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Abstract

The use of rainfall time series for various applications is widespread. However, in many
cases historical rainfall records lack in length or quality for certain practical purposes,
resulting in a reliance on rainfall models to supply simulated rainfall time series, e.g., in
the design of hydraulic structures. One way to obtain such simulations is by means of5

stochastic point process rainfall models, such as the Bartlett-Lewis type of model. It is
widely acknowledged that the calibration of such models suffers from the presence of
multiple local minima which local search algorithms usually fail to avoid. To meet this
shortcoming, four relatively new global optimization methods are presented and tested
for their abilities to calibrate the Modified Bartlett-Lewis Model (MBL). The list of tested10

methods consists of: the Downhill Simplex Method (DSM), Simplex-Simulated Anneal-
ing (SIMPSA), Particle Swarm Optimization (PSO) and Shuffled Complex Evolution
(SCE-UA). The parameters of these algorithms are first optimized to ensure optimal
performance, after which they are used for calibration of the MBL model. Furthermore,
this paper addresses the issue of subjectivity in the choice of weights in the objective15

function. Three alternative weighing methods are compared to determine whether or
not simulation results (obtained after calibration with the best optimization method) are
influenced by the choice of weights.

1 Introduction

Rainfall is an important input for many models in various branches of applied sciences.20

Generally, observed time series of rainfall can be used. However, certain applica-
tions (such as design studies) require very long time series which are not available
from observations (Wheater et al., 2006). To circumvent this problem, one can make
use of rainfall models (Boughton and Droop, 2003). When using such models, it is of
paramount importance to ensure the modelled rainfall adequately reflects meteorolog-25

ical conditions in the area of interest.
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The use of stochastic point rainfall models dates back several decades (Waymire
and Gupta, 1981), and has since received much attention in literature. An important
branch of rainfall models is based on the generation of rectangular pulses. Within these
rectangular pulses models, one may discern the Bartlett-Lewis (BL) (Rodriguez-Iturbe
et al., 1987a) and Neyman-Scott (NS) (Neyman and Scott, 1958) type rainfall models. It5

has been argued that both are virtually interchangeable and that a distinction between
them should be made based on an empirical analysis (Velghe et al., 1994). Such
empirical analysis revealed that for data observed at Uccle (near Brussels, Belgium),
the BL model is preferable (Verhoest et al., 1997). As this paper makes use of the same
data (albeit a more extended dataset), the NS models will not be discussed further.10

Since the formulation of the original BL model by Rodriguez-Iturbe et al. (1987a),
this model has been subjected to a number of modifications and extensions. Introduc-
ing a jitter, for example, results in more realistically irregular cell intensities (Onof and
Wheater, 1994a; Gyasi-Agyei and Willgoose, 1999). Allowing for different cell types to
exist, introduces certain variations between storms, which is in accordance with the ex-15

istence of different types of rainfall (such as frontal and convective rainfall). To achieve
the latter, the mean cell duration can be randomized (Rodriguez-Iturbe et al., 1988),
multiple cell types can be defined (Cowpertwait, 1994), or one can make use of mul-
tiple superposed processes (Cowpertwait, 2004; Cowpertwait et al., 2007). Finally, to
improve extreme value behaviour, the probability distribution of cell intensities can be20

adjusted to a distribution with a heavier tail (Onof and Wheater, 1994b).
Aside from these potential adjustments, the basic principles of the model have re-

mained intact: storm arrivals are generated by a Poisson process with parameter λ, and
each storm arrival is followed by a number of cell origins, generated by another Pois-
son process, characterized by parameter β. The duration of the interval in which cell25

origins are generated is exponentially distributed with parameter γ. Rodriguez-Iturbe
et al. (1987a) introduce dimensionless parameters κ =β/η and φ=γ/η to make clear
that the number of cell origins associated with one storm arrival follows a geometri-
cal distribution with mean µc = 1+κ/φ. Each cell origin is coupled with a rainfall cell,
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having a random depth and duration, both drawn from exponential distributions. The
superposition of the rainfall cells eventually leads to a continuous rainfall time series.

To fit the model to a series of observations, the generalized method of moments is
used. In this method, observed moments of rainfall intensity at different aggregation
levels are fitted to those obtained by the model. For this purpose, analytical expressions5

of the expected value of the modelled moments were derived as a function of the model
parameters (Rodriguez-Iturbe et al., 1987a).

Extensive analysis of the model by Rodriguez-Iturbe et al. (1987a,b) revealed that
the original BL model was well capable of reproducing general rainfall statistics. Con-
versely, the wet-dry properties, commonly expressed by the zero depth probability10

(ZDP), an important feature, of the rainfall time series, were not adequately repro-
duced. These findings led to an adjustment of the model. In the Modified BL (MBL)
model, the average cell duration is allowed to vary between storms. This is achieved
by letting the parameter of the exponentially distributed cell duration η follow a Gamma
distribution with index and scale parameters α and ν, respectively (Rodriguez-Iturbe15

et al., 1988). This results in E [η]=α/ν and Var[η]=α/ν2. For the expected duration
of a cell to be finite, it is assumed that α > 1. By keeping κ and φ constant, and vary-
ing η, storms which exhibit similar structures but consist of different types of cells (i.e.
with different average duration and variance) are generated. In total, the MBL model
contains 6 parameters.20

Analyses of the MBL model show that the model is an improvement in comparison
with the original BL model (Rodriguez-Iturbe et al., 1988; Entekhabi et al., 1989). Better
reproduction of the ZDP, the autocorrelation structure of the rainfall, and the manifes-
tation of extreme rainfall events is observed (Velghe et al., 1994). Nonetheless, the
model generates excessive values for the autocorrelation with a lag larger than 12 h25

(Onof and Wheater, 1993) and the fit of the extremes is still not completely satisfactory.
Admittedly, the MBL model suffers from a few shortcomings. However, the scope of

this paper is to address a couple of existing issues which apply to all variants of the BL
model. In this context, the use of the “flawed” MBL model can be justified.
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First of all, the calibration of the BL models in general seems to be quite a cumber-
some task (Verhoest et al., 1997). The presence of multiple local minima troubles the
process of finding suitable values for the model parameters. As a consequence, tradi-
tional local search techniques usually fail to find a suitable solution to the optimization
problem.5

Secondly, the calibration process is greatly influenced by the subjective choice of
weights in the objective function. Different approaches exist, but it is not clear which is
more practical and which leads to better simulation results.

To address these issues, this paper proposes to use relatively new optimization
methods as they are expected to be more robust than those used by most researchers10

nowadays. Secondly, three different approaches to the weighing of the objective func-
tion are compared in order to shed some light on their advantages and disadvantages
in terms of model performance and practicality. For these purposes, data recorded at
the Uccle-site of the Royal Meteorological Institute (RMI) in Brussels (Belgium), are
used. The data set consists of 105 years of recorded rainfall at an aggregation level of15

10 min (De Jongh et al., 2006).

