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Introduction

We thank the reviewer for the the positive evaluation of this manuscript, and
for having contributed to its improvement. We strengthened the introduction
and conclusion by adding some clarifications and a few more references.

In what follows we provide a point-by-point reply to the reviewer’s com-
ments.

Comment 1: section 1, page 1033, line 5-6: the
authors refer to understanding the highest peak-
flow caused by rainfall with given return period.
It is well known that, in most of engineering de-
sign problems the required input is the flood,
i.e. the peak-flow with given return period rather
than the highest peak-flow caused by rainfall with
given return period. It would be interesting to
know whether (and if yes, to what extent) the
authors believe that their findings could be ex-
tended to such a different quantity or not.

We thank the reviewer for bringing this point to our attention. As the reviewer
pointed out, in many engineering applications what is needed is the discharge
associated with a given return period. When we have a direct measurement of

1



streamflow, that discharge can be directly calculated from stream gauge records.
However, in many instances there are no streamflow data available and rainfall-
runoff modeling is used to determine the peak flow values generated by rainfall
with a given return period. In this context our contribution, provides a method
that accounts for the geomorphic structure of the watershed. The general as-
sumption is that the peak discharge generated by a rainfall with a given return
period has the same return period as the generating rainfall. We agree with the
reviewer that this is not necessarily the case. In fact, different storm hyetographs
with the same duration and return period can generate different peak flows. Our
modeling framework does not account for non-uniform storm hyetographs, how-
ever, it could be generalized as in D’Odorico et al., (2005, cited in the paper).
Moreover, our approach assumes that the GIUH is an invariant function, i.e.,
that its parameters do not depend on the magnitude of the rainfall event. While
this is clearly stretch, it allows us to limit the number of parameters, namely:
the mean channel velocity, the mean hillslope velocity, the hydrodynamic dis-
persion coefficient (if present), and the fraction of saturated areas. All these
parameters are space-time averages of local parameter on which a rich litera-
ture exists (e.g Saco and Kumar, 2002a,b). The first two parameters depends
on the stage in the channels and hillslopes, hence on the return period. For
simplicity we can assume negligible the dependence of hydrodynamic dispersion
on the return period, since this coefficient affects only marginally the overall
hydrograph structure (e.g. Rinaldo et al., 1995). Because the fraction of satu-
rated area is a function of the rain falling in the catchment before the event, it
depends both on the storm intensity and on the storm inter-arrival times. From
the above heuristic arguments, the return period of discharges would depend on
the return period of a certain sequence of rainfall, which determines both the
shape of the width function (through the velocities), and the rainfall intensity.
However, making this explicit would complicate the method, but would have no
practical advantages, since the dependence of the parameters form the return
period would remain of unknown form.
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Comment 2: The evaluation of the critical rain-
fall duration for linear systems has been already
studied. For example, results of Fiorentino et al
1987, later exploited by Iacobellis and Fiorentino
(2000), showed that using a gamma (Nash model)
or a Weibull distribution function, the flow peak
has a linear dependence on the rainfall excess in-
tensity over a duration equalling the IUH lag-
time (defined as the IUH average time). On one
hand those results are consistent with the authors
finding (considering Eq. 22). On the other hand
it would be interesting to check if a relationship
arises between the authors estimate of the critical
rainfall duration and the IUH lag-time.

We thank the reviewer for pointing us to these references that we now cite in
the revised version of the paper. Unlike our paper, Iacobellis and Fiorentino
(IF2000), accounts also for rainfall variability both in time and space. These
authors had to make some heuristic statistical assumptions and assessed their
validity a-posteriori through data analysis. Our study seems to clarify from a
geomorphic point of view the soundness of their work.

Obviously there are some differences that need to be highlighted:
their contributing area is the intersection of the runoff generating area (RGA)

with the storms area, while in our study the calculation of the GIUH is based
directly on RGA. An inclusion of spatial variability of rainfall is conceptually
possible, but out of the scope of the present paper.

