successively investigate two main issues related to the choice of the most 32 

adapted parametric model to fit observed dimensionless FDC at gauged sites and the way to 33 

define homogeneous regions regardless of the interpolation procedure used to estimate FDC 34 

characteristics. Regarding the last point, this study is in line with previous benchmark studies 35 

on the performance of different grouping techniques for estimating low flow percentiles 36 
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(Laaha and Blöschl, 2006b; Vezza et al., 2010). The paper is organised as follows. The study 1 

area and data used are first presented in Sect. 2. Hereafter, Sect. 3 compares the various 2 

mathematical models tested to approximate FDCs at gauged sites. Once the best performing 3 

parametric model has been identified, the variable on which homogeneity is tested are 4 

introduced in Sect. 4. Three approaches for delineating homogeneous regions are applied 5 

and compared (Sect. 5). The results of the fitted regional regressions are discussed in Sect. 6 

6 and some conclusions including future research directions are drawn in the final section.  7 

 8 

2 Study area and data 9 

Climate and geology are quite diverse in France (area approx. 550 000 km²): the northern 10 

and western parts of France are under maritime temperate climate influences whereas 11 

Mediterranean climate with hot and dry summer prevail in the south. In the latter areas, 12 

rainfall and evaporation drive the seasonal variations of runoff, in contrast to mountainous 13 

areas (high-altitude rivers in both the Pyrenees and the Alps) where snowmelt-fed regimes 14 

are observed. From a geological standpoint, France is roughly composed of two major 15 

geological formations: Hercynian crystalline impermeable substratum principally located in 16 

the north-western part of France (Brittany) and in mountainous areas (Alps, Pyrenees and 17 

Massif Central) and more or less permeable sedimentary rocks (limestone and clay) in flat 18 

plain areas (e.g., in the northern part of France where large aquifers sustain flows). 19 

The dataset (Fig. 1Fig. 1Fig. 1Fig. 1) consists in 1080 gauging stations among more than 20 

3500 stations that are available in the French database HYDRO 21 

(http://www.hydro.eaufrance.fr/). The following selection criteria were imposed to select these 22 

gauging stations: (i) no significant human influence on flow, (ii) high quality of measurements, 23 

(iii) record covering at least 18 years during the period 1970-2008 (iii) high quality of 24 

measurements. To help in the selection process qualitative metadata on the degree of 25 

human influence on the river flow regime and on the uncertainty in discharge observations 26 

provided by the monitoring authorities were gathered and interpreted. In addition we 27 

investigated the presence of major reservoirs and water diversions upstream from the 28 

gauging stations. Time-series were also examined to detect abnormal temporal patterns or 29 

suspicious values in the data.  30 

The final selection corresponds to an average density of about 2 gauging stations per 1000 31 

km². The distribution of gauging stations across the country is however not uniform, with two 32 

notable areas of low station density located in the northern part of France and south Brittany. 33 

A total of 40% of the selected catchments have a record length varying between 35 and 45 34 

years in most cases. Continuous observations during the period 1983-2000 are available for 35 
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90% of all selected stations, which ensures the temporal consistency of runoff statistics in 1 

terms of climatic variability. The drainage areas vary in size between 1.4 and 109 930 km2. 2 

Most of the gauged catchments (44%) have areas from 100 to 500 km².  3 

The catchment characteristics selected for use in the delineation of hydrological regions and 4 

in the development of regression equations were GIS-derived combining the SAFRAN high-5 

resolution atmospheric reanalysis (Quintana-Seguí et al., 2008; Vidal et al., 2010), a 1-km 6 

grid digital elevation model and the associated drainage pattern (Sauquet, 2006). 18 7 

catchment characteristics were selected for their possible influence on the shape of the 8 

standardised flow duration curve. The variables considered in this study include the drainage 9 

area (A), the coordinates of the centre of gravity (XG, YG), the mean catchment slope (Slp), 10 

the three quartiles of the hypsometric curve (Z25, Z50 and Z75), the mean annual catchment 11 

air temperature (TA), the mean summer catchment potential evapotranspiration (ETsummer) 12 

using the formulation suggested by Oudin et al. (2005), the mean annual catchment actual 13 

evapotranspiration (AETA) according to Turc formulation (1954), the mean annual catchment 14 

precipitation (PA), the variance of the twelve mean monthly catchment precipitations 15 

(VarPA), the mean seasonal precipitations (Pwinter, Pspring, Psummer and Pautumn), the 16 

catchment yield (CY) defined by the ratio (PA-AETA)/qa and the fraction of the drainage 17 

catchment with impermeable substratum (%Imp). 18 

In addition, we used the Hydro-EcoRegion classification (HER) developed by Wasson et al. 19 

(2002). The HERs delineation was performed by experts incorporating different aspects of 20 

the geology, climate, physiography, drainage density, vegetation and topography of France. 21 

In particular, HER is the result of the interpretation in terms of erosion resistance, 22 

permeability, and hydrochemistry of a original geological map provided by the Bureau de 23 