2 Calibration procedure

The calibration of Bartlett-Lewis models, and stochastic rainfall models in general, is
usually based on the generalized method of moments (GMM). The GMM seeks to
minimize the difference between observed moments of rainfall intensity and those20

generated by rainfall models. Alternative methods, such as likelihood approximation
(Cameron et al., 2001) or Bayesian inference (Hartig et al., 2011), could be considered
for calibration, but these methods tend to be computationally very expensive (Obeysek-
era et al., 1987). Moreover, it is not clear whether or not this would have any merit in
practical applications (Rodriguez-Iturbe et al., 1988), as from a practical point of view25

the models are usually treated as being deterministic, i.e. only one parameter set is
used for simulation.
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The use of the GMM for the calibration of stochastic rainfall models is widespread.
An array of empirical studies have been performed in which Bartlett-Lewis models were
fitted to rainfall time series in Great Britain (Onof and Wheater, 1993, 1994a; Cameron
et al., 2000), Ireland (Khaliq and Cunnane, 1996), Belgium (Verhoest et al., 1997; Van-
denberghe et al., 2011), the United States (Rodriguez-Iturbe et al., 1987b; Velghe et al.,5

1994), New Zealand (Cowpertwait et al., 2007), Australia (Gyasi-Agyei and Willgoose,
1999; Heneker et al., 2001), South Africa (Smithers et al., 2002), etc.

In general, the objective function f , which is to be minimized, can be written as:

f (x)= (M′−M(x))TW(M′−M(x)) (1)

where x is the parameter vector, M
′ is the vector of observed values for a set of k10

properties, M(x) is the vector of their expected values under the model (calculated
through analytical expressions), and W is a k×k positive definite weighing matrix. The
objective function value f for a given set of parameters x is also referred to as the
fitness of the proposed parameter vector, as it reflects the quality of the solution.

The chosen fitting moments in the current work include the mean (Avg), variance15

(Var), lag-1 autocovariance (Cov), and the proportion of dry intervals or zero depth
probability (ZDP). Each of these are evaluated at aggregation levels of 10 min, 1, 6 and
24 h. This is similar to the fitting properties chosen by Cowpertwait et al. (2007).

As discussed in Sect. 1, the parameters of the MBL model all follow a different prob-
ability distribution function. The support for each of these parameters is the interval20

[0,+∞[, except for α, for which a lower boundary of 1 is assumed (as for α <1, the pdf
of the Gamma distribution, evaluated in zero, is invalid because this results in a divi-
sion by zero). The used calibration algorithms should obey these boundaries, other-
wise, numerical instabilities might emerge when calculating the analytical expressions
using negative values, which would trouble the calibration or lead to erroneous results.25

Another implication that arises is the impracticality of working with +∞ as an upper
boundary, as this might impede the convergence of the optimization method. There-
fore, the theoretical upper boundaries are tightened so that the parameters can still
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take a wide range of feasible values, and in addition, contain the previously calibrated
values of the MBL model (Verhoest et al., 1997). Table 1 shows the set of boundaries
which is assumed to constitute the feasible parameter space of the model.

The choice of W is rather subjective. Many different approaches have been explored
in literature. The theory of Hansen (1982) suggests that the inverse of the covari-5

ance matrix of the observed properties should be used as W. In terms of parameter
identifiability, this would be the theoretically optimal starting point (Kaczmarska, 2011).
However, for simplicity, in most cases W is chosen to be a diagonal matrix. In that case
the objective function is reduced to:

f (x)=
k∑

i=1

wi (M
′
i −Mi (x))2 (2)10

Frequently, wi is set equal to ai/M
′2
i , where ai is a user defined value (Entekhabi et al.,

1989; Cowpertwait, 1991, 2004; Velghe et al., 1994; Verhoest et al., 1997; Smithers
et al., 2002). Division of the squared model error by the sample estimate ensures that
large values do not dominate the minimization procedure (Cowpertwait et al., 2007).
The variable a is usually chosen arbitrarily, to ensure a good reproduction of certain15

fitting properties. Cowpertwait (1991), for example, chooses a= 100 for the mean and
a= 1 for the other fitting properties. Velghe et al. (1994) and Verhoest et al. (1997),
on the other hand, choose a= 1 for all fitting properties. In this paper we will follow
the approach of Velghe et al. (1994) and Verhoest et al. (1997) and call this objective
function OF1.20

An alternative configuration of the objective function is suggested by Cowpertwait
et al. (2007):

f (x)=
k∑

i=1

(Mi (x)

M ′
i

−1

)2

+

(
M ′

i

Mi (x)
−1

)2
 (3)
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The use of an additional term which contains the reciprocal value of the division present
in Eq. (2) helps to ensure that no bias is present in the optimal solution, in case an exact
fit is not obtained. This objective function will be referred to as OF2.

Finally, a simplification of the theory of Hansen (1982) can be used to weigh the
objective function. Here, wi = 1/Var[M ′

i ] is used. This makes sense because “in least5

squares problems with unequal variances, observations should be weighed according
to the inverse of their variances” (Chandler, 2004). This approach will further be re-
ferred to as OF3. A more clarifying overview of the used objective functions is given in
Table 2.

Finally, it should be mentioned that the MBL model is fitted on a monthly basis, i.e. 1210

different parameter sets have to be calibrated, i.e. one for each month. This approach
is upheld to cancel out any seasonal effects present in the rainfall time series. This is
necessary to ensure temporal homogeneity (Obeysekera et al., 1987; Verhoest et al.,
1997).

The objective of this paper is to determine whether the choice of the objective func-15

tion has a significant impact on the estimated parameters. If this is the case, the impact
of the choice of the objective function can be assessed by considering properties that
were not used during the fitting, but are of hydrological importance. If no significant
impact can be observed, a distinction can be made based on the efficiency of the
calibration.20

3 Optimization methods

The calibration of the Bartlett-Lewis models has been reported as being a cumbersome
task (Verhoest et al., 1997), as the optimization is troubled by the presence of multiple
local minima, in which local optimization techniques tend to get trapped. In the past,
such techniques have been used in the majority of the cases. For example, Velghe25

et al. (1994); Verhoest et al. (1997); Onof and Wheater (1993) use Powell’s method
(Press et al., 1986) for calibration. This gradient-based method is prone to get stuck in
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local optima. Furthermore, the user has to supply the algorithm with an initial guess of
the solution, which may lead to a bias in the results (Khaliq and Cunnane, 1996). More
recently, most authors opt to calibrate using the Downhill Simplex Method by Nelder
and Mead (1965) with multiple starting points. Occasionally the outcome is further
minimized using a gradient-based method (Wheater et al., 2006; Cowpertwait et al.,5

2007; Kaczmarska, 2011).
In recent years, an array of global optimization methods has been developed. In

this work, we test four of those algorithms with respect to the calibration of the BL
models. The following sections discuss the theoretical background of the used op-
timization methods which, ultimately, stem from fundamentally different conceptual10

backgrounds. The current paper does not aim at discriminating against or rallying
for a certain method, merely an objective comparison, highlighting advantages and
disadvantages of the presented methods is aspired.

