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Abstract

The current study proposes an integrated uncertainty and ensemble-based data as-
similation framework (ICEA) and evaluates its viability in providing operational stream-
flow predictions via assimilating snow water equivalent (SWE) data. This step-wise
framework applies a parameter uncertainty analysis algorithm (ISURF) to identify the5

uncertainty structure of sensitive model parameters, which is subsequently formulated
into an Ensemble Kalman Filter (EnKF) to generate updated snow states for streamflow
prediction. The framework is coupled to the US National Weather Service (NWS) snow
and rainfall-runoff models. Its applicability is demonstrated for an operational basin of
a western River Forecast Center (RFC) of the NWS. Performance of the framework10

is evaluated against existing operational baseline (RFC predictions), the stand-alone
ISURF, and the stand-alone EnKF. Results indicate that the ensemble-mean prediction
of ICEA considerably outperforms predictions from the other three scenarios inves-
tigated, particularly in the context of predicting high flows (top 5th percentile). The
ICEA streamflow ensemble predictions capture the variability of the observed stream-15

flow well, however the ensemble is not wide enough to consistently contain the range
of streamflow observations in the study basin. Our findings indicate that the ICEA has
the potential to supplement the current operational (deterministic) forecasting method
in terms of providing improved single-valued (e.g., ensemble mean) streamflow predic-
tions as well as meaningful ensemble predictions.20

1 Introduction

Hydrologic forecasting is of primary importance in the context of flood and drought mit-
igation as well as for optimal water resources planning and management. The National
Weather Service (NWS), the US agency responsible for short- and long-term hydro-
logic forecasting across the nation, primarily applies a joint snow accumulation and ab-25

lation model (i.e., SNOW17 (Anderson, 1973)) and rainfall-runoff model (i.e., SAC-SMA
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model (Burnash et al., 1973)) for operational streamflow prediction in snow-dominated
watersheds. For these watersheds, the accuracy of streamflow prediction largely relies
on the accuracy of initial snowpack states (Franz et al., 2008; Clark and Hay, 2004). In
the current NWS forecasting system, model initialization is conducted by running the
calibrated joint model to the beginning of the forecast period. Subsequently, simulated5

states are manually updated based on the observed states. These state adjustments
are typically not archived and are fairly subjective, varying significantly among forecast-
ers who have different understanding and knowledge of the forecast basins, models,
and prediction errors. Forecast accuracy thus varies across forecasters with differ-
ent levels of forecasting skills (Seo et al., 2003). In addition, potential uncertainties10

in model forcing and parameters are typically ignored in the adjustment process. The
non-systematic and manual procedures of the current model initialization method, as
well as the need for more systematic uncertainty assessment motivate the develop-
ment of a coupled automated uncertainty analysis and data assimilation approach.
The developed approach described herein includes the following capabilities: (1) treat-15

ing errors in model forcing and parameters in a systematic and meaningful way, and
(2) automatically merging state measurements into the operational model(s).

Over the past several decades, a variety of uncertainty analysis methods and data
assimilation techniques have been developed and reported in the hydrologic literature.
Some of the uncertainty analysis methods, among many others, include the general-20

ized likelihood uncertainty estimation (GLUE) (Beven and Binley, 1992), the Bayesian
total error analysis (BATEA) (Kavetski et al., 2002), the Integrated Bayesian Uncertainty
Estimator (IBUNE) (Ajami et al., 2007), the Framework for Understanding Structural Er-
rors (FUSE) (Clark et al., 2008b; Clark and Kavetski, 2010), and Markov Chain Monte
Carlo (MCMC) methods including the Random Walk Metropolis algorithm (Kuczera25

and Parent, 1998), the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm
(Vrugt et al., 2003), and the Differential Evolution Adaptive Metropolis (DREAM) algo-
rithm (Vrugt et al., 2008). Most of above methods have not been commonly applied in
practice, particularly for the NWS operational models SNOW17 and SAC-SMA. This is
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partly due to their high computational requirements, since computational efficiency is
extremely important in hydrologic forecasting operations (Weerts and El Serafy, 2006).
Most recently, He (2010) proposed an Integrated Sensitivity and UnceRtainty analy-
sis Framework (ISURF). The ISURF first applies the Generalized Sensitivity Analysis
(GSA) (Hornberger and Spear, 1981) method as a screening tool to identify sensitive5

model parameters. Subsequently, ISURF applies the DREAM algorithm (Vrugt et al.,
2008) to explicitly quantify the uncertainty structure of these identified parameters. This
step-wise method significantly reduces the computational load and has been demon-
strated to efficiently and adequately identify the uncertainty structure of the SNOW17
and SAC-SMA parameters at a set of study sites with contrasting hydroclimatic condi-10

tions (He, 2010; He et al., 2011b).
Data assimilation techniques have been extensively applied in meteorological and

