
HESSD
8, 9587–9635, 2011

Estimating K
geostatistics in

catchment

R. T. Bailey and D. Baù
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Abstract

Groundwater flow models are important tools in assessing baseline conditions and
investigating management alternatives in groundwater systems. The usefulness of
these models, however, is often hindered by insufficient knowledge regarding the mag-
nitude and spatial distribution of the spatially-distributed parameters, such as hydraulic5

conductivity (K ), that govern the response of these models. Proposed parameter esti-
mation methods frequently are demonstrated using simplified aquifer representations,
when in reality the groundwater regime in a given watershed is influenced by strongly-
coupled surface-subsurface processes. Furthermore, parameter estimation method-
ologies that rely on a geostatistical structure of K often assume the parameter values10

of the geostatistical model as known or estimate these values from limited data.
In this study, we investigate the use of a data assimilation algorithm, the Ensemble

Smoother, to provide enhanced estimates of K within a catchment system using the
fully-coupled, surface-subsurface flow model CATHY. Both water table elevation and
streamflow data are assimilated to condition the spatial distribution of K . An itera-15

tive procedure using the ES update routine, in which geostatistical parameter values
defining the true spatial structure of K are identified, is also presented. In this proce-
dure, parameter values are inferred from the updated ensemble of K fields and used
in the subsequent iteration to generate the K ensemble, with the process proceed-
ing until parameter values are converged upon. The parameter estimation scheme is20

demonstrated via a synthetic three-dimensional tilted v-shaped catchment system in-
corporating stream flow and variably-saturated subsurface flow, with spatio-temporal
variability in forcing terms. Results indicate that the method is successful in providing
improved estimates of the K field, and that the iterative scheme can be used to iden-
tify the geostatistical parameter values of the aquifer system. In general, water table25

data have a much greater ability than streamflow data to condition K . Future research
includes applying the methodology to an actual regional study site.
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1 Introduction

1.1 Inverse modeling in groundwater applications

Hydrologic models are important tools in assessing baseline conditions and investi-
gating best-management practices in groundwater and catchment-scale systems. Be-
fore reliable hydrologic assessments can be made, however, parameter values that5

drive the response of the model must be appropriately chosen for a specific aquifer or
catchment. Direct measurements of hydrologic parameters, however, are scarce and
fraught with uncertainty, and typically only apply locally due to the spatial variability of
parameter values.

To address this problem of parameter uncertainty, hydrologic models can be used10

in applications “opposite” or “inverse” to their original use, i.e., parameter values are
treated as system unknowns and are determined by extracting information from ob-
servations of system-response variables (Kitanidis and Vomvoris, 1983). The general
approach consists of determining the set of parameter values that yields adequate
matches between model results and observations from the true hydrologic system.15

The treatment of parameter values as unknowns that need to be identified constitutes
the inverse problem of groundwater modeling (Kitanidis and Vomvoris, 1983), and in
most cases must be incorporated in the modeling process (Carrera et al., 2005).

In recent decades numerous methodologies have been proposed and applied to
the inverse modeling problem in groundwater modeling, with the general aim to es-20

timate the spatial distribution of hydraulic conductivity (K ) or transmissivity (T ) in an
aquifer system. An excellent review of early inverse methods is provided by Carrera
and Neuman (1986). A review of more recently-proposed methods is given by Car-
rera et al. (2005). Broadly, parameter estimation is accomplished either through (i)
optimization procedures, in which an objective function is defined (typically minimizing25

the error between model results and measurements) and minimized in a least-squares
approach, and (ii) statistical conditioning, in which covariance between the parame-
ters and system-response variables is utilized to condition the parameter values using
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measurement information. It should be noted that conditioning methods also incor-
porate a sense of optimization, although the optimization occurs in the derivation of
the conditioning algorithm, e.g., through minimizing the trace of the a posteriori error
estimate covariance matrix (e.g., Kalman, 1960).

For the optimization classification, methods include zonation, the pilot point method5

(e.g., RamaRao et al., 1995), the representer method (RM) (Bennett, 1992; Valstar
et al., 2004), and the self-calibrated method (SCM) (Hendricks Franssen et al., 1999;
Gómez-Hernández et al., 2003). For the statistical conditioning classification, meth-
ods include Cokriging (e.g., Ahmed and De Marsily, 1993; Li and Yeh, 1999) and
data assimilation techniques, such as the family of Kalman Filter (Kalman, 1960)10

methods, including the Extended Kalman Filter (EKF) (Evensen, 1992), the Ensemble
Kalman Filter (EnKF) (Evensen, 1994, 2003), the Ensemble Kalman Smoother (EnKS)
(Evensen and van Leeuwen, 2000), and the Ensemble Smoother (ES) (van Leeuwen
and Evensen, 1996). The EnKF has particularly been used in recent years to estimate
state parameters. Comparisons between the RM and EnKF methods are given by Re-15

ichle et al. (2002) and Ngodock et al. (2006). A comparison between the SCM and
EnKF methods is provided by Hendricks Franssen and Kinzelbach (2009).

Proposed methodologies are demonstrated typically using simplified hydrologic sys-
tems. For applications to groundwater systems, the majority of methodologies are
demonstrated using two-dimensional (2-D) confined groundwater flow models (e.g.,20

Gailey et al., 1991; Hantush and Mariño, 1997; Hendricks Franssen et al., 1999;
Gómez-Hernández et al., 2003; Drécourt et al., 2006; Hendricks Franssen and Kinzel-
bach, 2008; Fu and Gómez-Hernández, 2009; Bailey and Baù, 2010). Several studies
have employed three-dimensional steady-state flow models (Chen and Zhang, 2006;
Liu et al., 2008), and several have estimated hydraulic parameters in variably-saturated25

flow conditions (Yeh and Zhang, 1996; Zhang and Yeh, 1997; Li and Yeh, 1999), al-
though for the latter applications were limited to small 2-D vertical-plane systems. In
general, however, critical components of hydrology in watershed systems, e.g., infil-
tration and percolation in variably-saturated porous media, ponding and overland flow,
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and stream channel flow have been neglected. Catchment models such as CATHY
(CATchment HYdrology), based on the 3-D Richards equation for variably-saturated
porous media and a diffusion wave approximation for overland and channel flow, have
been used in data assimilation studies (Camporese et al., 2009, 2010), but not yet
in parameter estimation. Estimation of parameters in land-surface models has been5

performed (e.g., Boulet et al., 2002; Xie and Zhang, 2010), although the models treat
groundwater flow using simplified approaches.