3.1 Downhill simplex method

The Downhill Simplex Method (DSM) is based on an idea by Spendley et al. (1962)15

for tracking ideal operating conditions by evaluating the output of a system at a set of
points, forming a simplex, in the parameter space, and the continuous formation of new
simplices by reflecting a point in the hyperspace of the other points. Nelder and Mead
(1965) acknowledged this concept’s merit in the optimization of mathematical formu-
las. The simplex moves autonomously through the parameter space by a sequence of20

intermittent reflections, contractions and expansions.
Suppose an objective function contains D variables and is subjected to a minimiza-

tion procedure without posing any restrictions on the values of the variables. Then,
suppose x0, x1, . . . , xD are (D+1) points in the D-dimensional space which form the
current simplex. The objective function value of each point xi is written as yi .25

The point with the lowest objective function value receives the subscript l (yl =
mini yi ), the point with the highest objective function value receives subscript h (yh =
maxi yi ). Point x̄ is defined as the centroid of those points for which i 6=h. The distance
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between xi and xj is expressed by d(xi ,xj ). During each step of the process, xh is
replaced by a new point by a reflection, contraction or expansion of the simplex. The
reflection of xh can be written as x

∗
h, whose coordinates can be found by the following

relationship:

x∗ = (1+α)x̄−αxh (4)5

with α a positive constant, known as the reflection coefficient. In other words, x∗ lies
on a straight line, connecting xh and x̄, opposite to x̄, with d (x∗,x̄)=αd (xh,x̄). xh is
replaced by x

∗
h and the process starts over with the new simplex if yh >y∗ >yl .

If, on the other hand, the reflection has created a new minimum (y∗ <yl ), the simplex
is expanded from x

∗ towards x
∗∗ according to:10

x∗∗ =γx∗+ (1−γ)x̄ (5)

The expansion coefficient γ, which is larger than 1, equals d(x∗∗,x̄) divided by d(x∗,x̄).
If y∗∗ <yl , then xh is replaced by x

∗∗ and the process starts over. If, on the other hand,
y∗∗ >yl , then the expansion is considered to have failed and xh is replaced by x

∗ before
re-initiating the process.15

If the reflection of x to x
∗ results in a situation where y∗ >yi for all i 6=h, i.e. replacing

x by x
∗ results in the creation of a new maximum y∗, then xh becomes either xh or x∗,

whichever has the smallest function value, and x
∗∗ is calculated as follows:

x∗∗ =βxh+ (1−β)x̄ . (6)

The contraction coefficient β ∈ [0,1] is the ratio of d(x∗∗,x̄) to d(x,x̄). x
∗∗ replaces xh20

and the algorithm proceeds to the next iteration, unless y∗∗ >min(yh,y
∗). In the latter

case the contraction resulted in a point that has a higher function value than both
xh and x

∗. In case of such a failed contraction all xi ’s are replaced by (xi +xl)/2
before continuing to the next iteration. The propagation of the simplex continues until
a suitable result (expressed by the stopping criteria) is obtained.25
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3.2 Simplex-simulated annealing

Simplex-Simulated Annealing (SIMPSA) is a hybridization between the DSM by Nelder
and Mead (1965) and Simulated Annealing (Kirkpatrick et al., 1983; Kirkpatrick, 1984).
The latter method, which is based on the metallurgic process of annealing, enforces the
DSM through its ability to escape local minima and thus avoid premature convergence.5

The annealing process was first simulated by Metropolis et al. (1953), and was later
picked up by Kirkpatrick et al. (1983), to be used as an optimization algorithm. In the
original Metropolis algorithm, an equilibrium composition of molecules, which yields
minimum energy at a given temperature, is sought after through successive random
displacements. Because a thermic balance is characterized by a Boltzmann distribu-10

tion of energy levels, transitions towards a lower, as well as towards a higher energy
level are possible. This feature is thought to be the main reason why a minimum energy
level can be reached (Aarts and Van Laarhoven, 1987).

This concept can easily be translated towards an optimization algorithm. By replac-
ing the energy level of the system with the value of an objective function, the search for15

a minimum energy level is converted to a search for the minimum of the objective func-
tion. As stated before, this leads to an optimization scheme which is fairly consistent
and, above all, less prone to get stuck in local minima, in comparison with gradient-
based methods. An issue, however, is that Simulated Annealing relies on a random
walk through the parameter space. This shortcoming can be mitigated by the use20

of the DSM to guide the search of the optimum, which allows for a more structured
search. This is what constitutes SIMPSA (Press and Teukolsky, 1991; Cardoso et al.,
1996). From the point of view of the DSM, the incorporation of the Simulated Anneal-
ing framework enforces the DSM in its global search. By allowing occasional missteps,
the algorithm can be steered away from local minima, increasing the robustness of the25

outcome.
The probability of a misstep is controlled by the temperature T of the system. A new

configuration corresponding to a lower energy level (i.e. ∆E < 0) or lower function
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value, is unconditionally accepted. When, on the other hand, a solution is found
which cannot be accepted as an improvement (i.e. ∆E ≥ 0), there still is a chance
P (∆E )= exp(−∆E/kbT ) that it will nevertheless be accepted. Thus, the probability of
making a move in the “wrong” direction is very high at the beginning of the cooling
proces, i.e. a global search of the parameter space in conducted. As the temperature5

decreases, the chances of making a wrong move decrease accordingly, approach-
ing zero and thus the algorithm ultimately converges towards the original DSM. It is
clear that, in order to fully exploit the potential of SIMPSA, the initial temperature has
to be chosen carefully, satisfying the condition that almost all wrong steps should be
accepted at the start of the iteration process. Then, as the optimization progresses,10

the chances of making erroneous moves should decrease, which means the temper-
ature will steadily decrease according to a predefined cooling schedule. The cooling
schedule proposed by Aarts and Van Laarhoven (1985) is used:

T j+1 =
T j

1+ T j ·ln(1+δ)
3σ

(7)

with δ and σ trajectory parameters, and j the current iteration. δ is the cooling rate,15

which controls the speed of the cooling. Small values (<1) will result in slow conver-
gence while larger values (>1) result in convergence to inferior local minima. Finally,
σ is the standard deviation of the objective function value of all configurations at a cer-
tain temperature T j at iteration step j . In order to initiate the optimization scheme
an initial guess of the parameter vector has to be supplied by the user. This initial20

guess is used by SIMPSA to construct the additional D points of the simplex needed
in a D-dimensional problem. Therefore, the initial guess is perturbed in one of its D
dimensions to create the initial simplex. Once the initial simplex is formed, the iteration
process can commence and new simplex configurations are formed like in the original
DSM.25

The way in which SIMPSA incorporates the Simulated Annealing methodology
of making the occasional faulty move is as follows: when propagating the simplex
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following the aforementioned rules (Sect. 3.1), a positive, log-distributed variable, pro-
portional to the control temperature T , is added to the function value of each of the
points of the simplex. In a similar fashion, the function value of the newly found point is
diminished by a randomly chosen value. In this manner, a new point (e.g. created by
a reflection) with a higher objective function value than the other points of the simplex5

(which would be rejected by the DSM’s rules), still has a chance (proportional to T ) of
being accepted.