Recherches Géologiques et Minières (BRGM, 1996). The HER was not specifically 24 

developed to discriminate river flow regimes. In the absence of quantitative information on 25 

hydrogeology, HERs were considered the most reliable surrogate. This classification divides 26 

France into 22 main regions (HER1) that are subdivided into 112 subregions (HER2). The 27 

dominant class in terms of fraction of the drainage catchment underlain by each HER was 28 

also computed.  29 

 30 

3 A parametric model for flow duration curve 31 

As suggested in Sect. 1, the identification of parsimonious models for summarizinge FDCs is 32 

advantageous to reduce the computational effortsnumber of steps in the regionalisation 33 

procedure (only few parameters are required at ungauged sites to estimate dimensionless 34 

FDC). 35 
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Numerous formulas have been suggested to approximate FDCs (e.g., Quimpo et al., 1983; 1 

Franchini and Suppo, 1996; Yu et al., 2002; Castellarin et al., 2004; Li et al., 2010). Four 2 

parametric functions including the exponential model (Eq. (1)), the logarithm model (Eq. (2)), 3 

the power law model (Eq. (3)) and the model suggested by Franchini and Suppo (Eq. (4)) 4 

were tested on the dataset in this study. They approximate FDC at each site i, i= 1,…,N:  5 

pia
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where Qp is the pth standardized dimensionless flow percentiles and a(i), b(i) and c(i) are the 10 

parameters at location i. 11 

In addition to these four analytical functions, we tested a different approach based on the 12 

discrete decomposition into Empirical Orthogonal Functions expansion (Holmström, 1963). 13 

This mathematical technique, also known as the Karhunen-Loeve transform, aims at 14 

extracting common patterns that represent a large fraction of the variability contained in a 15 

sample of N time series. EOF analysis has been already used for several purposes in 16 

hydrology (e.g., Hisdal and Tveito, 1991; Braud and Obled, 1991; Krasovskaia et al., 1999). 17 

In this application, EOF analysis expresses logarithmically transformed FDC as a linear 18 

combination of M shape functions βi: 19 
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βαγ      (5) 20 

where M is the number of flow percentiles describing the FDCs, N is the number of gauging 21 

stations, αj(i), i= 1, …,N βm is the m-th shape function and mα  is the weight associated with 22 

each m-th shape function. By definition βm, m= 1,…,M are M orthogonal functions with zero 23 

mean. This constraint leads to introduce the additional term: 24 

MiQi p∑= ))(ln()(γ         (6) 25 

mα , m= 1,…,M and )(iγ  are the parameters of the EOF model depending on the location of 26 

the site i and have to be estimated at ungauged sites. are weights which vary with location 27 

and βi are orthogonal functions with zero mean. Transforming tNote that the raw data has 28 

been logarithmically transformed adopted to avoid negative unrealistic estimates. The 29 
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interest in applying this method is to keep the most part of the dataset variance in a limited 1 

number of shape functions. It is thus possible to truncate the series expansion to a subset of 2 

L<M functions to limit the number of model parameters without significant loss of information. 3 

In this study, all models were calibrated using 15 standardizeddimensionless percentiles Qp, 4 

with respective exceedance probabilities p = 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 98 5 

and 99% of the observed FDCs. Analytical models parameters were optimised on 6 

observations by applying ordinary least square procedures on logarithmically transformed 7 

data to reduce the influence of the largest observations. Prior to optimization, 8 

standardizeddimensionless percentiles equalled to zero were replaced by 0.001 to apply the 9 

logarithmic transformation.  10 

The EOF decomposition applied on the dataset provides fourteen shape functions 11 

characterized by different patterns. The first shape functions, with a contribution of 97.2% to 12 

the total variance, represent the most common pattern of French FDCs. The other shape 13 

functions stand for a negligible part of the total variance and allow readjustment for very 14 

particular FDCs patterns. Considering these results, it was decided to keep only the first 15 

shape function. Thus the number of the parameters for the EOF model is limited to two: the 16 

mean of the log-transformed standardizeddimensionless percentiles γ )ln(Q  and the weight 17 

associated with the first shape function α1. 18 

The performance/uncertainty of each model was measured by the deviations from the 15 19 

standardizeddimensionless percentiles Qp on which the five models are fitted. Unrealistic 20 

values (negative) were also replaced by 0.001. Boxplots in Fig. 2Fig. 2Fig. 2Fig. 2 give a 21 

graphical overview of the performance of each model. The median and the whiskers of the 22 

boxplots measure the bias and the accuracy of the model, respectively. In addition, the fitted 23 

curves are displayed on Fig. 3Fig. 3Fig. 3Fig. 3 for four gauged catchments representative of 24 

the diversity of FDC patterns within the reference dataset. Results show that: 25 

- None of the models are perfect; in particular, all the models fails to reproduce 26 

correctly low-flow percentiles (relative errors may exceed 150% for some 27 

catchments). One should note that this criterion is very selective for low values 28 

(relative errors may reach large values when estimates are divided by a reference 29 

value close to zero). 30 

- The biases appear most pronounced for the power law model (Eq. (3)); low-flow 31 

percentiles as well as high-flow percentiles tend to be largely overestimated. 32 