In recognition that improved parameter estimation occurs when system-response
data from more than one governing equation is used (Gailey et al., 1991), with the
implication that each data type contains unique information regarding the parameter,10

numerous studies have employed two or more sets of dissimilar data to condition the
parameter values. Such data sets typically include hydraulic head data as well as
another data type such as solute concentration data (Gailey et al., 1991; Li and Yeh,
1999; Hendricks Franssen et al., 2003; Gómez-Hernández et al., 2003; Liu et al.,
2008), groundwater temperature (Woodbury and Smith, 1988), groundwater travel time15

(Fu and Gómez-Hernández, 2009), groundwater discharge to surface water (Bailey
and Baù, 2010), and tracer breakthrough data at observation wells (Wen et al., 2002).
Streamflow data, which carries information regarding the spatial structure of aquifer K
due to groundwater-surface water interactions, has been used in data assimilation to
improve model performance (Schreider et al., 2001; Aubert et al., 2003; Clark et al.,20

2008; Camporese et al., 2009, 2010), although as yet has not been used to condition K .

1.2 Kalman filter methods

In Kalman Filtering methods, a priori information, i.e., model parameters and associ-
ated model results, are merged with observation data from the true system to produce
an a posteriori system estimate honoring the true system data at observation points,25

while still incorporating physically-based information from the numerical model. The
resulting algorithm is used to merge model and measurement data whenever mea-
surement data become available during the course of the model simulation.
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In contrast to a filter, which assimilates data sequentially as they become available,
a smoother incorporates all past model and measurement information in a single as-
similation step. The EnFK, EnKS, and ES all use an ensemble of realizations to repre-
sent numerically the measurement error statistics (Evensen, 2003), and are designed
for large, nonlinear systems. The EKF, EnKF, EnKS, and ES have all been used in5

hydrologic modeling applications in both system-response updating (e.g., Schreider
et al., 2001; Aubert et al., 2003; Dunne and Entakhabi, 2005; Clark et al., 2008; Du-
rand et al., 2008; Camporese et al., 2009, 2010) and system parameter conditioning
(Hantush and Mariño, 1997; Boulet et al., 2002; Chen and Zhang, 2006; Hendricks
Franssen and Kinzelbach, 2008; Liu et al., 2008; Bailey and Baù, 2010; Xie and Zhang,10

2010). Application of the EnKF and ES to highly nonlinear hydrologic systems such as
a land surface model (Dunne and Entakhabi, 2005) and a coupled surface and variably-
saturated subsurface flow model (Camporese et al., 2009) has proven successful.

1.3 Geostatistics in parameter estimation

Many parameter estimation studies employ geostatistical models (GMs) to define the15

a priori estimate of the spatial distribution of log−K or log−T (e.g., Kitanidis and
Vomvoris, 1983; Hantush and Mariño, 1997; Chen and Zhang, 2006; Hendricks
Franssen and Kinzelbach, 2008), under the assumption that aquifer K in regional sys-
tems can generally be described using such models (Kitanidis and Vomvoris, 1983;
Hoeksema and Kitanidis, 1985; Carrera et al., 2005). The values of the parameters20

(e.g., log−K mean, log−K variance, correlation length) that characterize these GMs
often have a strong influence on the response of a groundwater model and parameter
estimation results (Jafarpour and Tarrahi, 2011), and yet in practice are estimated from
limited geologic information and hence are not known with a high degree of certainty
(Gautier and Nœtinger, 2004; Jafarpour and Tarrahi, 2011).25

As a consequence, several methodologies have aimed at estimating the values of
GM parameters, with the general approach of (i) performing “structural analysis”, in
which the form of the GM is selected, followed by (ii) an estimation of the values of the
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parameters defining the GM using observation data from the aquifer system. For exam-
ple, Kitanidis and Vomvoris (1983) and Hoeksema and Kitanidis (1984) used maximum
likelihood estimation to estimate values for a two-parameter GM using measurements
of log−T and hydraulic head in 1-D and 2-D steady-state flow systems, respectively, in
their approach to estimating the spatial distribution of log−T . A more recent review of5

the technique is given in Kitanidis (1996). More recent studies in the field of petroleum-
reservoir engineering (e.g., Yortsos and Al-Afaleg, 1997; Gautier and Nœtinger, 2004)
have used well test data to estimate parameter values of the permeability variogram.
For example, Gautier and Nœtinger (2004) expanded on the work of Kitanidis and
Vomvoris (1983) to develop a methodology for transient flow.10

1.4 Objectives of this study

The objectives of this study are three-fold. The first objective is to apply the Kalman
Filter parameter estimation methodology within a fully-coupled surface and variably-
saturated subsurface flow model to provide more realistic simulation of water table ele-
vation, as well as allow for streamflow to be simulated. To accomplish this, the CATHY15

model is used in a tilted v-catchment setting, similar in design to the v-catchment used
by Camporese et al. (2009), with uncertain initial conditions (i.e., water table eleva-
tion) and uncertain patterns of applied water at the ground surface in space and time
in a 365-day simulation. An ES is used to assimilate water table elevation data from
a reference system to provide an updated estimate of the spatial distribution of log−K .20

Using uncertain initial conditions and forcing terms provides a stiff test for estimating K
(Hendricks Franssen and Kinzelbach, 2008) since values of water table elevation and
streamflow are not influenced solely by K . The second objective is to exploit the func-
tionality of CATHY to explore the possibility of using streamflow measurements, solely
and jointly with water table elevation data, to condition K .25

The third objective is to use the ES in an iterative scheme to identify the parameters
of a geostatistical model through assimilation of water table elevation data, and hence
provide a new methodology for estimating the value of these parameters. In this study,
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the ability of the scheme to assess the log-mean and log-variance of a geostatistical
model is investigated. Uncertainty in correlation scales is not addressed in this study,
but is left to future work. Assessment of the true correlation scale for a given aquifer
will likely require the direct assimilation of K measurements, whereas in this study only
the model response variables are assimilated.5

For the first and second objectives, the influence of the number of measurements
and the uncertainty assigned the measurement data on the ability of the ES to provide
accurate updates is investigated. Overall, with uncertainty in initial conditions, forcing
terms, and geostatistical model parameters, the complexity of real-world systems is
approached, providing a key liaison between theory and real-world application.10

2 Methodology

In this section, the theoretical development of the ES update algorithm is presented
within the context of estimating the spatial distribution of K using observed water table
elevation (WT ) and streamflow (Q) data from a reference catchment system. The
general forecast and update steps of the Kalman Filter are first discussed, followed15

by a modification of these steps for the ES scheme.