There is also some difference in the reference time used. Iacobellis and
Fiorentino (2000) used the lag time as reference. This quantity is more easily
related to the expected residence time (e.g. Rinaldo et al., 1995, and D’Odorico
and Rigon, 2003).

In fact, being by definition:

τa := τQ − τp (1)

where:

τQ :=
1

VQ

∫ ∞
0

t′ Q(t′)dt′, (2)

VQ :=

∫ ∞
0

Q(t′)dt′ (3)
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and

τj :=
1

VJ

∫ ∞
0

t′ Ĵeff (t′)dt′, (4)

VJ :=

∫ ∞
0

Ĵeff (t′)dt′ (5)

Since Woods and Sivapalan (1999) have shown that

τQ = τh + τc + τp (6)

we obtain:
τa = τh + τc (7)

i.e, the lag time equals the expected residence time as derived from the unit
hydrograph, as a sum of the residence time in channels and hillslopes.

For what regards a possible relationship between lag time and time to peak,
some calculations can be done as follows: First, it can be observed that the
lag-time can be decomposed into three parts:

τa := τa(0, tp) + τa(tp, t
∗) + τa(t∗,∞) (8)

where:

τa(t1, t1) :=

∫ t2

t1

t′
Q(t′)

VQ
dt′ (9)

Thus, the first addendum is the fraction of lag-time built during the rainfall,
the second addendum corresponds to the period between the end of the storm
and the flow peak time, and the third term is the lag-time fraction dependent
on the recession hydrograph. Thus, to establish a relation between t∗ and τa,
we can use the condition:

τa(tp, t
∗) = τa − τa(0, tp)− τa(t∗,∞) (10)

in the case t∗ = tp, the expression for τa(tp, t
∗) = 0, and τa(0, tp) can be used.

Any of the partial components of τa, τ(tp, t
∗) is expressed through an integral:

τa(tp, t
∗) :=

∫ t∗

tp

t′
Q(t′)

VQ
dt′ (11)

and, after some algebraic calculations, one can obtain:

τa(tp, t
∗) =

1

αR tp

∫ t∗(tp)

tp

t′ S(t′)dt′ (12)

to find a relation between t∗ and τa, we can make some assumptions about the
distribution of residence times close to the time to peak. This clarifies that
relation between the peak flow timing and the lag-time, can be calculated, but
there is no simple equations to express them.
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Comment 3: Section 1.1, page 1034, line 4. The
authors state that the S(t) function, introduced
as the integral of the IUH, is the ratio between
contributing area at time t and basin area. I be-
lieve that this is not a general property of the
integral of IUH. The statement is true if the IUH
is expressed in terms of the width function. The
authors actually apply such kind of IUH, as they
state at the beginning of section 2, nevertheless
this should be pointed out before the S-function
is introduced.

We have modified that statement. However, it appears to be true for any formu-
lation of the IUH once the association with a contributing area is made. This
association derives as a consequence of the introduction of the concentration
time (see sentence right before equation (2)). For example the same interpreta-
tion of S(t) can be obtained with the Nash hydrograph (see Appendix B).

Comment 4: Section 1.2, page 1035, line 18; it
is not clear why the authors state here that the
rainfall duration which maximises the peak-flow
needs to be shorter than the concentration time
and how, at this stage of the paper, they can
exclude it to be equal to the concentration time.

That phrase has been eliminated, and the other sentences in that paragraph
have been slightly modified.
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Comment 5: Section 1.2, page 1037, lines 2-4;
while it appears clearly from fig. 3 that for some
values of m the Eq. (9) may provide multiple
solutions, the physical explanation of such finding
is unclear and not sufficient.

The phrase has been rewritten: in fact is better to understand the appearance
of multiple peaks not as a byproduct of the exponent m but as deriving from
the rainfall duration tp (as clarified by Henderson’s equation).
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