ocean sciences. Currently existing data assimilation techniques were primarily de-
veloped for numerical weather prediction (Daley, 1993) and more recently applied in
hydrologic fields including operational hydrologic forecasting. The earliest data as-15

similation approach applied to operational hydrologic models (i.e., SAC-SMA) is the
extended Kalman filter (EKF) (Kitanidis and Bras, 1980a, b). Another data assimilation
technique applied to an operational model (i.e., SAC-SMA) is the variational method
(VAR) (Seo et al., 2003, 2009). A third data assimilation technique applied in hydrologic
modeling is the Ensemble Kalman Filter (EnKF) (Evensen, 1994). The EnKF has been20

applied to both the SNOW17 model (Slater and Clark, 2006) and SAC-SMA model
(Vrugt et al., 2006), as well as other hydrologic models including the TOPNET model
(Clark et al., 2008a) and the HBV model (Weerts and El Serafy, 2006).

These data assimilation techniques have their own advantages and disadvantages
(Liu and Gupta, 2007). The EKF is inherently associated with instabilities and diver-25

gence for models with strong non-linearities (Evensen, 1994). The VAR requires the
development of the adjoint model which is complicated and labor-intensive (Margulis
and Entekhabi, 2001). In comparison to the EKF and VAR, the EnKF does not require
reformulation or modification of the original model, which is important in an operational
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setting. In addition, the EnKF provides more flexibility in explicitly handling various
sources of uncertainty. This distinctive characteristic of the EnKF makes it a potentially
robust technique for assimilation of a range of hydrologic data into operational fore-
casting. There are also other ensemble data assimilation algorithms including the En-
semble Kalman Smoother (e.g., Dunne and Entekhabi, 2006), and particle filter (e.g.,5

Moradkhani et al., 2005a) which have similar strengths as the EnKF. However, previ-
ous studies have shown the EnKF is easy to implement and is more computationally
efficient (Weerts and El Serafy, 2006).

In spite of the above-mentioned attempts to integrate data assimilation approaches
into the NWS operational SNOW17 model (Slater and Clark, 2006) and SAC-SMA10

model (Kitanidis and Bras, 1980a, b; Seo et al., 2003; Seo et al., 2009), most of these
studies assumed uncertainty-free model parameters and thus did not capitalize on
the full capabilities of the EnKF to propagate parameter uncertainty and subsequently
reduce forecasting uncertainty. Recent studies (e.g., Moradkhani et al., 2005a; Morad-
khani et al., 2005b; Vrugt et al., 2006; Su et al., 2011) explored the capability of data15

assimilation techniques (i.e., EnKF and/or particle filter) in sequentially updating model
parameters and states at measurement times. However, the traditional premise in
operational hydrologic forecasting is that model parameters are time-invariant. Param-
eter uncertainty can be addressed by defining an ensemble set of parameters which
approximately covers the uncertain parameter ranges. This can be achieved by per-20

turbing parameters in the same way as the model forcing (Margulis et al., 2002).
The objectives of the current study are two-fold: (1) to explicitly quantify uncertainty

in model parameters; and (2) to develop an ensemble-based data assimilation tech-
nique configured with derived parameter uncertainty and evaluate the applicability of
this technique in improving NWS operational streamflow predictions. To achieve our25

objectives, we propose an Integrated unCertainty and Ensemble-based data Assimila-
tion (ICEA) approach for the coupled SNOW17/SAC-SMA model of the NWS. The ICEA
has two components, the ISURF framework (He, 2010) and an EnKF framework. The
ISURF is applied to identify sensitive model parameters and the uncertainty structure
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of these parameters. Based on the parameter uncertainty structure identified along
with a preset uncertainty structure for model forcing, an EnKF framework is developed
for the SNOW17 model to generate rain plus snowmelt via assimilation of snow water
equivalent (SWE) observations. The rain plus snowmelt serves as input to the SAC-
SMA model to produce streamflow predictions. An operational watershed in California5

is used as the study basin to demonstrate the applicability of ICEA to the coupled
SNOW17/SAC-SMA model in terms of providing streamflow predictions. Results are
evaluated against the RFC predictions as well as that from a stand-alone EnKF.

2 Study area, datasets, and models

2.1 NWS operational models10

The SNOW17 is a lumped process-based model that simulates snow accumulation and
ablation processes (Anderson, 1973). The model requires mean areal precipitation
(MAP) and mean air temperature (MAT) as inputs and simulates SWE and a rain plus
snowmelt timeseries. Snow is modeled as a single layer in the model. The heat storage
of the snowpack, liquid water retention and transmission, and snowmelt are computed15

using empirical functions, an areal depletion curve (ADC), and 11 parameters (Table 1).
The model applies a snow correction factor (SCF (−)) to account for precipitation gage
catch deficiencies. The actual snowfall input to the model, Ps (mm), is computed as:

Ps =SCF×P × fs. (1)

Where P (mm) represents the observed precipitation (MAP in this study); fs (−) is20

fraction of snow in the precipitation and is determined as:

fs =
{

1, when Ta <PXTEMP
0, when Ta ≥PXTEMP .