- Comparable biases are found for the exponential model (Eq. (1)) and the Franchini 33 

and Suppo model (Eq. (4)): standardizeddimensionless percentiles Qp are 34 
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underestimated for p ≤ 0.02 and for 0.7 ≤ p ≤ 0.9 whereas Qp are overestimated for p 1 

≥ 0.98 and for 0.1 ≤ p ≤ 0.4. 2 

- The relative error range is smaller for the exponential model (Eq. (1)) and the 3 

Franchini and Suppo model (Eq. (4)) for the two standardizeddimensionless 4 

percentiles (p = 0.01, 0.02). However, there is a systematic negative bias in estimated 5 

high-flow standardizeddimensionless percentiles. 6 

- Results for the logarithm model (Eq. (2)) follow a very similar pattern to those for the 7 

EOF model (Eq. (5)): on average, they both overestimate standardizeddimensionless 8 

percentiles with 0.4 ≤ p ≤ 0.8 while high-flow and low-flow percentiles are 9 

underestimated.  10 

The degree of bias differs substantially depending on the fitted model. The power law model 11 

(Eq. 3) provides the worst estimates in terms of relative error (bias and spread are the largest 12 

among the models). Comparable biases are found for the exponential model (Eq. 1) and the 13 

Franchini and Suppo model (Eq. (4)). The EOF model (Eq. (5)) appears to outperform among 14 

the other models tested despite poor performance for high-flow percentiles. It performs 15 

nearly as well as the logarithm model (Eq. (2)) but it also produces globally less biased 16 

estimates (median relative errors are the closest to zero and most of the interquartile ranges 17 

include zero for all the exceedance probabilities). The advantage of the EOF model is 18 

probably a better flexibility (the other models are not enough flexible to reproduce possible 19 

inflexion points in the observations) as it results from an empirical modelling of the shapes of 20 

the FDC. Considering these results we finally kept the EOF model is the only one to be kept 21 

in the following steps. As an illustration Fig. 4Fig. 4Fig. 4 displays the spatial pattern of the 22 

weight coefficient α1. The right panel shows how the shape of the FDC approximated by the 23 

EOF model evolves as α1  changes with γ  fixed to zero. High values for α1 correspond to 24 

steep slopes of the FDC observed mainly along the Mediterranean and North-Atlantic coasts 25 

whereas small values correspond to flat slopes of the FDC observed in the north part of 26 

France where the river flow regime is governed by qroundwater dynamics.  27 

 28 

4 Variables for testing hydrological homogeneity 29 

The application of grouping methods is conditioned by the prior definition of variables to 30 

measure the degree of similarity between catchment behaviour and the level of homogeneity 31 

within the region. The most obvious option would have been to derive groups based on the 32 

two variables γ  and α1 to be interpolated. Nevertheless this choice is not optimal since these 33 

values result from an approximation of FDCs. In addition working on empirical variables 34 
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independent of any analytical model was preferred for latter applications of the obtained 1 

clusters. Several possible characteristics directly derived from river flow time series were 2 

tested and two variables were finally chosen for their correlation to the shape of the FDC and 3 

for their interpretation in terms of underlying hydrological processes.  4 

The first variable is directly related to empirical properties observed on FDCs. The analysis of 5 

observed FDCs suggests that the 10th percentile is a breakpoint delineating two parts of the 6 

curves: gradient tends to be higher in the upper branch (10% < p < 99%) than in the lower 7 

branch (1% < p < 10%). On this basis, a concavity index is computed as follows:  8 

991

9910

QQ
QQ

IC
−
−=          (6) 9 

This descriptor is a measure of the contrast between low flow and high flow regime. A map of 10 

the concavity index in France including the location of the selected stations is presented in 11 

Fig. 5Fig. 5Fig. 5Fig. 4. The parameter takes values between 0 and 1. Values close to 1 are 12 

observed where large aquifers (e.g., in the northern part of France) and storages in snow 13 

pack (e.g., in the mountainous area) moderate the variability of daily flow. Values close to 0 14 

are related to catchments exposed to contrasted climate (e.g., small catchments in the 15 

Mediterranean area experiencing hot and dry summers and intense short rainy events in 16 

autumn) and also to catchments with no storage capacity (e.g., on impermeable substratum) 17 

resulting in severe low-flows and quick runoff responses to rainfall events. It is worth noting 18 

that IC is well correlated with the parameters of the analytical FDC models (Fig. 4Fig. 4Fig. 19 

4) and the average base flow index as well (not published here).  20 

The second variable is a seasonality index. Laaha and Blöschl (2006a) demonstrated the 21 

value of such a variable for regionalizing the low-flow percentile Q95 in Austria. Indeed, 22 

grouping based on seasonality indices performed better than alternative groupings since 23 

these indices enable to discriminate well low flow processes at the regional scale when 24 

seasonal variability of runoff is high. Laaha and Blöschl (2006a) have used the ratio of the 25 