3.3 Particle swarm optimization

The accomplishment of complex objectives through the use of simple individual inter-
actions has been an important source of influence for a certain type of artificial intel-10

ligence, collectively termed Swarm Intelligence. One of those techniques is Particle
Swarm Optimization (PSO), initially introduced to simulate social behaviour and later
adapted to be used as an optimization method (Kennedy and Eberhart, 1995). PSO
is based on the behaviour of herd animals, characterized by the absence of a leader
in the herd. Notwithstanding the absence of such a leader, the herd is able to act as15

a collective, mainly due to local interactions between the individuals. This allows them
to attain certain goals, such as the gathering of food and the evasion of predators.
The simulation of this behaviour and the replacement of the aspired goal by some sort
of objective function, makes this method particularly useful for solving an optimization
problem (Engelbrecht, 2006).20

The PSO algorithm consists of a swarm of N particles, each particle representing
a possible solution to the problem at hand. The particles travel the multi-dimensional
search space, in search of the global optimum. The search is led by a combination
of information gathered by the particle itself, and by the community as a whole. In
a D-dimensional search space, the position and velocity of a certain particle i , with i =25

1,...,N, can be represented by a D-dimensional vector xi = (xi1,xi2,...,xiD) and v i =
(vi1,vi2,...,viD), respectively. The position xi of a particle can be adjusted by adding
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its speed vector v i to the current position. This can be expressed by the following
equation:

xi (t+1)=xi (t)+v i (t+1) (8)

for which t and t+1 express the current and subsequent iteration step.
The velocity drives the optimization. It determines the speed and direction in which5

the particles move, thus orchestrating the collective search of, and convergence to-
wards, the global optimum. For this purpose, the aforementioned vector is equipped
with two components, each containing specific information about the objective. (1) The
cognitive component reflects the personal experience of a given particle, while (2) the
social component bears information gathered by the particle’s neighbourhood. Many10

different approaches exist for defining the size and shape of this neighbourhood, more
detailed information can be found in Engelbrecht (2006). For the sake of simplicity,
a global neighbourhood is selected for the current application. The social component
thus consists of information gathered by the swarm as a whole during all preceding
iterations and the current, and is represented by the best found position pg by the15

swarm. Accordingly, the cognitive component consists of information about the objec-
tive function, obtained by a certain particle i . It is expressed by the best previously
visited position pi of particle i in the search space. Both components are combined to
update the velocity:

v i (t+1)=w ·v i (t)+c1 ·r1(t) · [pi (t)−xi (t)]+c2 ·r2(t) · [pg(t)−xi (t)] , (9)20

with v i (t) the velocity of particle i at iteration step t; xi (t) the position of the i -th particle
at iteration step t; c1 and c2 positive acceleration constants, used to scale the influence
of the cognitive and social components. The variables r1(t) and r2(t) are uniformly
distributed between 0 and 1, and introduce a stochastic component in the optimization.
Finally, w is the inertia weight. These parameters all have an important influence on25

the performance of the PSO algorithm, a more detailed discussion of their significance
and a method for their selection are reported in Sect. 4.2.
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3.4 Shuffled complex evolution

The Shuffled Complex Evolution algorithm (SCE-UA), originally developed for the cal-
ibration of a watershed model (Duan et al., 1994), is based on a synthesis of four
concepts: (1) a combination of deterministic and probabilistic approaches; (2) system-
atic evolution of a “complex” of points spanning the parameter space, in the direction of5

global improvement; (3) competitive evolution; (4) complex shuffling. The combination
of these concepts, most of which have already proven their merit in global optimiza-
tion problems, makes the SCE-UA method robust, effective, flexible and efficient (Duan
et al., 1994). The SCE-UA method (following the description by Duan et al., 1994) can
be summarized by the following steps:10

1. At the start of the optimization procedure a random sample of s points is gener-
ated in the feasible parameter space (defined by the user). Since no prior informa-
tion about the approximate location of the global optimum is available, a uniform
distribution is used to generate this initial sample. In each of the s points, one can
calculate the corresponding objective function value.15

2. Once the objective function values of the generated samples are known, they can
be ranked according to their objective function values, the first having the lowest
function value and the last having the highest function value (or the other way
around for a maximization problem).

3. The s points are then partitioned into p complexes, each containing m points. The20

complexes are partitioned in such a manner that complex i , where i = 1,2,...,p,
contains every p(k−1)+ i ranked point, with k =1,2,...,m.

4. The constructed complexes are allowed to evolve according to the competitive
complex evolution (CCE) algorithm (which will be discussed further below).

5. After the complexes have evolved they are shuffled. This is accomplished by25

combining them into a single sample population: sorting the population in order of
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increasing objective function value and ultimately shuffling the sample population
into p complexes following the procedure outlined in step 3.

6. Before continuing the iterative process convergence criteria are checked. If none
of them are met the process continues, otherwise the process is aborted and the
optimum is assumed to have been found.5

7. In a final step the reduction of the number of complexes is checked. If the mini-
mum number of complexes required in the population, pmin, is less than p, then
the complex with the lowest ranked points is removed, p is replaced by p−1
and s=pm, after which the process restarts at step 4. If, however, pmin =p, the
algorithm returns to step 4.10

The effectiveness of the SCE-UA method can be attributed to several factors. First of
all the use of a population avoids biases resulting from the use of a single user-defined
initial point. On the other hand, the partitioning into different complexes allows for an
extensive exploitation of the parameter space, while the shuffling of the complexes is
a way of sharing knowledge on a larger scale, representing the explorative character15

of the algorithm.
A key component of the SCE-UA method is the CCE algorithm. The CCE algorithm

controls the evolution of the points within a certain complex. Within each complex,
a subcomplex is formed. A fixed number of points is drawn from a trapezoidal prob-
ability distribution (constructed so that the point with the best function value has the20

best odds of being selected) and are assigned to the subcomplex. The members of
the subcomplex can be regarded as parents which are about to generate offspring.
The idea of competitiveness, introduced in the formation of the subcomplexes (not all
points of the complex are allowed to procreate), expedites the search towards promis-
ing regions. Offspring is generated via the use of the DSM by Nelder and Mead (1965).25

The simplex is formed by the points of the subcomplex, and is allowed to progress for
a fixed number of inner loop iterations (nI), resulting in the offspring. The generation
of offspring is repeated a number of times before the complexes are shuffled and the
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process starts over. As the optimization progresses, the entire population is expected
to converge towards the neighbourhood of the global optimum, provided that the initial
population size and the number of complexes is sufficiently large.

4 Implementation of the optimization methods

For each of the optimization algorithms described, several parameters have to be se-5

lected in order to fully exploit their potential. The selection of those parameters will
have an influence on the effectiveness of the algorithms, so a careful consideration
of the available options will contribute to the objectiveness of the overall comparison.
Therefore, the conducted selection procedure for the parameters of the optimization al-
gorithms is described below. Furthermore, the implementation entails the specification10

of measures to be taken against infeasible parameter combinations, i.e. points which
lie outside the delineated boundaries. These measures will also be described in the
following sections.

All algorithms that are based on a simplex design are stopped by the same stopping
criteria. The iterative process is called to a halt when the differences in objective func-15

tion values between the points of the simplex are smaller than a certain threshold, or
when the positions of the simplex points differ less than a given threshold. For PSO,
other criteria need to be specified because of the different conceptual approach. This
is further elaborated in Sect. 4.2.

4.1 Simplex-simulated annealing20

The performance of SIMPSA can be enhanced for a specific problem by fine-tuning
some of the parameters of the algorithm. Most of the parameters have been set to their
recommended value (Cardoso et al., 1996), except for the cooling rate δ (see Eq. 7)
and the final temperature. To avoid the algorithm getting stuck in local optima, it is opted
to choose the cooling rate δ < 1, which will lead to slower but steady convergence25
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instead of fast convergence towards (possibly) inferior optima. Therefore, different
cooling rates are tested, δ is varied between 0.2 and 0.9 with an increment of 0.1.