2.1 Forecast of system state

Using an ensemble of nMC system realizations to establish the uncertainty in the sys-
tem, the state of the system is estimated using the model forecast step:

Xf
t =Φt(P ;X0;q;b) (1)20

where f indicates forecast, Xf
t contains the ensemble of realizations of the forecasted

estimate of the system at time t, Φt represents the solution to the numerical model,
and P , X0, q, and b represent the system parameters, initial conditions, forcing terms,
and boundary conditions, respectively. The numerical model employed in this study is
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the CATHY model, and is used to generate values of WT and Q as well as establish re-
lationships between the system parameter (i.e., K ) and the system response variables
(i.e., WT and Q).

CATHY simulates subsurface, overland, and channel flow by coupling the 3-D
Richards equation for variably saturated porous media with a 1-D diffusion wave5

approximation of the de Saint Venant equation for surface flow (Bixio et al., 2000;
Camporese et al., 2010). The groundwater flow equation is given by Camporese
et al. (2010):

SwSs
∂ψ
∂t

+φ
∂Sw

∂t
=∇·

[
KsKr(∇ψ +ηz)

]
+qss (2a)

where Sw = θ/θs, with θ and θs as volumetric water content (–) and saturated water10

content (porosity) (–), respectively, Ss is the specific storage coefficient (L−1), ψ is pres-
sure head (L), t is time (T), ∇ is the spatial gradient operator (L−1), Ks is the saturated
hydraulic conductivity tensor (L T−1) with Ks treated as a scalar field when conditions
of isotropy are hypothesized, Kr(ψ) is the relative hydraulic conductivity function (–),
ηz = (0,0,1), z is the vertical coordinate directed upward (L), and qss represents dis-15

tributed source or sink terms (L3 L−3T−1).
Using a 1-D coordinate system s (L) to describe the channel network, the surface

water flow equation is given by (Camporese et al., 2010):

∂Q
∂t

+ck
∂Q
∂s

=Dh
∂2Q
∂s2

+ckqs (2b)

where Q is the discharge along the stream channel (L3T−1), ck is the kinematic celerity20

(L T−1), Dh is the hydraulic diffusivity (L2 T−1), and qs is the inflow or outflow rate from
the subsurface to the surface (L3 L−1 T−1).

In CATHY, Eq. (2a) is solved using Galerkin finite elements (FE), whereas Eq. (2b)
is solved using an explicit time discretization based on the Muskingum-Cunge routing
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scheme (Orlandini and Rosso, 1996). In this study, the Kr(ψ) and Sw(ψ) relationships
are specified using the formulation of van Genuchten and Nielsen (1985), although
other capillary curves are available in CATHY (see Camporese et al., 2010). The chan-
nel network is identified using the terrain topography from a digital elevation model
(DEM) and the hydraulic geometry concept used by Orlandini and Rosso (1996). The5

DEM cells are then triangulated to generate a 2-D triangular FE mesh, which is repli-
cated vertically to construct a 3-D tetrahedral FE mesh for the subsurface system.
Interaction between surface water and groundwater modeled in CATHY is described
by Putti and Paniconi (2004).

As will be discussed further in Sect. 2.2, the resulting system state X (Eq. 1) is com-10

prised of: (1) a WT value for each node of the triangular FE mesh, calculated using
the vertical profile of ψ for each of these nodes; (2) a K value for each DEM cell in
the horizontal direction; (3) a Q value for each DEM grid cell along a stream channel.
If e and n denote the number of DEM cells and FE nodes in the horizontal direction,
respectively, and g the number of DEM cells along the stream channel, then the di-15

mension d of X is equal to [n+e+g]. The forcing terms q in Eq. (1) are represented
by qss in Eq. (2a), and in this study correspond to rates of applied water at the ground
surface, with uncertainty established by sampling values from a prescribed frequency
distribution. Uncertainty in X0 is also included, as discussed in Sect. 3.1.

The spatially-variable values of YK = logK are generated using SKSIM (Baù and20

Mayer, 2008), a sequential Gaussian simulation algorithm, where the spatial distribu-
tion and correlation is established by a normal distribution wherein the geostatistical
model is a 2-D exponential covariance model in the logarithmic domain:

logK = YK =N(µYK ;σYK )

covYK ,YK (d ) = σ2
YK

·exp


√√√√ 2∑

i=1

d2
i

l2i

 (3)25
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where µYK and σYK , and σ2
YK

are the mean, standard deviation, and variance of the
logarithmic distribution of the parameters, respectively, dis are the components of the
distance vector d , and lis are the spatial correlation scales in the coordinate directions.

2.2 Update of system state

Correction to the a priori estimate Xf
t is accomplished by assimilating observed system-5

response data from the true system, thereby merging the model-calculated and ob-
served values. This correction depends on the uncertainty attached to both the a priori
estimate (i.e., the model results) and the true values (i.e., the observations from the true
system), with uncertainty in the model forecast provided by the spread in the ensemble
values and uncertainty in the observed values specified according to data-sampling10

methods. The correction made to the model-calculated values by the observed values
is dictated by the ratio of these uncertainties. If there is less uncertainty attached to
the observed data, which is typically the case, then the model-calculated value at the
observation location will be corrected to approach the observed value. Furthermore,
model results can also receive correction from observed data if the model value is cor-15

related with the model value at the observation location. In this way information from
the true state at observation points can be “spread” to regions between observation
locations, and hence throughout the model domain.

This correction procedure is carried out through the following Kalman Filter update
equation, with the forecasted ensemble Xf

t corrected, or updated, at a time t using m20

observed data:

Xu
t =X

f
t+κt

(
Dt−HXf

t

)
(4)

where Xu
t [d ×nMC] is the updated ensemble with u denoting update, Dt[m×nMC] holds

the ensemble of perturbed measurement data collected at time t, H[m×d ] contains
binary constants (0 or 1) resulting in the matrix product HXf

t that holds model results25

at measurement locations, and κt[d ×m] is the so-called “Kalman Gain” matrix. Errors
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are assigned to the observed data by adding an ensemble of Gaussian perturbations,
stored in a matrix E[m×nMC], to each of the m observations, resulting in nMC values
for each observed value. In this study, observation data are sampled from a known
reference state to enable assessment of the ES scheme.