95th percentile of the winter (December to March) FDC divided by the 95th percentile of the 26 

summer (April to November) FDC. Since our objective encompasses low flows, a 27 

Seasonality Ratio (SR) based on the medians was used here instead: 28 

SR = Q50(summer)/Q50(winter)       (7) 29 

SR ≈ 1 relates to catchments with nearly uniform flows through the year, often when 30 

significant groundwater contributions filter out seasonal climatic variability. Catchments 31 

influenced by snowmelt-fed processes display SR < 1 whereas for typical rainfall-fed 32 

catchments with low flow in summer and high flow in winter SR is above 1. SR is used here 33 

as a complement to IC  to better identifying the causes of low seasonal variability in runoff 34 
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(snow or groundwater storages). The variation in SR is governed by geology and air 1 

temperature and consequently in France by topographic influences.  2 

These two variables IC and SR are the flow characteristics used to delineate homogeneous 3 

groups. Methods and results are presented in the subsequent section. 4 

 5 

5 Grouping methods 6 

5.1 Methods 7 

5.1.1 Visual grouping (VG) 8 

Non-overlapping regions of approximately homogeneous low-flow indices SR and IC have 9 

first been identified visually. The starting point was the partition of France into 112 Hydro-10 

EcoRegions (HER2s) at the finest level (Wasson et al., 2002). These HER2s, introduced in 11 

Sect. 2, have been pooled based on hydrological expert knowledge. 12 

The boundaries of HER2s have been first superimposed to the map displayed in  Fig. 4Fig. 13 

5Fig. 5Fig. 5. The most similar neighbouring HER2s have been progressively pooled by 14 

respecting contiguity, minimizing the dispersion within each cluster and maximizing the 15 

dissimilarity between the clusters based on visual inspection. The pooling process is far from 16 

obvious. In particular, due to the uneven density of the reference network, some of the 17 

HER2s contain too few stations to relate undoubtedly them to other neighbouring HER2s. 18 

Hence we used additional information such as rough description of hydrogeology to merge 19 

the ungauged HER2s with one of the adjacent clusters. Lastly, inspection of SR values led to 20 

a partition of the preliminary groups into sub-groups of HER2s, homogenous in terms of 21 

seasonality.  22 

Fig. 6Fig. 6Fig. 6Fig. 5 presents the division of France into 18 different regions so obtained. 23 

Mixed regions may persist due to the heterogeneity at HER2 scale or due to the merging of 24 

HER2s containing a small number of gauged sites to large clusters. The identified regions 25 

include from 21 to 138 gauged sites and the average size is 57 (5% of the dataset). 26 

5.1.2 Regression Tree (RT) 27 

The aim of the analyses via tree-building algorithms is to predict dependent variables from a 28 

set of factor effects. Classification and Regression Trees approaches perform successive 29 

binary partitions of a given dataset according to decision variables. One advantage of this 30 

method is its ability to handle qualitative data (e.g., membership to a specific class). In 31 

general, RT leads to a set of if-then logical conditions as basis for classification. The 32 

algorithm identifies the best possible predictors, starting from the most discriminating factors 33 
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and proceeding to the less important controls, to divide the clusters (nodes) into two 1 

successive parts. The optimal choices are determined recursively by increasing the 2 

homogeneity within the two resulting clusters. In this application the R software package 3 

rpart (Therneau and Atkinson, 2010) was used. The decision variables were selected 4 

automatically by the algorithm among the 19 catchment descriptors (i.e. including the 5 

dominant HER2) to ensure an optimal homogeneity of IC chosen as the dependent variable, 6 

in the successive clusters. The only constraint was to include at least 30 gauging stations in 7 

each region. At last 22 hydrological regions were identified with a mean number of 54 8 

gauging stations per region (Fig. 7Fig. 7Fig. 7Fig. 6).  9 

5.1.3 Canonical Correlation Analysis (CCA) 10 

Canonical Correlation Analysis (Hotelling, 1936) is a multivariate statistical method suited to 11 

study interrelations between two sets of variables. CCA has been previously suggested by 12 

Ouarda et al. (2001) as a neighbourhood definition method. CCA provides two sets of 13 

canonical variables kjV j ,...,1, =  and kjW j ,...,1, =  obtained as follows: 14 

- kjV j ,...,1, =  are linear combinations of k standardized hydrological variables 15 

kjX j ,...,1, = . 16 

- kjW j ,...,1, =  are linear combinations of r standardized physiographic and climatic 17 

characteristics of the catchment rjY j ,...,1, = (k < r). 18 

- ( jj WV , ) have maximum correlation. 19 

- ( ji VV , ), ( ji WV , ) and ( ji WW , ) ( ji ≠ ) are uncorrelated. 20 

Theoretical developments show that the weight for Vj (resp. for Wj) is the i-th eigenvector 21 

XYYYXYXX '11 ΣΣΣΣ −−  (resp. XYXXXYYY ΣΣΣΣ −− 11 ' ) where XYΣ  is the rk ×  covariance matrix and  22 