The second parameter that can be adjusted is the final temperature. The final tem-
perature is the temperature at which SIMPSA is reduced to the original DSM. Put
differently, if the final temperature is reached, the temperature is set to zero and the5

chances of making movements in the wrong direction become equal to zero. Obvi-
ously, the higher the final temperature, the faster the algorithm will come to a halt.
Care must be taken however, a final temperature that is too high will nullify the ex-
pected advantages of using SIMPSA instead of the DSM. Different values for the final
temperature are tested to investigate its influence on the overall calibration result. The10

final temperature is tested at {1,0.1,0.01,0.001,0.0001,0.00001}.
Figure 1 shows the dependence of the objective function value on the cooling rate

and the final temperature. For each month, calibrations were performed using these
different combinations for cooling rate and final temperature. Figure 1 displays the av-
erage result obtained over the different months, so as to provide an image on how well15

the combination of cooling rate and final temperature performs for the calibration of
all months. It should be noted that for different combinations of cooling rate and final
temperature, the same minima are obtained. To highlight this, and to increase inter-
pretability of the plots, the color scale of Fig. 1 (and of plots in the following sections) is
adjusted so that only parameter combinations with the lowest obtained objective func-20

tion values are attributed gray shades. Parameter combinations that resulted in the
minima are attributed a black colour.

Results confirm that for lower final temperatures better results are obtained, this is
because the parameter space is explored more intensively. For the cooling rate δ, it
seems that the best results are obtained when it is set to 0.5 or 0.8. Figure 1 shows that25

for δ =0.5 and δ =0.8 equally good results are obtained for different final temperatures.
We choose to set δ equal to 0.5, to favour a slower convergence, minimizing the risk
of getting stuck in a local optimum. The final temperature is set to 1, as this will lead to
a faster calibration than would be the case if the final temperature were to be set lower.
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Besides the choice of the above-mentioned parameters, the user has to set up rules
about what to do with generated points which are outside the parameter boundaries.
One possible way is to just place boundary violating points at the boundary (Box, 1965).
This, however, may lead to considerable instabilities in the simplex which may cause
it to collapse (Cardoso et al., 1996). Another solution is to reset them at a random5

position in the feasible parameter space. In this paper, we opted for accepting infeasible
points, however, the objective function is adjusted so that infeasible points automatically
receive a very high objective function value, which will force the simplex back into the
feasible parameter space (Nelder and Mead, 1965). Note that the same approach is
used for the original DSM.10

4.2 Particle swarm optimization

As outlined in Sect. 3.3, the performance of PSO is influenced by several parameters.
To ensure efficient convergence to the global optimum, care must be taken in the se-
lection of these parameters. For example, the population size N must be chosen large
enough so that the parameter space is sufficiently explored, but not too large because15

of the obvious increase in computational burden accompanied with such an increase in
population size. Furthermore, the cognitive parameter c1, social parameter c2 and the
inertia weight w will also have an impact on the speed and efficiency of the algorithm.
The relative magnitude of c1 and c2 determine the exploration/exploitation trade-off
made by PSO. Exploration means the particles will be able to explore the whole pa-20

rameter space and identify promising parameter regions. They will, however, lack in
accuracy to find a satisfactory optimum in this promising region. Exploitation, on the
other hand, means each particle will be pre-occupied with its own local search, not
interacting much with the other particles. This way, the parameter space will not be
explored sufficiently, so inferior results might be obtained. For the PSO algorithm to25

work properly, the balance of the exploration/exploitation trade-off is of key importance.
A larger social parameter c2, for example, means that more importance is given to the
global best position, i.e. exploration is favoured. If, on the other hand, the cognitive
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parameter c1 outweighs the social parameter, much more care is given to the local
exploitative search by the particles. Finally, the inertia weight w (0 <w < 1) will slow
down the velocity of the particle at a previous iteration step. Large values of w facilitate
exploration of the parameter space (higher velocities will lead to more extensive cov-
erage of the parameter space), whilst a small w facilitates exploitation (Engelbrecht,5

2006).
To select the parameters which will lead to the best calibration results for the model

under study, an exhaustive parameter search is conducted (Scheerlinck et al., 2009).
Parameters c1, c2 and w are varied and monthly calibrations are conducted for the
different combinations. The population size N is fixed at 30 particles (Engelbrecht,10

2006). The other parameters are varied in their convergence domain (Trelea, 2003;
Jiang et al., 2007). Parameters c1 and c2 range from 0.5 to 2.5 and w ranges from 0.2
to 1 with an increment of 0.2.

Figure 2 displays the results of the exhaustive parameter search. This figure shows
the mean obtained objective function value for the monthly calibrations. For the three15

parameters, a value can be chosen such that, on average, the algorithm performs well
for all months. Figure 2a shows the dependence of the fitness with regard to the social
and the cognitive parameters, c1 and c2, with a fixed inertia weight (w = 0.4). The
results show that, in order to obtain good calibration results, a trade-off has to be made
between c1 and c2. High values of c1 in combination with low values of c2 yield good20

results and vice versa. A choice thus has to be made by the user in favour of either
a more explorative, or a more exploitative search. In this case, c2 is set at 2.5, a search
with an explorative character is preferred.

Figure 2b shows the results of the calibrations for different combinations of w and
c1 when c2 is fixed at 2.5. Results show that good results are obtained when the25

inertia weight w is kept relatively small, whilst the choice of c1 does not seem to have
a profound effect on the result when using small values for w. A minimum could,
however, be detected for c1 =1.5 and consequently this value is chosen for c1.
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Finally, Fig. 2c shows the results for different combinations of w and c2 with c1 fixed
at 1.5. This figure shows that there is a negative correlation between both parameters.
Higher values of c2 in combination with lower values of w lead to promising results,
and vice versa. Because the value c2 was previously set at 2.5, the value of w is set
at 0.4. The figure shows that for this combination good results are obtained.5

In addition to the selection of the PSO parameters, several other settings have to be
specified. When a population member attempts to cross parameter boundaries, that
boundary acts as a perfect reflector. In other words, the direction of displacement of
the particle is inverted in order to keep it inside the parameter boundaries.

The choice of a stopping criterion will also affect the obtained calibration results. In10

addition to the already mentioned general stopping criteria several other approaches
can be utilized for PSO. In the current paper the search procedure is stopped if the
global best solution pg does not change during 30 subsequent iterations. This in-
dicates that no better solutions are being found. This criterion is preferred against
a convergence criterion, i.e. a certain fraction of the population has to converge to the15

same solution in order for the algorithm to stop, because, from personal experience, it
has become clear that the latter is quite time consuming.

4.3 Shuffled complex evolution

The parameters of the SCE-UA algorithm have been set to their recommended values
(Duan et al., 1994), except for the number of complexes p and the number of inner20

loop iterations nI which are evaluated more closely. The value of p is recommended to
lie between 2 and 20. Therefore p is evaluated at different values within this interval.
It is expected that the use of more complexes will lead to better results, but at a higher
computational cost. The number of inner loop iterations will also have an influence on
the results. The higher the number of inner loop iterations, the better the offspring that25

is being generated (the simplex will be able to progress further towards an optimum),
again, bearing in mind the augmented computational burden. The parameter search
thus seeks to find a good balance between results and efficiency. The procedure is
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the same as with PSO and SIMPSA. For every combination of SCE-UA parameters
calibrations are conducted for each month. Those results are averaged and displayed
in Fig. 3. These results confirm that a higher number of complexes leads to better
results, as does a higher number of inner loop iterations. The number of complexes
p, however, is best set at 5, since for this value good results are obtained throughout5

and this is less computationally expensive than 10 or 20 complexes. The value of nI
is chosen as 20. It can be seen in Fig. 3 that for this value better results are obtained
than is the case when nI would be equal to 10 or 30, and the results are equal to those
obtained when nI >30, however nI =20 is computationally more efficient.

