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by random forests and multiple linear regression” 
by G. Ibarra-Berastegi et al. 
Anonymous Referee #2 
Received and published: 18 April 2011 
Summary: The aim of the paper is to explore the utility of analogues for downscaling, 
and assess that approach relative to adding additional steps to the downscaling 
including analogues and multiple linear regression. To that extent it is reasonably 
approached,and the methods generally appear to support the conclusions. What is 
missing principally is the tie to downscaling GCMs, and generalizing the results to 
future conditions, which presumably is a motivation for this effort. 
1) p. 1952, lines 21-26 and top of following page: This sets the stage for the 
experiment, where the challenge of using large scale (1.5-4 degrees) GCM output to 
estimate ’site-specific scenarios’ requires some type of downscaling. There are two 
main issues separating the analysis presented in the manuscript from this, namely 1) 
by downscaling ERA products at about 1 degree spatial resolution there is much 
greater spatial resolution than most existing GCMs, and 2) by using reanalysis 
products, even though precipitation observations are not directly assimilated, other 
observations are, giving  it much higher skill than any GCM will exhibit. For 
development of downscaling approaches this type of analysis is common, but a 
discussion of the implications of the findings in the context of much coarser, lower skill 
input to the downscaling procedure is missing. 
The focus of this paper was to test the potential capabilities of a downscaling approach 
based on a start-of-the-art and at the same time, highly non-linear tool like random 
forests. To that end, all the literature mentioned in the “Introduction” chapter of our 
paper, represents the previous works our approach tries to compare with. This set of 
scientific works represents the frame in which our study tries to make an contribution. 
In this sense, all the literature that we cite on downscaling uses reanalysis data (either 
NCEP or ERA) and therefore, our work should be understood in this context. In this 
line, it is worth mentioning that our group has experience in precipitation downscaling 
using ERA40 data and analogues although for short-term prognostic purposes and not 
necessarily only for climate (Fernández-Ferrero et al., 2009; Fernández-Ferrero et al., 
2010). 
Coming to the GCM issue, we agree with the reviewer that in general their resolution is 
coarser than for example ERA40. However, GCM  do not assimilate observations so 
performance must be assessed comparing PDF of observations and predictions. Our 
group has got experience in the evaluation of AR4 models (Errasti et al., 2011) and the 
evaluation methodology is different, mainly because in reanalises, observations are 
assimilated and in GCM they are not. Since GCM are always run beyond the limit 
corresponding to first kind predictability, in the verification process, it cannot be 
expected that the part of observations corresponding to the high frequency variability is 
accuretely represented. Therefore, a choice has to be made before downscaling is 
carried out: either reanalysis data are used as input or data from GCM are used as 
inputs. As a result, evaluation procedures are different and downscaling results from 
reanalyses such as ERA40 and GCM are not directly comparable. 
As mentioned before, the present work uses ERA40 data as inputs and several 
models’ abilities for precipitation and surface mositure flux downscaling are evaluated. 
Although comparison with results obtained using GCM models with coarser resolutions 
is not straightforward, it seems reasonable to expect a similar ranking of performance 
for the different models tested. As such, this study is of the sensitivity test kind. We 
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consider several factors fixed and we only vary the methodology followed for 
downscaling. If the editor gives us the opportunity to prepare a revised version of our 
paper and suggests us so, we can incorporate a brief discussion in these terms. 
 
2) p. 1957, lines 4-9, some important source regions providing teleconnections to IP 
climate are noted. However, on p. 1959, lines the domain for large-scale predictors is 
limited to the predictand domain alone. What is the justification for this? 
 
This is a good suggestion by the reviewer and we appreciate it. Our previous 
experience shows that bigger domains do not necessarily imply a better performance 
when downscaling. To that end, see for instance Fig. 13 or Table 1 in a work by one of 
the coauthors (Fernandez and Saenz, 2003).  
There are two reasons behind this behaviour. The first one is that one of the previous 
steps almost always consists (as in our paper) of a dimensionality reduction by means 
of EOF. If the domain is too big, there might be areas of it where the variance of 
predictor fields is high but unrelated to the variability at the local sites. 
Since leading EOF always point in the directions of highest variability, the leading 
directions might end up by being rather irrelevant in terms of local variability in the 
domain is too big. 
The second reason is that if we consider a big domain (for instance Northern 
Hemisphere), the variability of every predictor can be described (up to the limit of 
truncation) as a linear combination of the EOF. Therefore, the variability of circulation 
(geopotential, wind and so on) over our local domain is also a combination of the 
hemispheric EOF. Only those EOF which represent significant fractions of variance 
over our local domain are able to originate significant anomalies over the smaller 
domain over the study area. Therefore, both sources of information are not 
independent. Conversely, we find that our approach is more robust in the sense that it 
does not depend on subjective a priori decisions on which teleconnection indexes 
should be considered. 
As a reply to the other reviewer (Dr. Rasmus Benestad) we have performed a 
sensitivity analysis on the domain size and the results show that this factor is not 
important in terms of performance. (see reply to reviewer #1, and ANNEX). 
If the editor gives us the opportunity to prepare a revised version of our paper and 
suggests us so, we can include the results, tables and calculations shown in the 
ANNEX, that in our opinion justify that for this case, the size of domain is not relevant. 
 