In Eq. (4), the difference, or residual, between the model values and observed values5

is represented by (Dt−HX
f
t), with the weighting of the correction and the spatial spread

of the information dictated by κt, which holds the ratio of uncertainties as well as the
covariance between model values at each model node (Bailey and Baù, 2011). The
form of κt is:

κ=CfHT(HCfHT+R)−1 (5)10

where Cf[d ×d ] and R[m×m] are the forecast error and observation error covariance
matrices, respectively, and are defined as:

Cf =

(
X

f
t+∆t−X

)(
X

f
t+∆t−X

)T

nmc−1
(6a)

R=
EE

T

nmc−1
(6b)

where each column of X[n×nMC] holds the average value of the ensemble at each15

location in the domain.
In a straightforward application of data assimilation to a catchment system, Eq. (4)

would correspond to merging observed values of WT (or Q) with the model-calculated
WT field (or Q along a stream channel) in order to provide a WT field that honors the
observed WT data. However, doing so only corrects the system response of the model20

– the structural difference between the a priori model state and the true state that yields
differences in the system response will persist indefinitely. To temper these structural
differences, it is essential to correct the parameters that drive the system response.
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This can be accomplished by utilizing the relationships between K and the resulting
values ofWT and Q as established through CATHY. For example, the cross-covariance
submatrix between WT and YK is defined as:

Cf
t(X(WT ),X(YK ))=

[(
X

f
t−X

)
WT

][(
X

f
t−X

)
YK

]T

nMC−1
(7)

By including the expression for Eq. (7) into Eq. (5), the values of YK in Xf
t can be5

corrected by observation data in Dt through the spatial correlation between YK , WT ,
and Q.

2.3 Forecast-update scheme for the ensemble smoother

Whereas Eqs. (1) and (4) are run in a sequential manner in the KF and EnKF schemes,
with correction via Eq. (4) occurring whenever observation data are sampled from the10

true system, the ES algorithm includes all previous model state and observation data
up to the final data sampling time tnF , at which time the ES update routine is run to
provide updated system states at all previous collection times. Using the ES allows for
the update algorithm to be run off-line from the numerical modeling code. At time tnF ,

the forecast matrix X̃
f
tF and the observation matrix D̃tF hold the model state ensembles15

and the perturbed observation data from all data sampling times (t1,t2,...,tnF ):

X̃
f
tF = [Xt1 ,Xt2 ,...,XtnF ]T [(d )(nF )]×nMC (8a)

D̃tf = [Dt1 ,Dt2 ,...,DtnF ]T [(m)(nF )]×nMC (8b)

where nF is the number of times at which measurements are collected. Within the
ES scheme, the forecast covariance matrix C̃

f
tnF contains both spatial covariance20

terms and temporal covariance terms between cell values from different collection
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times (Evensen, 2007). The measurement error covariance matrix R̃tnF also is es-
tablished using the perturbations for each of the measurement values for each of the

nF collection times. By inserting X̃
f
tnF and D̃tnF into Eq. (4) and C̃

f
tnF and R̃tnF into

Eq. (5), the updated system state matrix X̃
u
tnF contains the updated model state for

each assimilation time.5

The Keppenne (2000) algorithm, which provides an efficient numerical strategy for
updating the system state for the EnKF scheme, was modified to include model states
and observation data from each assimilation time (Bailey and Baù, 2010) and used to
compute Eq. (4) within the ES framework.

2.4 Evaluating the updated system state10

The ability of the ES algorithm to bring the forecasted ensemble into conformity with the
true system state is quantified through two location-specific parameters EE (ensemble
error) and EP (ensemble precision) and two global parameters AE (absolute error) and
AEP (average ensemble precision) (Hendricks Franssen and Kinzelbach, 2008; Bailey
and Baù, 2011):15

EEi = |X i −Xi ,true| (i =1,...,n) (9a)

EPi =
1

nmc

nmc∑
j=1

|Xi ,j −X i | (i =1,...,n) (9b)

AE(X )=
1

(nmc)(n)

nmc∑
j=1

n∑
i=1

|Xi ,j −Xi ,true| (9c)

AEP(X )=
1

(nmc)(n)

nmc∑
j=1

n∑
i=1

|Xi ,j −X i | (9d)
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where X i is the ensemble mean of the i th location (node in a FE discretization of
the domain or cell of the surface DEM grid), Xi ,true is the reference “true” value of
the i th location, and Xi ,j is the variable value of the i th location of the j th ensemble
realization. Equation (9a,c) provides a measure of the deviation between the model
state and the reference state, and Eq. (9b,d) provides a measure of the spread of the5

values around the ensemble mean of the model state. The performance of the update
routine is measured by calculating the difference between performance parameters of
the forecasted and updated ensembles. As a second type of performance measure,
the ensemble of CATHY simulations can be rerun using the updated ensemble of YK
fields to determine if the updated YK ensemble produces simulated results that match10

the observed data, i.e. to see if the model has been “calibrated” adequately. This latter
method will be demonstrated in Sect. 3.3.2.

2.5 Iterative method to estimate geostatistical parameters

In the forecast step of Sects. 2.1, it is assumed that the parameters defining the GM
of Eq. (3) are known, i.e., that the parameter values used to generate the ensemble15

of YK fields for the forecast simulations are the same as the reference system from
which the observation data is sampled. In recognition that this is generally not the
case, the ES scheme decribed in Sects. 2.1 through 2.3 is employed in an iterative
scheme to discover the geostatistical parameter values of the true system, as shown
in Fig. 1. Beginning with a set of estimated GM parameter values, an ensemble of20

YK fields is generated using SKSIM and the corresponding ensemble of CATHY flow
simulations is run. Upon assimilating observation data from the reference system and
conditioning the YK ensemble, the GM parameter values of the updated YK ensemble
are inferred from the update ensemble and used to produce the forecast YK ensemble
for the subsequent iteration. This process proceeds until GM parameter values are25

converged upon. At each iteration the model-calculated values of WT can also be
compared to the observed WT data from the true aquifer system, to verify that the
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estimated GM parameter values from the previous iteration yield a spatial structure of
YK that furnishes the system response of the true system.