XY'Σ  the transpose of XYΣ . Canonical variables kjV j ,...,1, =  and kjW j ,...,1, =  can be 23 

interpreted as coordinates in hydrological and catchment-related physical spaces, 24 

respectively. Knowing rjY j ,...,1, =  at ungauged location it is then possible to compute 25 

kjW j ,...,1, =  and through the calculation of correlation coefficients between canonical 26 

variables ( ji WV , ) their possible proximity - according to  Mahalnanlobis distance - to the 27 

gauged stations in the hydrological space, which delineates neighbourhood around each site.  28 

CCA has been formerly applied to regional flood frequency estimation (e.g., Ouarda et al., 29 

2001; Chokmani and Ouarda, 2004; Shu and Ouarda, 2007). The present study is probably 30 
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one of the first published works on CCA application to predict FDCs at ungauged locations. 1 

Here CCA was carried out between the two indicators IC and SR and all the catchment 2 

descriptors (excepted dominant HER2, since traditional CCA cannot manage qualitative 3 

variables). Geological description is thus reduced to the percentage of impervious areas. All 4 

combinations of 2 to 18 variables among the 18 catchment characteristics detailed in 5 

remaining basin descriptors (listed in Sect. 2) were tested and at last we retained a 6 

combination of six characteristics which provides to the highest correlations between the first 7 

two pairs of canonical variables, i.e. ( 11,WV ) and ( 22 ,WV )(p= 2). These catchment 8 

characteristics relate to location (the coordinates of the centre of gravity), climate (the mean 9 

annual catchment actual evapotranspiration and the variance of the twelve mean monthly 10 

catchment precipitations), geology (the fraction of the drainage catchment with impermeable 11 

substratum) and altitude (the third quartile of the hypsometric curve).  12 

In addition to the variables involved in CCA, one should define the boundaries of the 13 

neighbourhood to exclude gauging stations too far from the target site. Ouarda et al. (2001) 14 

suggested a distance threshold depending on a given confidence level and on target site. 15 

Preliminary tests showed the difficulty to define a satisfactory confidence level for our 16 

dataset, in particular for very atypical sites for which too few similar sites are selected to 17 

derive, thereafter, reliable regional regressions. Consequently we chose here to fix the 18 

number of stations contributing to neighbourhood to 50, i.e. the 50 closest gauging stations 19 

to the target site, to allow objective comparisons with the results of the two other grouping 20 

methods. 21 

 22 

5.2 Results 23 

 24 

Fig. 6Fig. 6Fig. 6Fig. 5 and Fig. 7Fig. 7Fig. 7Fig. 6 present maps obtained by VG and RT, 25 

respectively. One colour is assigned to each reach of the main river network (i.e. all locations 26 

draining more than 50 km²). Displaying results from CCA on a map is not feasible since each 27 

site has its own neighbourhood. The comparison between the two maps suggests that: 28 

- The two procedures based on the same auxiliary variables lead to different divisions. 29 

The spatial pattern provided by RT is patchier than the one obtained by VG: small 30 

tributaries may belong to different classes than the main stem they flow into.  . The 31 

relative influence of the location is naturally moderate on class allocation since 32 

mountainous basins in the Alps and Pyrenees are pooled together. This result is in 33 

direct line with conclusions of previous studies dedicated to flood quantile estimation 34 
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(Merz and Blöschl, 2005; Ouarda et al., 2001) that concluded that geographical 1 

proximity does not involve hydrological similarity. 2 

- Common geographical groupings can be found e.g., in the north part of France (in 3 

brown in  4 

- Fig. 6Fig. 6Fig. 6Fig. 5 and in cyan in Fig. 7Fig. 7Fig. 7Fig. 6) and in the west part of 5 

France (in orange in  6 

- Fig. 6Fig. 6Fig. 6Fig. 5 and in dark blue in Fig. 7Fig. 7Fig. 7Fig. 6), supporting visually 7 

the fact that the two partitions are not totally inconsistent. 8 

To supplement this analysis, we examined the empirical distributions of both SR and IC per 9 

regions (identified by a letter on the x-axis). Box plots are presented in Fig. 8Fig. 8Fig. 8Fig. 10 

7. There is no obvious difference between the spread of SR and IC. The absence of 11 

significant improvement in terms of homogeneity within each group (regarding the 12 

interquartile provided by the empirical distribution of each variable) and in discrimination 13 

between groups (regarding the differences between the medians of each groups for each 14 

variable) is due to the valuable information contained in the Hydro-EcoRegions. Both 15 

methods lead to two very distinct regions with high values for IC. As a proof the membership 16 

to clusters of HER is chosen as the first splitting variables.  17 

Regarding CCA we decided to compare results with published works in terms of correlation 18 

structure. Fig. 10Fig. 10Fig. 10 indicates moderate correlations between the canonical 19 

variables: r1 = 0.71 between 1W  and 1V  and r2= 0.57 between 2W  and 2V .  20 

These values are lower than those obtained in regional flood quantile estimation by Ouarda 21 

et al. (2001) in the Province of Ontario (Canada) (r1 between 0.959 and 0.960 and r2 between 22 

0.279 and 0.422), by Haché et al. (2002) in the Saint-Maurice river region (Canada) (r1 = 23 