5 Comparison of optimization methods10

After successfully implementing the presented optimization methods, the calibration of
the MBL model can be performed. The MBL model is, as mentioned in Sect. 2, fitted,
using the generalized method of moments with three different objective functions. For
each optimization method, each objective function and each month, 30 repetitions of
the calibration are performed, in order to be able to adequately compare the results15

afterwards.
In order to compare the performance of the used optimization methods, several ap-

proaches can be adopted. Here, we will first summarize the obtained results by a set
of descriptive statistics. This will give a first indication of how well certain methods per-
form compared to the others. Table 3 displays the aforementioned descriptive statistics20

for the different objective functions, fitted by the different optimization methods. The
minimum and median values and the standard deviation (StDev) of the objective func-
tion values obtained after 30 repetitions, displayed in Table 3 are calculated by, first,
determining those statistics for each month separately and, second, taking the mean
over 12 months. The results are displayed in such a way to enhance interpretation25

without loss of generality. The duration of the calibration is the mean duration of the
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total calibration procedure, i.e. taking into account all of the 12 months, on a PC with

an Intel® Core™ i7-2600 CPU at 3.40 GHZ. All software is implemented in Matlab®.
Several observations can be made on the basis of Table 3. First, the standard devi-

ations of the objective function values (for OF1, OF2 and OF3) obtained by the DSM
are extremely high in comparison with the other methods. One might conclude that the5

DSM is far from robust because of the wide range of objective function values obtained
through calibration, which is simply unacceptable, and therefore, that the method is not
to be preferred for the calibration of the MBL model. This behaviour, however, is not re-
flected in the minimum and median values. There we see that the minimum and median
of the results are more in line with the other results. After further inspection of the data,10

it becomes clear that the reason for these high standard deviations lies in the choice
of the boundary conditions, i.e. the way infeasible points are being treated. As out-
lined in Sect. 4.1, infeasible points receive an extremely high objective function value
in order to discourage movement outside the boundaries. This approach, however,
leads to convergence on the edge of the parameter space, on numerous occasions. In15

other words, it seems that the DSM does not handle the constrained parameter space
very well, the simplex tends to become unstable and collapses when confronted with
boundaries. Clearly, the other optimization methods using a simplex (i.e. SIMPSA and
SCE-UA) are better equipped to deal with these boundary constraints.

A second important observation is that when the obtained minima are observed, for20

the different objective functions, one finds that, apart from the minima obtained by the
DSM, the obtained minima by the other optimization methods are largely the same.
When further inspecting these minima, it seems they result from the same minimizers,
i.e. the same parameter combinations are being found by the different optimization
methods. This would suggest that the parameters are highly identifiable, seeing that25

the same minima are being found by independent optimization methods. This evidence
is corroborated by the fact that the median values, at least for SIMPSA and SCE-UA,
are equal to the minima, i.e. the same points are being withheld as the minimum in the
majority of the calibration runs. So, it would seem that identifiability issues, frequently
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mentioned as a stumbling block in literature, are largely resolved by the choice of the
included moments in the objective function, made here.

It seems that, when it comes to finding a suitable minimum, SIMPSA, PSO and SCE-
UA are almost interchangeable. All three of them are able to find the same minima.
The DSM, on the other hand, albeit very fast in its calibrations (under 1 min for the5

calibration of 12 months), seems to be very unreliable, mainly due to difficulties at the
boundaries. Note that PSO is able to find a minimum with a lower objective function
value for OF1, in comparison with SIMPSA and SCE-UA. Yet the value reported in
Table 3 is the mean value of the minima of the 12 different months. Further investigation
of the data uncovers that for the month of April, PSO attained a better solution, however,10

the differences in the parameter values are rather small, so it is doubtful that it will lead
to significant differences in the simulations.

The robustness of each optimization method can be judged in several ways. A first
indicator is the standard deviation of the objective function values of the found minima
after 30 repetitions. This measure already led to conclusion that the DSM is not robust.15

When comparing the remaining three methods, it can be seen that PSO and SCE-UA
have resulted in roughly the same standard devations, whereas SIMPSA clearly had
problems in minimizing OF2. It shows a much higher standard deviation for OF2, and
moreover, the average duration of the calibration is 3 to 4 times higher than for PSO
and SCE-UA. This may lead to the conclusion that SIMPSA is not as flexible as PSO20

or SCE-UA.
PSO and SCE-UA also display longer calibration runtimes and a slightly elevated

standard deviation for OF2, but not of the same magnitude as SIMPSA. As PSO and
SCE-UA are more flexible, they are more adaptable to changes in the objective func-
tion, which of course is an advantage because the cumbersome optimization of the25

parameters does not have to be repeated in order to obtain satisfactory results.
To further assess the spread of the results obtained by the different optimization

methods, a box plot is evaluated. Figure 4a–c shows comparative box plots for OF1,
OF2 and OF3, respectively. To enhance the interpretability of these plots, the DSM
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was omitted. For the same reason, box plot 4b is clipped. A dotted line marks the limit
if any points are outside it. The points outside the limit are plotted in a compression
region delineated by two solid lines. The density of the point in the compression region
gives an indication of the number of points outside the limit.

For OF1 and OF2, it is clear that SCE-UA exhibits the best performance of the three5

methods, followed by PSO and SIMPSA. Figure 4a,b clearly shows that the outcome
of a calibration with the former is more robust than with the latter. The performances
of PSO and SIMPSA, in the case of OF1 and OF2 seem to be more alike, however,
objective function values obtained by SIMPSA are spread more than those obtained by
PSO, indicating a less robust result.10

For OF3 (see Fig. 4c), the difference between the three methods is less apparent.
Subtle differences exist, however. PSO seems to be more robust than SCE-UA and
SIMPSA, respectively, and again, SIMPSA exhibits the least desirable results (albeit
the differences are minute, and therefore may be negligible). Since, based on this last
plot, no obvious distinction can be made between PSO and SCE-UA, a more objective15

measure is needed to determine whether or not there are significant differences in the
results.

In order to compare the performance of the different optimization methods objec-
tively, a Kruskal-Wallis test is performed (Kruskal and Wallis, 1952). Under the null
hypothesis, the populations from which the samples are generated have the same me-20

dian value. If the null hypothesis is rejected it can be concluded that the populations
show significant differences. Post-hoc analysis has to be performed to determine which
of the methods differ significantly. For this, a pairwise Wilcoxon rank sum test (Gibbons,
1985) is performed. The null hypothesis of the Wilcoxon rank sum test states that the
compared samples are independent samples from identical continuous distributions25

with identical medians (Gibbons, 1985). These statistical tests are performed for all
the obtained data, i.e. the results for the different months and the different objective
functions are gathered and then tested. This approach is chosen because it allows to
define which of the optimization methods displays the overall best performance.