3 Parameter estimation of spatially-variable K

3.1 Forecast ensemble of K , W T , and Q

The catchment system used for the numerical experiment in this study is a 4.05 km by5

4.05 km tilted v-shaped catchment, as shown in Fig. 2, with a stream flowing north to
south along the central depression of the catchment. The DEM of the surface terrain,
discretized using 50 m by 50 m grid cells for a total of e= 81×81= 6561 grid cells, is
shown in Fig. 3a with a contour plot of the ground surface elevation. Aquifer thickness
varies between 7.5 and 15.5 m, with the thickest portion under the central depression,10

as shown in Figs. 2 and 3b. The subsurface is discretized by nL = 10 layers of varying
thickness, with thicknesses ranging from 0.375 m near the ground surface to 3.0 m near
the aquifer base.

The characteristics of the DEM, the 3-D mesh, and the parameters of the model
are summarized in Table 1. The number of nodes in the 2-D surface FE mesh is15

n=82×82=6724. The 3-D mesh is obtained from replicating the 2-D FE mesh through
the vertical extent of the subsurface and contains 3×nL×2e = 393 660 tetrahedral
elements and n× (nL+1) = 73 964 nodes. Lateral spatial distribution of YK for the
forecast ensemble is generated using mean µYK = 1.301 log m day−1 (K = 20 m day−1),

standard deviation σ2
YK

= (0.250 log m day−1)2, and correlation length (lx = ly )=1000 m,20

resulting in K values ranging from approximately 0.2 m day−1 to 1500 m day−1. In this
study, nMC = 100 realizations are used for the ensemble. Values of YK are calculated
for each DEM cell, resulting in a value of YK assigned to each 3-D FE under the cell.
In other words, the spatial distribution of YK is the same for each of the 10 layers in
the 3-D mesh. Vertical hydraulic conductivity, Kv , is set equal to one-third the value of25

horizontal K .
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The simulation period is one year, from January to December. No-flow boundaries
are assigned for every edge of the aquifer (see Fig. 2). Forcing terms qss consist
of uniformly-distributed precipitation during the months of January through March and
November through December, and spatially-varying rates of applied water (e.g., irriga-
tion water) in addition to precipitation during the months of April through October. For5

the latter, rates are applied according to the cultivation pattern depicted in Fig. 4a, with
cells shown in blue receiving monthly values randomly sampled from an exponential
distribution (rate parameter γ =0.75). The pattern of cultivation shown in Fig. 4a is the
same for each realization, but monthly rates vary across the realizations. The resulting
rates are not intended to represent particular irrigation practices, but rather to provide10

a spatio-temporal variation in the forcing terms of the catchment system. As an exam-
ple, the rates of combined precipitation and applied water for the month of July for one
realization are shown in Fig. 4b, with values ranging from 0.000 355 to 0.006 m day−1

(represented by white and black, respectively). The depth of monthly precipitation is
presented in Fig. 2.15

Initial conditions for each simulation are achieved as follows. First, a 10 000-day spin-
up simulation with a uniform infiltration rate of 0.0012 m day−1 and isotropic, homoge-
neous aquifer with K = 30 m day−1 is run in order to achieve steady-state conditions in
the catchment as determined by water table elevation and streamflow rate. Second,
each realization of the ensemble is run for 365 days using a different anisotropic YK20

field and infiltration pattern to eliminate the bias due to the initial conditions. The re-
sults of this 365-day simulation are then used as initial conditions for the final 365-day
simulation period for each realization, with time steps ranging between approximately
0.10 to 1.0 day. Stream inflow (Fig. 2) is set to 0.

An additional CATHY simulation representing the true catchment system is run, with25

the true YK field and resulting true WT field (at 365 days) depicted in Fig. 5. The
streamflow rate at the outlet cell of the catchment is shown in Fig. 5b, indicating the
increased discharge during the months of April through October due to increased rates
of precipitation as well as applied water. In comparing the YK forecast ensemble to the
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true YK field using Eq. (9c,d), the AE and AEP values are 0.619 and 0.388, respectively.
The GM parameter values used to generate the YK field are the same as used for the

forecast ensemble. This assumption will be relaxed in Sect. 3.3.2, when the iterative
approach presented in Sect. 2.5 is used to estimate the true GM parameter values.
The ability of the ES scheme to recover the spatial distribution of the true YK field by5

assimilating WT and Q measurements into the forecast ensemble results is explored
in Sect. 3.2.
WT data are collected from observation wells, with an example network of observa-

tion well placement shown in Fig. 5b, and Q data are collected from gaging points along
the stream channel, as shown in Fig. 2. The influence of the number of assimilation10

times, the number of observation data, and the error assigned to the observed data on
the ES update algorithm also is investigated in Sect. 3.2.

CPU (Central Processing Unit) time to run a single realization on an Intel® Core™2
Duo CPU at 3.00 GHz desktop computer range from approximately 20 to 180 min, de-
pending on the spatial distribution of YK .15

3.2 Update of K ensemble

Observation data from the true catchment system are collected tri-monthly, resulting
in four assimilation times during the year. As such, forecast ensemble model results
are also saved every three months for use in the ES algorithm. The first set of update
scenarios consists of conditioning the forecast YK ensemble using WT data from the20

24 observation wells shown in Fig. 5b, with variations on (i) the number of assimilation
times and (i) the error, defined using coefficient of variation (CV) of WT data, assigned
to the observed WT data. For these scenarios, the CPU run-time of the ES update
routine is approximately 30 s.

For the scenario where four assimilation times are used and the observation data25

are assumed to be error-free, the ensemble mean at each computational point for the
updated YK ensemble is shown in Fig. 6a. The AE value of the updated YK ensemble,
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measuring the absolute error from the true YK field, is 0.380, a reduction of 38.6 % from
the forecast value of 0.619. In comparison with the true YK field shown in Fig. 5a, the
mean of the updated YK ensemble in Fig. 6a captures the overall spatial pattern of the
true field, with high values of YK in the northwest and southeast sections of the aquifer
and low values in the north-central and southwest portions. The updated AEP value,5

measuring the spread of the updated YK ensemble, is 0.203, a reduction of 47.7 % from
the forecast value of 0.388. The spatial distribution of EP for the updated YK ensemble,
as calculated by Eq. (9b), is shown in Fig. 7. Notice that the spread of the ensemble
values is lowest at and around the locations of the 24 observation wells.