0.986 et r2 = 0.842) and by Ouarda et al. (2008) in Mexico (r1 = 0.966 and r2 = 0.247).  24 

In these studies the analysis of the weights associated with the hydrological variables X and 25 

the catchment descriptors Y in the linear combinations shows that the high correlation rate r1 26 

principally depends on the strong link between one T-year flood quantile QT expressed in 27 

m3/s and the drainage area A. It reflects the dependence of the productivity of the basin in 28 

terms of volume to the catchment size. On the contrary correlation coefficient r2 is very weak 29 

in most cases. It illustrates the difficulty in identifying relevant basin descriptors to explain the 30 

residual spatial variability. As a result the identification of neighbouring catchments using the 31 

Mahalanobis distance leads to cluster catchments of equivalent size (the weight of the 32 

second pair of canonical variable (= r2²) is practically negligible in the calculation of the 33 
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distance) which is certainly the first (and obvious) factor of similarity between catchments 1 

(but probably not sufficient to ensure homogeneity).  2 

Here two dimensionless variables (SR and IC) mostly free from the scale effect have been 3 

considered as the set of hydrological descriptors X. Even if can expect a slight influence of 4 

the size of the catchment on the flatness of the FDC, i.e. on IC, results show that the 5 

correlation between IC and the drainage area in the dataset is very weak and that the 6 

introduction of A among the basin descriptors Y does not improve significantly the 7 

correlations between the two first canonical variables. The highest coefficient of correlation 8 

observed is just 0.34 between SR and the first quartile of the hypsometric curve. The context 9 

for the definition of the first pair of canonical variable in our application is thus close to the 10 

one met by Ouarda et al. (2001, 2008) and Haché et al. (2002) concerning the second pair of 11 

the canonical variables. .No combination of catchment descriptors was found strongly 12 

correlated with the two parameters SR and IC. As consequence the correspondence 13 

between the hydrological space and the catchment-related physical space defined by CCA is 14 

not guaranteed thereafter.  15 

Regarding CCA we decided to compare results with published works in terms of correlation 16 

structure. Fig. 9 indicates weak correlations between the canonical variables: r1 = 0.71 17 

between 1W  and 1V  and r2= 0.57 between 2W  and 2V . As comparison, for flood quantile 18 

estimation, Ouarda et al. (2001) obtained r1 between 0.959 and 0.960 and r2 between 0.279 19 

and 0.422 in an application in the Province of Ontario (Canada), Haché et al. (2002) obtained 20 

r1 = 0.986 et r2 = 0.842 in the Saint-Maurice river region (Canada) and Ouarda et al. (2008) 21 

obtained r1 = 0.966 and r2 = 0.247 in Mexico. These studies used at least one T-year flood 22 

quantile QT expressed in m3/s as one of the hydrological variables and the drainage area A 23 

as one of the physiographical variables. Since catchment area is certainly the factor with the 24 

greatest influence on flood magnitude above climate, geology and land-use as one of the 25 

physiographical variables, CCA suggests automatically a first pair of canonical variables 26 

( 1V , 1W ) highly correlated with QT and A, respectively. Roughly speaking, the presence of a 27 

strong link between one hydrological variable and one physiographical variable ensures at 28 

least one highly correlated pair of canonical variables. This is not the case here: the 29 

hydrological variables are two ratios free from scale effect and so A was excluded from the 30 

final variables involved in the definition of canonical variables and the highest coefficient of 31 

determination observed between SR and the first quartile of the hypsometric curve is just 32 

0.34. No statistical test (e.g. ANOVA, Laaha and Blöschl, 2006a) to check homogeneity in 33 

terms of FDC characteristics was performed on the clusters of gauged basins. Contrary to 34 

other applications (e.g. in Regional Flood Frequency Analysis for which a measure of 35 

regional heterogeneity is used to validate the derivation of a representative pooled growth 36 
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curve), we consider that statistical homogeneity (i.e. low variability around the mean values) 1 

is not a necessary condition for ensuring accurate quantile estimates. Indeed an efficient 2 

interpolation technique (e.g. an empirical formula) to predict the river flow characteristics of 3 

interest could compensate the effect of heterogeneity present within the groups. Here 4 

clustering is a way to remove the large scale variability due to dominant factors possibly 5 

difficult to identify (e.g. hydrogeological properties) and interpolation procedures aim at 6 

modelling thereafter the residual unexplained spatial variability at finer scale whatever the 7 

homogeneity is. The next section presents the method considered to develop regional 8 

regressions for each groupings approach. Their relative performances of each grouping 9 

technique in terms of prediction of dimensionless FDC are compared.  10 

 11 

6 Regional regression  12 

6.1 Method 13 

The homogeneous regions are now identified. Multivariate Multiple regression model 14 

relations between the EOF model parameters and catchment descriptors can be developed. 15 