9731

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/9707/2011/hessd-8-9707-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/9707/2011/hessd-8-9707-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 9707–9756, 2011

Calibration of the
modified

Bartlett-Lewis model

W. J. Vanhaute et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

It can be expected that the Kruskal-Wallis test will find that the different optimization
methods differ significantly, especially when the DSM is included in the analysis. This
assumption is confirmed. A p-value of 0 is obtained when conducting the Kruskal-
Wallis test. The mean ranks are shown in Table 4. At a 5 % significance level, there
is a significant difference between the population’s medians. The mean ranks lead to5

believe that SCE-UA performs best, followed by SIMPSA, PSO and the DSM. The fact
that SIMPSA performs second best is quite surprising. Table 3, as well as the box plots
lead to believe that PSO performed second best. This shows the importance of using
multiple evaluation criteria. The standard deviatons (listed in Table 3) and the box plots
(Fig. 4) are both seemingly sensitive to outliers. The use of a more robust statistic10

(mean ranks) unveils this sensitivity.
To determine whether these differences are significant, pairwise Wilcoxon rank sum

tests are performed. The resulting p-values are shown in Table 5. Note that, for the
interpretation of these p-values, a Bonferroni correction must be applied, i.e. results are
significant at an α % significance level if the p-value of the tested hypothesis is smaller15

than α/n% (with n the number of tested hypotheses). In this case, the null hypothesis
of the pairwaise Wilcoxon rank sum test can be rejected at a 5 % significance level if
the p-value of the hypothesis is smaller than 0.05/6 = 0.0083. Consequently, it can
be concluded that, at a 5 % significance level, all the compared optimization methods
are found to differ significantly in their median values. So, it is appropriate to conclude20

that SCE-UA is the best method for the calibration of the MBL model, compared to the
other tested methods. The fact that the duration of the calibration is reasonable and
quite robust contributes to the validity of this conclusion. According to these statistical
tests SIMPSA takes second place and is followed by PSO.
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6 Comparison of objective functions

In order to compare the performance of the models, fitted with the respective objective
functions, it seems appropriate to incorporate several different performance measures
to assess the impact of the configuration of the objective function on various aspects
of the fitted model. The parameter sets that provided the best fits in Sect. 5 are used5

here to enable the comparison.
The objective function itself, focuses on the expected moments of the rainfall time

series and its wet-dry properties. However, certain properties of the generated rainfall
time series cannot be expressed by analytical expressions, extreme values, for exam-
ple, and have to be evaluated through simulation. As a consequence, for each of the10

three fitted models, an ensemble of 50 simulations is carried out. For each moment
or property of the rainfall time series, a list of 50 values is obtained, which can each
be interpreted as the probability distributions of the respective moments or properties
when rainfall time series are simulated. To exemplify this, Fig. 5 shows the Empiri-
cal Cumulative Distribution Function (ECDF) of the mean 10 min rainfall depth in the15

month of January. It would be preferable that the observed value at Uccle coincides
with the obtained median value, which is obviously not the case. Figure 6 shows the
ECDF of the lag-1 autocovariance of the data at an aggregation level of 12 h, for the
month of March. This figure shows a much more satisfying fit to the observations. Note
that these ECDFs were obtained through simulation using the best obtained parame-20

ter set after 30 repetitions of the calibration with OF1. For each of the used objective
functions, similar figures for different moments and wet-dry properties could be made,
this at different aggregation levels. This would, however, lead to a vast number of fig-
ures, rendering comparison impossible. Therefore, the median values of the simulated
moments and wet-dry properties are compared with the observed rainfall time series.25

Figure 7, for example, shows the mean 10 min rainfall generated by the different fit-
ted models with regard to the observations. It can be seen that none of them provides
a perfect fit to the observations. However, OF1 and OF2 seem to largely coincide
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whereas OF3 tends to deviate more severely form the observed mean values. Similar
plots can be made for the other moments of the observed and simulated rainfall time
series. These plots can provide a general idea of the orders of magnitude of the devia-
tions from the observations, but they will not allow to distinguish between the suggested
objective functions, for their interpretation is far too subjective.5

More objective goodness of fit measures of the rainfall time series’ moments are
given in Table 6. Thus, Table 6 displays the mean percentage error (MPE), mean
absolute percentage error (MAPE) and maximum percentage error (MAXPE) of the
simulated moments and ZDP in comparison with the observed values. The MPE is
particularly useful in uncovering the presence of a significant bias in the model fit. As10

outlined in Sect. 2, OF2 was especially designed to reduce the overall bias in the fitting
of the BL models. Judging from Table 6, this attempt to reduce overall bias in the
model fit had an adverse effect. The fitting of the MBL model with OF2 seems to lead
to a bigger underestimation of the moments of the rainfall time series (a negative value
corresponds to underestimation by model), however it can be argued that the difference15

is rather negligable.
Judging solely by the MPE, one might find it reasonable to conclude that calibration

using OF3 leads to the best overall model fit. The MPE, however, reveals very little
about the distribution nor the magnitude of the deviations of the observed values. The
only valid conclusion would be that OF3 shows relatively little bias in comparison with20

the fitting by the other two objective functions. In order to assess the quality of the
overall goodness of fit of the different fits, the MAPE is best used. This shows that
both OF1 and OF2, although more biased, show an overall better fit to the observed
moments than OF3. The MAXPE, finally, reveals that OF3 results in a lower maximum
percentual error, when compared with OF1 and OF2. So, judging by these overall25

model performance measures, it seems that the use of OF1 and OF2 leads to, more
or less, the same results, albeit that OF2 generates a slightly higher bias than the
generated rainfall time series fitted with OF1. Taking this information into account, and,
looking back at Table 3, which shows that the calibration process tends to be a bit
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more time consuming when OF2 is used, it is reasonable to conclude that OF1 could
be a good objective function for calibrating the MBL model.

Based on these criteria, the results with OF3 are promising, a smaller bias is
achieved and the maximum error is smaller. However, the MAPE suggests an over-
all larger deviation from the observations than when the model is fitted with OF1 or5

OF2. To further investigate this, Figs. 8 and 9 show the MAPE and MPE, respectively,
for a set of moments and the ZDP. Figure 8 clearly reveals the fact that the simula-
tion results obtained by fitting with OF3 almost systematically display a larger deviation
from the observations than when the model is fitted with the other configurations of the
objective function, which was already concluded on the basis of Table 6. Interestingly10

however, OF3 seems to be more capable in producing more satisfying wet-dry prob-
abilities (ZDP) in comparison with its contenders. The reason why the overall bias is
smaller with OF3 is explained by combining Figs. 8 and 9. It seems the overall de-
viation of the OF3 is larger, but, more balanced between under- and overestimation,
especially for lag-2 and lag-3 autocorrelation and skewness of the rainfall time series.15

These results make it abundantly clear that a straightforward conclusion in favour of
one of three objective function configurations is very hard to make. From a practical
point of view, however, it seems reasonable to prefer OF1 over OF2, as was already
suggested earlier.

The impact of the used objective functions on the reproduction of extreme rainfall20

events will not be discussed here. The MBL model suffers from several flaws which
need to be resolved first. The MBL model systematically underestimates extreme
rainfall events (Verhoest et al., 1997) and occasionally creates unrealistic rainfall cells
(Verhoest et al., 2010). The first issue might be resolved by introducing the third or-
der moment into the objective function (Cowpertwait, 1998). The second issue might25

be resolved by truncating the distribution from which average cell durations are drawn
(i.e. a truncated MBL model) (Verhoest et al., 2010; Onof, 2011). However, these ap-
proaches need further investigation and are out of the scope of this paper.