(2)

Where Ta (◦C) is the observed air temperature (MAT in this study); PXTEMP is the
threshold temperature to distinguish snowfall from rainfall in precipitation. Parameters
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SCF and PXTEMP jointly determine the snowfall input to the model for given precipita-
tion and air temperature forcing.

The SAC-SMA model is a saturation excess rainfall-runoff model that simulates infil-
tration, percolation, soil moisture storage, drainage, and evapotranspiration processes
(Burnash et al., 1973). Inputs to the model typically include MAP (or rain plus snowmelt5

when used in junction with SNOW17 model) and potential evapotranspiration (PET).
Outputs are estimated evapotranspiration and a basin-averaged runoff depth. A sep-
arate unit hydrograph is then applied to convert the runoff depth to streamflow. The
model has 16 parameters, 13 of which must be estimated and three that are generally
set to default values (Hogue et al., 2000; Ajami et al., 2004; Hogue et al., 2006).10

2.2 Study area and datasets

The current study focuses on the North Fork of the America River Basin (NFARB)
located in the western side of the Sierra Nevada Mountains in northern California
(Fig. 1). The basin is one of the study locations for the Distributed Model Intercom-
parison Project (DMIP) of the NWS (Koren et al., 2004; Reed et al., 2004; Smith et al.,15

2004). The NFARB drains into Lake Folsom with an area of 868 km2. Elevation in the
NFARB ranges from about 200 m at the basin outlet to about 2970 m at the highest
boundary. The basin is characterized by deep winter snowpack (November to Febru-
ary) resulting from orographic precipitation processes. The snowpack melts out in the
spring (March to June). The long-term annual precipitation and runoff are 1514 mm and20

837 mm, respectively. The vegetation is elevation-dependent, with thin alpine tundra
forest, dense mixed coniferous forest, and grassland chaparral and woodland species
in the upper, medium, and lower elevations of the basin, respectively (Shamir and
Georgakakos, 2006).

The snowline at the end of the accumulation period is estimated at around 150025

m. In the NWS modeling system, the NFARB is delineated into the upper sub-basin
and lower sub-basin using the snowline as the divide. The upper sub-basin accounts
for 37 % of the total basin area. The upper and lower sub-basins receive an annual

7715

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/7709/2011/hessd-8-7709-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/7709/2011/hessd-8-7709-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 7709–7755, 2011

An integrated
uncertainty and

ensemble-based data
assimilation

M. He et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

average precipitation of about 1643 mm and 1397 mm, respectively. The long-term
annual average temperatures for the upper and lower sub-basins are approximately
5.7 ◦C and 10.7 ◦C, respectively. There are three snow stations which provide daily
SWE observations in the upper sub-basin (Fig. 1, Table 1). One of them (CS) is a
SNOw TELemtry (SNOTEL) site maintained by the National Water and Climate Cen-5

ter (NRCS). The other two are maintained by the California Data Exchange Center
(CDEC). Additional climatic characteristics of the upper and lower sub-basins are pre-
sented in Fig. 2.

Model forcing data, including the MAP, MAT, and PET for both upper and lower sub-
basins, are available at a 6-hourly time step from water year (WY) 1979–2002 (here-10

after refer to as the “whole period”). The daily streamflow discharge data at the basin
outlet (recorded at USGS gage #11427000) and daily SWE at the snow stations are
also available from WY 1979–2002 and WY 1991–2002, respectively. For demonstra-
tion purposes, a 6-yr training period (WY 1979–1984) is selected to identify parameter
uncertainty. An equivalent length of period is selected as the prediction period (WY15

1991–1996), when the SWE observations are assimilated to produce streamflow pre-
dictions. The MAT and MAP during both training and prediction periods generally re-
semble their counterparts during the whole period, however, MAT during the prediction
period is slightly higher and MAP during the training period is higher at both sub-basins
(Fig. 2). Further details on the hydroclimatic characteristics of the study basin (NFARB)20

during the prediction period are provided in Table 3.