When a CV value of 0.10 is assigned to the WT observation data, the AE and AEP10

values of the updated YK ensemble are 0.405 and 0.246, respectively, reductions of
34.5 % and 36.6 % from the forecast values. When a CV value of 0.30 is assigned, the
AE and AEP values are 0.441 and 0.284, reductions of 28.8 % and 26.8 % from the
forecast values. The ensemble of perturbed values for a data value collected from the
observation well located at location (X = 2500 m, Y = 3500 m) for these two cases is15

shown in Fig. 8. For the latter case, the ensemble mean of the updated YK ensemble
is shown in Fig. 6b. In comparison to the case of CV = 0.00 (Fig. 6a), the spatial
distribution of YK does not resemble as well the true YK field shown in Fig. 5a.

When observation data from only one assimilation time (time= 365 days) is assim-
ilated, the AE value of the updated YK ensemble is 0.408; when observation data20

from two assimilation times are used (time= 181 days and 365 days), the AE value is
0.385. In comparison to the AE value of 0.380, when four assimilation times are used,
the improvement of the updated YK ensemble with respect to the true YK field is not
considerable. The usefulness of additional assimilation times, however, is seen in the
context of observation data error. Figure 9 shows the increase of AE (i.e., the increase25

in deviation from the true YK field) with increasing values of CV of the WT observation
data, for the cases when one, two, and four assimilation times are used. Notice that the
increase of AE is lessened when observation data from multiple times are assimilated,
with the best results occurring when 4 assimilation times are used. For the case of
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CV= 0.50, the AE value using one, two, and four assimilation times is 0.594, 0.563,
and 0.471, respectively.

The second set of update scenarios consists of assimilating observed values of Q
from the reference system. The ensemble of values of Q for a given surface grid cell
are found to be close to lognormally-distributed (Clark et al., 2008), with the coeffi-5

cient of determination r2 = 0.702 and the Kolmogorov-Smirnov statistics KS = 0.270
for a lognormal fit. This requires both the Q observation data and Q forecast ensemble
to be log-transformed before use in the ES update routine.

When YQ = logQ data from 4 gaging stations along the stream channel from the four
measurement times are assimilated into the forecast ensembles of YQ and YK , the re-10

sulting AE and AEP values of the updated YK ensemble are 0.512 and 0.305, providing
reductions of 17.3 % and 21.3 % from the forecast values. The ensemble mean for the
updated YK ensemble for this scenario is shown in Fig. 10. When compared with the
updated YK ensemble in Fig. 6a, it is clear that observation data from the 24 wells
provide an updated YK ensemble that fits more closely with the true YK field than using15

YQ data. Still, the YK ensemble mean in Fig. 10 captures the principal features of the
spatial pattern of the true field. However, when error is assigned to the observed YQ
data, the ability of the YQ data to condition the YK ensemble is reduced dramatically.
Table 2 shows the values of AE and AEP of the updated YK ensemble for scenarios in
which the CV of the YQ data ranges from 0.00 to 1.00. When CV = 0.1, the reduction20

in the AE value from the forecast ensemble is 7.3 %; for CV = 0.30, the reduction is
only 2.0 %.

Table 3 presents results of scenarios wherein WT and YQ data are jointly assimi-
lated, with the number of observation wells ranging from 2 to 24. In each case, the
observation wells are positioned in a grid network. In order to assess the influence25

of assimilating YQ data, four scenarios (1–4) are run with only WT observation data,
with the same four scenarios rerun (scenarios 5–8) with the inclusion of assimilating
YQ data from 4 gaging stations. Results indicate that the inclusion of YQ data only
provides enhanced conditioning of the YK ensemble when the number of observation
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

wells used is less than 8. For example, when 4 observation wells are used, the AE
value for the scenarios with and without YQ data is 0.455 and 0.434, respectively; when
two wells are used, the AE value with and without YQ data is 0.545 and 0.482, respec-
tively. Hence, when sparse WT data are available, the additional YQ data are able to
provide information regarding the spatial distribution of YK and hence partially maintain5

the value of AE.

3.3 Case of uncertain geostatistical parameter values

3.3.1 Log-mean of true YK field is uncertain

In this section, the ability of the ES update routine to condition the ensemble of YK using
WT observation data sampled from a catchment system where µYK is different from the10

one used in generating the forecast ensemble is explored. In the first scenario, µYK of

the true YK field is 1.801 log m day−1 (K = 63.2 m day−1, one-half order of magnitude
higher than the forecast value of 20 m day−1); for the second scenario, µYK of the true

YK field is 0.801 log m day−1 (K = 6.3 m day−1, one-half order of magnitude lower than
the forecast value of 20 m day−1). The value of σ2

YK
in the true systems and the forecast15

ensemble is the same ((0.250 log m day−1)2). In Sect. 3.3.2, a more severe test is used
to demonstrate the iterative approach described in Sect. 2.5.

The true YK field for the first and second scenarios are shown in Fig. 11a,b, respec-
tively. For the two scenarios, the AE of the forecast YK ensemble is 0.690 and 0.692,
respectively. By assimilating WT data from 24 observation wells for four assimilation20

times, the AE of the updated YK ensemble for the two scenario is 0.365 and 0.395,
respectively, resulting in reductions of 47.1 % and 43.0 % from the forecast AE val-
ues. The spatial distribution of the updated YK ensemble mean for the two scenarios is
shown in Fig. 11c,d. For both scenarios, the updated ensembles capture the general
magnitude and spatial distribution of the true YK field.25

9607

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/9587/2011/hessd-8-9587-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/9587/2011/hessd-8-9587-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 9587–9635, 2011

Estimating K
geostatistics in

catchment

R. T. Bailey and D. Baù
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For the first scenario, the initially too-low (compared to the true system) values of
YK are conditioned to the higher values present in the true system; for the second
scenario, the initially too-high values are conditioned to the lower values. The same
effect is observed through a comparison between the reference, forecast, and updated
values of YK across a west-east transect located at Y = 2000 m, as shown in Fig. 12.5

In both scenarios, the forecast YK values along the transect are approximately equal to
the forecast µYK value of 1.301, whereas the updated YK values have been conditioned
to resemble the true profiles.