9735

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/9707/2011/hessd-8-9707-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/9707/2011/hessd-8-9707-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 9707–9756, 2011

Calibration of the
modified

Bartlett-Lewis model

W. J. Vanhaute et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

7 Conclusions

In this paper, further refinement of the calibration procedure of Bartlett-Lewis type
stochastic point rainfall models was attempted. For this purpose, the Modified Bartlett
Lewis (MBL) model was used. A first issue that was addressed is the fitting procedure
itself. The fitting procedure is characterized by the presence of multiple local minima,5

making it hard for conventional “local search” methods to reach satisfactory results in
a robust manner. Therefore, four different optimization methods were tested and com-
pared with each other. To ensure a fair comparison, the parameters of the respective
methods were first fine-tuned for this specific minimization problem, after which the ac-
tual calibration of the MBL model was performed. The performance was then judged10

by the accuracy, robustness and time consumption of the optimization methods. The
following algorithms were used: the Downhill Simplex Method (DSM) by Nelder and
Mead (1965), Simplex-Simulated Annealing (SIMPSA) (Cardoso et al., 1996), Particle
Swarm Optimization (PSO) (Shi and Eberhart, 1998), and Shuffled Complex Evolution
(SCE-UA) (Duan et al., 1994).15

Secondly, the issue of subjectivity in the choice of the objective function weights is
addressed. In many empirical studies, the choice of the weights of the used properties
in the objective function is made rather subjectively. As different approaches exist, the
impact of the approaches on the results after calibration is therefore investigated. Three
objective functions were used, one classically used objective function (OF1), according20

to Verhoest et al. (1997), an implicitly weighed objective function (OF2) (Cowpertwait
et al., 2007) and one weighted by the empirical variances of the included properties
(OF3) (Chandler, 2004). Simulated moments obtained after fitting with each of these
three objective functions were compared with each other.

The fine-tuning of the parameters of the optimization methods generally revealed25

that different parameter combinations lead to the same results. Therefore, in future
research, when calibrating BL type models, one can rely on the feasible parameter
ranges presented in this paper. When however, one would attempt to repeat this search
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for a different optimization problem, it should be noted that the search for the optimal
parameters of the optimization methods requires most efforts for PSO. For SCE-UA and
SIMPSA, the exhaustive parameter search is less time consuming and more straight-
forward.

Descriptive statistics of repeated calibration runs show that, in this particular case,5

SCE-UA, SIMPSA and PSO should be preferred over the use of the DSM. The DSM
experienced severe difficulties with the pre-defined boundaries of the parameter space,
resulting in poor average results. This might not come as a surprise, seeing that the
DSM was originally designed for unconstrained optimization. The other three methods
were able to find the same minima. The final result could thus not be used as a basis10

for discrimination. Judging by the median objective function value and the standard
deviation, the robustness of the methods was assessed. SIMPSA lacked in robustness
for OF2, which is also reflected in the poor computational efficiency. This leads to the
conclusion that SIMPSA might not be the best method to use for the calibration of the
MBL model. To distinguish between PSO and SCE-UA, a pairwise Wilcoxon rank sum15

test demonstrated that the calibration results obtained by SCE-UA differ significantly
from those obtained by PSO. Furthermore, SCE-UA is more practical in use and seems
to be more computationally robust.

The results of the comparison of the three tested alternative objective function con-
figurations are less clear-cut. In summary it can be concluded that the use of OF3 is20

not to be encouraged, as it leads to an overall larger deviation from the observations,
except for the ZDP, than when OF1 or OF2 are used. Both OF1 and OF2 perform
equally well, however it could be noticed that the calibration with OF2 tended to be
more computationally intensive, which is of course an argument in favour of the use of
OF1.25

Acknowledgements. The authors would like to express immense gratitude toward the Royal
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Table 1: Pre-defined boundaries for the parameters of the MBL model during calibra-
tion, applicable to all months.

Parameter λ κ φ µc α ν

Lower boundary 0 0 0 0 1 0
Upper boundary 0.1 20 1 15 20 20
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Table 2: Expressions of used objective functions for the calibration of the Modified
Bartlett-Lewis model.

Name Expression

OF1 : f (x)=
∑k

i=1
(M ′

i−Mi (x))2

M
′2
i

OF2 : f (x)=
∑k

i=1

[(
Mi (x)
M ′

i
−1
)2

+
(

M ′
i

Mi (x) −1
)2
]

OF3 : f (x)=
∑k

i=1
(M ′

i−Mi (x))2

Var[M ′
i ]

9743

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/9707/2011/hessd-8-9707-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/9707/2011/hessd-8-9707-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 9707–9756, 2011

Calibration of the
modified

Bartlett-Lewis model

W. J. Vanhaute et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3: Descriptive statistics of the performance of different optimization methods for
the calibration of the Modified Bartlett-Lewis Rectangular Pulses model.

Minimum Median StDev Duration (min)

DSM OF1 0.0591 1.0344 1.73E+11 1
OF2 0.0918 3.8125 3.38E+11 1
OF3 0.2352 1.9070 1.73E+11 1

SIMPSA OF1 0.0300 0.0300 0.4696 18
OF2 0.0594 0.0594 18.2159 100
OF3 0.1908 0.1908 0.6206 4

PSO OF1 0.0283 0.0311 0.1531 13
OF2 0.0594 0.0624 0.8168 31
OF3 0.1908 0.1908 0.2359 14

SCE-UA OF1 0.0300 0.0300 0.1150 14
OF2 0.0594 0.0594 0.3552 24
OF3 0.1908 0.1908 0.3433 11
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Table 4: Mean ranks of the different optimizaton method’s performances.

Simplex SIMPSA PSO SCE-UA

Mean rank 3450 1665 1763 1524
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Table 5: p-values for pairwise Wilcoxon rank sum tests between different optimization
methods.

Simplex SIMPSA PSO SCE-UA

Simplex 1 6.34E-241 2.24E-253 3.63E-266
SIMPSA 1 0.0059 0.0031
PSO 1 1.08E-08
SCE-UA 1
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Table 6: Model performance measures for the MBL model fitted with different objective
functions.

MPE MAPE MAXPE

OF1 –4 % 12 % –94 %
OF2 –5 % 12 % –98 %
OF3 –2 % 14 % –83 %
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Fig. 1: Dependence of the fitness on the cooling rate δ and the final temperature of
SIMPSA.
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Fig. 2: Dependence of the objective function value on the different parameters of PSO.
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Fig. 4: Box plots comparing calibration results of SIMPSA, PSO and SCE-UA. The
DSM has been omitted for interpration purposes. All months and repetitions are
lumped together, no averages have been taken.
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Fig. 5: Empirical Cumulative distribution function of the mean 10 min rainfall depth in
January as simulated with OF1 vs. observed value.
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Fig. 6: Empirical Cumulative distribution function of the lag-1 autocovariance of the
12 hourly-rainfall depth in March as simulated with OF1 vs. observed value.
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Fig. 7: Mean 10 min rainfall, average simulation result vs. observations.
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Fig. 8: Mean absolute percentage error of different fits, averaged over different months
and aggregation levels (10 min, 30 min, 1, 6, 12 and 24 h).
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Fig. 9: Mean percentage error of different fits, averaged over different months and
aggregation levels (10 min, 30 min, 1, 6, 12 and 24 h).

9756

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/9707/2011/hessd-8-9707-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/9707/2011/hessd-8-9707-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