Both linear and power form models dependences were investigated: 16 
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Models Parameters [ ]18,0, ∈jjλ  and [ ]18,0,' ∈jjλ  were adjusted on observations to each 21 

homogeneous group by the ordinary least squares method (using log transformed data to fit 22 

power-form models).  23 

In order to define the most appropriate model for each region, all combinations including one 24 

to four variables among the 18 quantitative variables were tested and the 10 best regression 25 

models in terms of adjusted coefficient of determination were retained. These models were 26 

then refined/filtered through an interactive scheme: (i) outliers using Cook’s distance were 27 

removed first, (ii) the statistical properties of residuals (including normality and 28 

homoscedasticity) were checked by visual inspection (only for the first two grouping 29 

methods) and (iii) the robustness of each empirical formula was finally assessed by leave-30 
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one-out cross-validation. The final models were selected regarding to the best value of the 1 

coefficient of determination obtained by leave-one-out cross-validation.   2 

6.2 Results 3 

To measure the values of prior region delineation a global regression using the whole 4 

available gauging stations dataset and the procedure described in Sect 4.56.1 was derived. 5 

The descriptors involved are the elevation exceeded 25% of the catchment, the mean annual 6 

catchment air temperature, the catchment yield and the fraction of the drainage catchment 7 

with impermeable substratum. Note that two of them reflect the relevance of geological 8 

properties to explain the variability of the parameters of the EOF model at large scale. The 9 

analysis of the predictive models derived from VG and RT approaches demonstrates that: 10 

- Linear and power form models are equally found. 11 

- The performance of the regression as well as the set of relevant descriptors may vary 12 

substantially from one region to another. R² ranges from 0 to 0.86, with the median equal 13 

to 0.41. Most of the regressions involve four relevant basin descriptors. 14 

- Regarding α1 the four most important explanatory variables are the catchment yield CY, 15 

the drainage area A, the y-coordinate of the centre of gravity YG and the percentage of A 16 

with impermeable substratum %Imp. They are all involved in average in three empirical 17 

formulas out of ten. Their presence is partly justified: YG may reflect the gradually 18 

influence of the Mediterranean climate on flow variability from North to South; CY and 19 

%Imp characterize more or less directly the effect of the geology (all things considered 20 

the higher the fraction of impervious area, the sharper should be the FDC); lastly the 21 

relevance of A can be justified if one assume that the flatness of the FDC probably 22 

increases with the size of the basin due to larger storage capacities and due to 23 

combinations of different river flow patterns originated from upstream tributaries.  24 

The global predictive performance of each method in cross-validation (i.e. for all the sample) 25 

was assessed using the root mean square error (RMSE) and the coefficient of determination 26 

of the regression R² between observed and predicted values for the EOF model parameters, 27 

γ )ln(Q  and α1. In addition to these statistics, scatter plots were drawn and inspected 28 

visually to compare the spread of the predictions. These results are reported in the next four 29 

figures (from Fig. 11Fig. 11Fig. 11Fig. 10 to Fig. 14Fig. 14Fig. 14Fig. 13). The two upper 30 

panels plot estimated values against observed ones (γ )ln(Q  on the left and α1 on the right). 31 

Each point is related to one gauging station. A one-to-one line (in red) is added to each 32 

graph. Absolute relative errors were also computed for each of the 15 selected 33 
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standardizeddimensionless percentiles Qp and their empirical statistical distributions were 1 

summarised by box plots displayed on the lower panel. 2 

The cross validation results for the national regression are presented in Fig. 11Fig. 11Fig. 3 

11Fig. 10. As expected the scores are unsatisfactory: dispersion is high around the one-to-4 

one line (R² < 0.20 for both EOF model parameters) and the low-flow percentiles were poorly 5 

predicted. By comparison, the three next figures (Fig. 12Fig. 12Fig. 12Fig. 11 to Fig. 14Fig. 6 

14Fig. 14Fig. 13) illustrate the performance of the three tested grouping methods and 7 

suggest that:  8 

- The regional regression based on the three grouping approaches is superior to global 9 

regression like in Laaha and Blöschl (2006b) and in Vezza et al. (2010); results for all 10 

models follow a similar pattern in terms of relative error on standardizeddimensionless 11 

percentiles: the highest errors are obtained for the lowest values. 12 

- RT is the best regionalisation method, and VG performs nearly as well as RT with both 13 

comparable R² and RMSE ; however one should note that the estimations by VG 14 

approach are probably heteroscedastic (the spread of errors increases along with α1). 15 

RT yields a little more accurate quantile estimates than VG when comparing the spread 16 

of the relative absolute errors, i.e. the extent of the whiskers of the box plots in Figs. 11 17 

and 12.  18 

- CCA outperforms only slightly outperforms global regression. This finding is astonishing 19 

since CCA is known as a very efficient regional estimation method. 20 

To understand the unexpected performance for CCA, we performed additional computations 21 

and compared the neighbourhoods defined by CCA to the expected ones, ideally defined in 22 

the hydrological space. We first verified that regional regressions obtained with the expected 23 

neighbourhoods were suited to estimates the EOF model parameters. Results showed very 24 

satisfactory performances (R² reaches 0.63 and 0.69 for γ  and α1 respectively). This high 25 

difference between performances is certainly due to the fact that the selected neighbours by 26 