3) p. 1961, lines 12-14, the GPCP dataset is used for reference values. Since the 
GPCP product is a merged data set of observations from a variety of sources, it is 
unclear why "any downscaling effort on precipitation could only be justified if better 
results than local persistence and/or raw GPCP data ...were obtained." Does the GPCP 
data include the observations stations for which downscaling is being performed? Why 
should any downscaling effort be expected to provide a better estimate of local 
conditions than an observationally-based data set? Something is not clear here. 
 
GPCP provides gridded precipitation data with a 1ºx1º resolution. This precipitation 
data is readily available, http://jisao.washington.edu/data/gpcp/daily/  and if it yielded 
good estimations of observed data at the closest gridpoints (Zaragoza  59 and Tortosa 
36 km away) downscaling would not bet necessary. For this reason, we think that 
evaluating GPCP performance along with the rest of models, can make it possible to 
evaluate whether the effort needed  to dowsncale precipitation values is worthwhile or 
not. It is the same idea for persistence: if current day value can be accurately estimated 
with yesterday’s record, downscaling is not needed. As can be seen in the results 
shown in our original paper, performance of both persistance and GPCP, was worse 
than for any other model. The conclusion is that performance is so poor that 
downscaling cannot be avoided. 
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4) p. 1964, line 4, express the RMSE as a percent of the mean value either instead of 
or in addition to the raw RMSE. 
 
Raw RMSE is a very widely used statistical indicator and in our opinion, provides a 
good description of models’ error but we have no problem with this suggestion. If the 
editor gives us the opportunity to prepare a revised version of our paper and holds this 
same point of view, we can either express RMSE as a percent of the mean or in 
addition to the raw RMSE. 
 
5) section 2.3, the list of statistics for evaluating the methods could be more inclusive 
of extremes. One of the motivations for downscaling of daily data is to capture better 
extreme values. For precipitation, are extreme values captured more successfully by 
one method than another? Since RMSE is heavily affected by high values there may 
be an implicit assessment of this, but comparing estimates of heavy rain events would 
be interesting. 
 
In our paper we use 5 years (1826 daily cases, 1997-2001 period) of data for models’ 
evaluation. The focus of our paper was to carry out an overall evaluation of 
downscaling performance by different methods. Carrying out a thorough analysis of 
extremes would only be possible with a higher number of years and cases. 
However, regarding your concern on precipitation extreme values, we have considered 
three extreme boundaries (percentiles 95, 97.5 and 99) and graphically represented 
observations vs predictions. It can be concluded that all models tend to underpredict 
extremes (Fig.1-Fig.2). 
We have also tried to calculate the same set of statistical indicators for these three 
extremes. However, due to the low number of cases belonging to each of these groups 
of extremes, the statistical indicators used (R, RSD, RMSE, FA2,  RM, D) have very 
wide 95% confidence boundaries as obtained after bootstrap resampling (5000 times) 
making it impossible a statistically meaningful model intercomparison. This can be 
seen in figures 3 and 4 for the correlation coefficient. With 5 years of data we can only 
state that for the case of precipitation extremes, all models tend to clearly 
underestimate observations. 
I 
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Figure 1. Zaragoza. 1997-2001. 1826 cases belonging  to the  test data set. Observed vs predicted by th e different models. In 

red, 95, 97.5 and 99 percentiles. 
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Figure 2. Tortosa. 1997-2001. 1826 cases belonging to the  test data set. Observed vs predicted by the  different models. In 

red, 95, 97.5 and 99 percentiles.  
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Figure 3. Zaragoza. Precipitation. 95% confidence b oundaries of the correlation 

coefficient among predictions for the different mod els and observations > percentil 
95. 
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Figure 4. Tortosa. Precipitation. 95% confidence bo undaries of the correlation 

coefficient among predictions  for the different mo dels and observations > 
percentil 95. 
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6) One issue in using historical analogues is that, when applied to future climates that 
may bear less resemblance to historic climate, the number of available analogues and 
their correspondence to simulated patterns may decrease significantly. Some comment 
on the range of projections and how that might affect the applicability of this method in 
future climates would be helpful. 
 
We agree with the reviewer at this point, at least partially. The first reviewer also raises 
the same difficulty and a longer answer is given  in reply to Rev#1. However, the main 
lines of our reply will be repeated here. 
 

1. Some studies exist (M.D. Frias, E. Zorita, J. Fernandez and C. Rodriguez-
Puebla, 2006. Testing statistical downscaling methods in simulated climates, 
GRL 33; L19807) which show that this result is dependent on area, kind of 
averaging and predictor 

2. Statistical downscaling and particularly, analogues, can also be used for climate 
prediction (Fernandez-Ferrero et al., 2009, Fernandez-Ferrero et al., 2010) 

 