3.3.2 Iterative approach to discover geostatistical parameter values

To demonstrate the iterative approach, the true aquifer system has µYK and σ2
YK

values10

of 0.301 log m day−1 (K = 2.0 m day−1) and 0.500 (log m day−1)2. The resulting true YK
field is shown in Fig. 13. For each iteration, observation data from 24 observation wells
and four assimilations are used to condition the YK ensemble. Beginning with a forecast
YK ensemble generated using µYK = 1.301log m day−1 and σ2

YK
= 0.250 (log m day−1)2,

eight iterations are performed, with the µYK and σ2
YK

values of the updated YK ensemble15

after each iteration shown in Fig. 14. As seen in Fig. 14, the value of µYK reaches the
parameter value from the true system within three iterations, but eight iterations are
required to determine if convergence has been achieved. For σ2

YK
, the value from the

updated YK decreases during the first several iterations, but eventually converges upon
a value (0.580) slightly higher than the true value of 0.500 (log m day−1)2. If the GM20

parameter values of the true system were unknown, then it would be assumed that µYK
is just under 0.300log m day−1 and σ2

YK
is equal to 0.580 (log m day−1)2.

Besides the convergence to the true GM parameter values, the approach of the
updated YK ensemble to the spatial distribution of the true YK field is demonstrated
in Figs. 15 and 16. The ensemble mean of the updated YK ensemble for iterations25

1 through 4 is shown in Fig. 15a–d, with the AE value generally decreasing (0.755,
0.565, 0.507, and 0.518, respectively) and the structure of the YK spatial distribution
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progressively approaching the pattern of the true YK field shown in Fig. 13 with each
successive iteration.

Figure 16 shows the true YK values, forecast YK values, and the updated values of YK
for the 1st and 3rd iterations at the Y =2000 west-east transect. Dramatic improvement
in the updated YK values in relation to the true YK values occurs from the forecast to5

the 1st iteration, and from the first iteration to the third iteration.
Finally, comparisons are made between observedWT data from the true system and

model-calculatedWT values generated by CATHY using the updated values of µYK and

σ2
YK

from the previous iteration. This is especially important since such a comparison,
i.e., re-running the numerical model using the estimated parameter values and com-10

paring model results with observed data at observation locations, is generally the only
means by which the parameter estimation method can be verified. Figure 17 shows
the comparison between observed WT data and model-calculated WT values from the
forecast ensemble, the WT ensemble generated using the updated GM parameter val-
ues from the first iteration, and the WT ensemble using the updated GM parameters15

from the second iteration. Comparisons for times= 273 days and 365 days are shown
in Fig. 17a, b, respectively.

The match between the forecast values and the true value is much improved upon
using the results from the first iteration, and an excellent match occurs using the re-
sults from the second iteration. Quantitatively, the sum of squared differences between20

the model results and true system values is 95.32, 60.92, and 0.03, respectively for
time= 273 days, and 99.16, 65.44, and 0.02, respectively for time = 365 days. Notice
that the forecasted WT values are lower than the observed WT values from the true
aquifer system, since the forecast YK values are generated using a higher value of µYK .
However, using the lower updated value of µYK from the first and second iterations, the25

WT values become higher and more in accordance with the observed WT values.
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4 Conclusions

The ES update routine, a derivative of the Kalman Filter approach, has been evaluated
for the estimation of spatially-variable K in a catchment system using the fully-coupled,
surface-subsurface flow model CATHY. A 4.05 km by 4.05 km tilted v-catchment was
used in demonstration, with spatio-temporal variability in forcing terms to provide in-5

creased uncertainty in the system and to strive to mimic real-world conditions.
Both WT data and Q data were collected from a reference catchment system and

assimilated into the ensemble of model results to condition the spatial distribution of
K to approach the reference K field. Assimilating WT from a network of observation
wells provided a distinct improvement in the K ensemble in relation to the true K field,10

with sets of data from multiple collection times tempering the decrease in improvement
when error was assigned to the observed WT data. Assimilating Q data only slightly
improved the K ensemble in relation to the true K field, and when jointly assimilated
with WT data only improved the estimate of K when data from a small number (2,4)
of observation wells were assimilated. This is due to the region of influence of Q, i.e.,15

the regions of the aquifer where the K values directly influence Q and hence can be
conditioned by observed values of Q, being small compared to the collective region of
influence of WT values at the observation wells.

For cases in which the parameter values defining the geostatistical structure of the
aquifer system are uncertain to a small degree (i.e., mean of true K field is one-half20

order of magnitude different than the assumed mean), the methodology is still able to
condition adequately the forecast K ensemble to approach the magnitude and spatial
structure of the true aquifer system. For more severe cases, i.e. the true and assumed
means are different by an order of magnitude and the true and assumed variance of
the K field is different, an iterative process using the ES is used to converge upon the25

true geostatistical parameter values. Results indicate that the process is successful in
approximating the true values.
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For the present study uncertainty in the correlation length of the K field is not in-
vestigated, and an amendment to the iterative scheme to converge upon unknown
correlation length is left to future research, with assimilation of measurements of K
likely necessary. Future studies also include an application of the methodology to an
actual catchment system in order to estimate the geostatistical parameter values as5

well as the spatial distribution of K .
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Evensen, G.: Data assimilation. The Ensemble Kalman Filter, Springer-Verlag, Berlin, Heidel-
berg, 2007.

Evensen, G. and van Leeuwen, P. J.: An ensemble Kalman smoother for nonlinear dynamics,
Mon. Weather Rev., 128, 1852–1867, 2000.
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Table 1. Attributes of the DEM and three-dimensional mesh, and system parameters used in
the CATHY V-Catchment simulations.

DEM attributes

Cells in x direction 81
Cells in y direction 81
Grid spacing m 50
Number of cells 6561

Mesh attributes

Aquifer thickness 7.5 m to 15.5 m
Number of layers 10
Number of surface nodes 6724
Number of 3-D mesh nodes 73 964
Number of tetrahedral elements 393 660

System parameters

Saturated hydraulic conductivity Ks GM: Eq. (3)
Mean µ of K fields log 1.30 (m d−1)
Variance σ2 of K fields log 0.25 (m d−1)2

Correlation length λ of K fields 1000 m
Specific storage Ss 0.01 m−1

Porosity n 0.35
Residual moisture content θr 0.061
van Genuchten parameters α=0.43 m−1, n=1.70

Simulation details

Monte Carlo ensemble size 100
Simulation period days 730.0
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Table 2. Performance measures of the updated YK ensemble for CV of YQ data ranging from
0.00 to 1.00, with the number of assimilation times (AT) equal to four.