CCA were almost never the expected ones: for the 50 closest gauged basins, the 27 

concordance between the neighbourhoods predicted by CCA and the theoretical ones are 28 

weak. It confirms that the correlation between canonical variables is not strong enough to 29 

guarantee the correspondence between the physiographical and hydrological spaces and 30 

thus to ensure the efficiency of CCA. As mentioned before it probably points out the lack of 31 

efficient catchment characteristics to strengthen the link between the two spaces – certainly 32 

characteristics explicitly linked to hydrogeology since the application of the two other 33 

methods differs only by the introduction of such a variable (i.e. dominant HER2). 34 
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 1 

7 Conclusion 2 

In this study, a regionalisation method is suggested to estimate flow duration characteristics. 3 

The developed approach supposes that the mean annual flow qa is known before estimating 4 

FDCs at ungauged sites. Efforts have been therefore concentrated on the estimation of the 5 

shape of the normalised FDC using a large data set of FDC derived from 1080 gauging 6 

stations.  7 

First, a parametric and parcimonious model based on EOF decomposition has been 8 

developed to fit the observed shapes of the FDC. A comparison to other models referenced 9 

in the literature demonstrates that the EOF model leads to the best estimates at gauging 10 

stations. A reason could be that, conversely to the empirical approach, analytical formulas 11 

are not flexible enough to accommodate the full range of observed shapes. Thus it would be 12 

unrealistic to support the idea of one parametric model adapted to all the hydrological 13 

conditions.  14 

In a second step, different grouping techniques for identifying homogeneous regions and 15 

developing separate regression models have been compared. Two of the grouping 16 

procedures, VG and RT, with comparable performance, demonstrate the significant gain to 17 

develop regional regressions. One should note that the RT classification procedure has the 18 

advantage to be automatic and objective whereas heterogeneity may persist in the VG 19 

groups that could explain its ranking (2nd). Nevertheless a large portion of the variance 20 

remains unexplained. Further effort could be devoted to the interpolation of the residuals. 21 

One could apply techniques such as adapted kriging (Sauquet, 2006), Top-Kriging (Skøien et 22 

al., 2006) or physiographical space based interpolation (Castiglioni et al., 2009) for this 23 

purpose.  24 

Despite thea greatest flexibility in neighbourhood selection, i.e. a neighbourhood is defined 25 

individually for each target site, the third and last grouping method, CCA, performed poorly. 26 

These bad and unexpected scores for CCA may result from the difficulty to obtain a sufficient 27 

correlation link between hydrological and physiographical spaces in the absence of relevant 28 

characteristics to describe the hydrogeological properties within the catchments. Indeed, for 29 

the other two grouping techniques hydrogeology is summarized by one qualitative variable, 30 

i.e. the class of the dominant HER2, which provides sufficient information to increase 31 

homogeneity within regions and to ensure more efficient regional regressions. As a result the 32 

application of CCA in predefined regions with homogeneous hydrogeological properties 33 

should be investigated to compare equitably CCA to other methods on the same bases. 34 
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Figures 1 

 2 

Fig. 1. Study area and gauging stations identified by their respective centre of gravity (black 3 

square). 4 
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Fig. 2. Empirical distribution of the relative error for each percentile and each model. The 5 

boxplots are defined by the first quartile, the median and the third quartile. The whiskers 6 

extend to 1.5 the interquartile range; open circles indicate outliers. 7 
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Fig. 3. Comparison of observed (open circle) and modeled flow duration curves (logarithm 2 

(red), exponential (blue), power law (green), Franchini and Suppo (grey), EOF (black)). 3 
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 1 

Fig. 4. Spatial distribution of the weight α1 observed at gauged catchments identified by the 2 

location of their centre of gravity. 3 

 4 

 5 

Fig. 5. Spatial distribution of the concavity index IC observed at gauged catchments identified 6 

by the location of their centre of gravity. 7 
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 2 

Fig. 6. Results of classification based on visual grouping (VG). 3 

 4 

 5 

Fig. 7. Results of classification based on regression trees (RT). 6 
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(a)  (b) 

 2 

Fig. 8. Empirical distributions of the two hydrological indicators for each cluster according to 3 

VG (a) and RT (b). 4 

 5 
 6 

Fig. 9. Regression tree model (the numbers at each node of the tree and the name of the first 7 

splitting variables are reported in the boxes and in the middle of the branches, respectively). 8 
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 1 
 2 

Fig. 1010109. Correspondence between the position of the gauged sites in the hydrological 3 

space and the catchment descriptors space - Correlation between canonical variables.V1 and 4 

V2 (resp. W1 and W2) are the two first canonical variables of hydrological space (resp. of 5 

basin descriptors space) 6 
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Fig. 11. Results for the global regression model. 9 
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Fig. 12. Results for the regional regression model applied to visual grouping. 3 

 4 

 5 

A
bs

ol
ut

e 
re

la
tiv

e 
er

ro
r 

(%
) 

 
Exceedance probability 

 6 

Fig. 13. Results for the regional regression model applied to groups derived from RT. 7 
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Fig. 14. Results for the regional regression model applied to neighbourhoods derived from 3 

CCA. 4 
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