Scenario Num gage Q Num AT Q CV Q AE K % Reduct AEP K % Reduct

Forecast – – – 0.619 – 0.388 –

Update
1 4 4 0.00 0.512 17.3 % 0.305 21.3 %
2 4 4 0.10 0.574 7.3 % 0.368 5.0 %
3 4 4 0.30 0.607 2.0 % 0.384 1.0 %
4 4 4 0.50 0.614 0.9 % 0.386 0.4 %
5 4 4 0.70 0.616 0.5 % 0.387 0.2 %
6 4 4 1.00 0.617 0.3 % 0.387 0.1 %
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Table 3. Performance measures of the updated YK ensemble as a result of assimilating (i) WT
data, and (ii) WT and YQ data jointly.

Scenario Assim Num meas Num gage Num AT Num AT CV CV AE % AEP %
var WT Q W T Q W T Q YK reduct YK reduct

Forecast 0.619 – 0.388 –

Update
1 WT 24 0 4 – 0.00 – 0.380 38.6 % 0.203 47.7 %
2 8 0 4 – 0.00 – 0.447 27.8 % 0.261 32.6 %
3 4 0 4 – 0.00 – 0.455 26.4 % 0.297 23.3 %
4 2 0 4 – 0.00 – 0.545 11.9 % 0.334 13.9 %
5 WT , Q 24 4 4 4 0.00 0.00 0.380 38.6 % 0.203 47.7 %
6 8 4 4 4 0.00 0.00 0.440 29.0 % 0.252 35.0 %
7 4 4 4 4 0.00 0.00 0.434 29.9 % 0.284 26.9 %
8 2 4 4 4 0.00 0.00 0.482 22.1 % 0.301 22.3 %
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Fig. 1. Flow chart for the iterative approach using an Ensemble Smoother to estimate geosta-
tistical parameter values.

9619

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/9587/2011/hessd-8-9587-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/9587/2011/hessd-8-9587-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 9587–9635, 2011

Estimating K
geostatistics in

catchment

R. T. Bailey and D. Baù
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Fig. 2. Conceptual model of tilted v-shaped catchment, with groundwater feeding the river
flowing out of the basin through the catchment outlet. The monthly depth of precipitation applied
to the ground surface is also shown.
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Fig. 3. Contour representation of (A) ground surface elevation and (B) aquifer thickness. Both
datasets are used to create the three-dimensional subsurface finite-element mesh.
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Fig. 4. (A) Cultivated (blue) and non-cultivated fields (white), with cultivated fields receiving
additional applied water during the months of April through October, and (B) Infiltration in the
month of July (of the second year) for the true system, with values ranging from 0.000 355 to
0.006 m day−1 (represented by white and black, respectively).
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Fig. 5. (A) Reference field of “true” YK and (B) corresponding WT field at time= 365 days as
calculated by CATHY. In (B), red crosses indicate the location of 24 observation wells. The
streamflow at the outlet cell during the 365-day simulation is shown in the subpanel.
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Fig. 6. Spatial distribution of the updated YK ensemble using data from 24 observation wells
sampled 4 times during the 365-day period, with the CV of observation data set to (A) 0.0 and
(B) 0.3. Compare to the true state shown in Fig. 5A.
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. Spatial distribution of EP for the updated YK ensemble using data from 24 observation
wells sampled 4 times during the 365-day period, with the CV of observation data set to 0.0.
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Fig. 8. Frequency distribution of the ensemble of perturbed values for the observed WT value
of 18.5 m collected on day 91 at location (X = 2500 m, Y = 3500 m) of the “true aquifer”, for CV
values of 0.10 and 0.30.
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Fig. 9. The increase of AE (i.e., the decrease in conditioning to the true YK field) with increasing
values of CV of the WT observation data, for the cases when one, two, and four assimilation
times are used.
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Fig. 10. Spatial distribution of the mean of the updated YK ensemble using YQ data from four
gaging stations along the stream channel sampled four times during the 365-day period, with
the CV of observation data set to 0.0. Compare to the true state shown in Fig. 5A.
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Fig. 11. (A) True YK field using µYK = 1.801 log m day−1 (K = 63.2 m day−1), (B) True YK field

using µYK = 0.801 log m day−1 (K = 6.3 m day−1), (C) mean distribution of the updated YK en-
semble for the first scenario (µYK =1.801), and (D) mean distribution of the updated YK ensem-
ble for the second scenario (µYK = 0.801). For both scenarios scenario, 24 WT data from four
assimilation times are used.
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Fig. 12. Comparison of reference and updated values of YK along the Y = 2000 m transect
where the true µYK is higher (1.801 log m day−1) and lower (0.801 log m day−1) than the µYK of

the forecast ensemble (1.301log m day−1). The values from the reference state are shown in
red, and the updated values are shown in blue. For both scenarios, 24 WT measurements are
assimilated.
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Fig. 13. Reference YK field with µYK = 0.301 log m day−1 (2.0 m day−1) and σ2
YK

= 0.500

(log m day−1)2.
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Fig. 14. Progression of the estimated GM parameters µYK and σ2
YK

, demonstrating the conver-

gence of the parameter values to ∼0.300 log m day−1 and 0.580 (log m day−1)2, respectively.
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Fig. 15. Ensemble mean of updated YK ensemble for the (A) 1st iteration, (B) 2nd iteration, (C)
3rd iteration, and (D) 4th iteration, for the case where the true values of µYK and σ2

YK
are 0.301

log m day−1 and 0.500 (log m day−1)2, respectively. Compare to the true state in Fig. 13.
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Fig. 16. Value of YK along the Y = 2000 m transect for the reference state (red), the foreacast
ensemble mean (dotted black line) and the update ensemble mean for the 1st (solid black
line) and 2nd (solid blue line) iteration, for the case where the true values of µYK and σ2

YK
are

0.301 log m day−1 and 0.500 (log m day−1)2, respectively.
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Fig. 17. Comparison between model-calculated WT values and observed WT data from the
true system for the forecast WT ensemble, the WT ensemble generated using the updated
GM parameter values from the 1st iteration, and the WT ensemble using the updated GM
parameters from the 2nd iteration. Comparison are made for (A) time = 273 days and (B)
time=365 days.
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