3 Methodology

3.1 Integrated uncertainty and Ensemble-based data Assimilation (ICEA)

The ICEA consists of a parameter uncertainty analysis component, ISURF, and a data
assimilation component, the EnKF. These two components are described as follows.25
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3.1.1 Uncertainty analysis

The ISURF utilizes the GSA (Hornberger and Spear, 1981) as an initial step to screen
parameters and identify sensitive parameters. The GSA first samples the parameter
space and then classifies the sampled parameters into behavioral and non-behavioral
categories according to the performance of model configured with these parameters.5

The behavioral parameter sets are then divided into an amount of equally sized groups.
Cumulative distributions of each parameter within each group are calculated and the
Kolmogorov-Smirnov (KS) test is applied to quantify the closeness between these dis-
tributions. The resulting KS value (from 0 to 1) is the maximum vertical distance ob-
served between these distributions, with higher value indicating higher parameter sen-10

sitivity. A KS value greater than 0.25 is utilized as a threshold for parameter sensitivity
following He et al. (2011b). More detailed explanation and application of the GSA ap-
pears in He et al. (2011b).

The ISURF employs the DREAM algorithm for subsequent uncertainty assessment
of sensitive model parameters. The DREAM was recently introduced by Vrugt et15

al. (2008) to estimate optimal parameter values and their underlying posterior prob-
ability density. In DREAM, a preset number of Markov Chains (a chain refers to a
vector containing model parameters considered) are simultaneously run in parallel.
For each chain, a candidate vector is generated by taking a discrete proposal distri-
bution containing a fixed multiple of the difference between randomly chosen chains.20

The Metropolis ratio is used to decide whether to accept the candidate point or not.
The convergence of a DREAM run is monitored with the R̂ statistic of Gelman and
Rubin (1992). The reader is referred to Vrugt et al. (2008) for detailed descriptions on
DREAM. In the current study, we use standard algorithm settings for both the GSA and
DREAM applied by He et al. (2011b).25
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3.1.2 Ensemble Kalman filter (EnKF)

The EnKF, first introduced by Evensen (1994), is a Monte Carlo approach which ap-
proximates a Bayesian updating scheme to determine the evolution of model states
over time (between measurements) and updating of these states at measurement
times. Detailed description of EnKF can be found in Evensen (1994, 2003) and Re-5

ichle et al. (2002). Basically, the EnKF involves a recursive propagation and updating
process. The propagation step produces an ensemble of model state outputs between
measurements based on an ensemble of model inputs as follows:

yj (t)=A
[
µj (t),θj ,yj (t−1)

]
; yj (t=0)= y0j . (3)

where A is the model operator investigated (SNOW17 in this case) which is subject to10

time-varying forcing (µ(t)) and time-invariant parameters (θ);yrepresents model states
(Table 1) and y0 denotes initial states; j (∈ [1,2,...,N]),N designates ensemble size) is a
single ensemble member. The probability distributions of model forcing and parameters
(from which samples µj (t) and θj are generated) need to be specified a priori and are
further discussed in Sect. 3.3.3.15

The ensemble of model states is systematically updated when the new measurement
is available. This update largely relies on the differences between actual and predicted
measurements, as illustrated below,

y+
j (ti )= y−

j (ti )+K
{
zi +ωi −M

[
y−
j (ti )

]}
. (4)

where superscripts “−” and “+” denote the state estimates before and after the update,20

respectively, at a specific measurement time (ti ); zi is the i th measurement (areal
SWE in this case); ωi is a random error term generated by the EnKF and has the
same characteristics of the systematic measurement errors associated with zi ; M is
a measurement operator (linear in this case) mapping model states to the measure-
ment variable(s); and K is the Kalman gain determined from the ensemble statistics25

and the measurement error specified. Definition of measurement error is presented in
Sect. 3.3.
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3.2 Implementation of ICEA and proposed scenarios

Given that most snow events occur above the snowline (i.e. within the upper sub-basin),
the current study focus on assimilation of SWE observations from the upper sub-basin.
Model parameters (SNOW17 and SAC-SMA) used for the lower sub-basin remain un-
changed from those applied in RFC operational forecasting. The two components of5

ICEA, the ISURF and the EnKF, are applied in the training period and prediction period,
respectively. The general application procedure (which is further explained in details in
Sect. 4) is as follows.

Step 1: The ISURF is applied to the joint SNOW17/SAC-SMA model in the upper
sub-basin to identify sensitive model parameters, their optimal parameter values, and10

their uncertainty structures (i.e., distribution type and characteristics) during the training
period.

Step 2: The determined uncertainty structure of sensitive SNOW17 parameters,
along with preset forcing uncertainty and areal SWE data uncertainty (Sects. 3.3 and
3.4), is embedded into the EnKF formulation. The EnKF is subsequently employed to15

assimilate the daily areal SWE data (during the prediction period) to update SNOW17
model states (Table 1) for the upper sub-basin. The assimilation frequency is one week.

Step 3: Rain plus snowmelt prediction is correspondingly produced by the SNOW17
based on the updated states. The rain plus snowmelt timeseries ouput is then utilized
as input to the SAC-SMA model to produce streamflow predictions for the upper sub-20

basin.
Step 4: The joint SNOW17/SAC-SMA model for the lower sub-basin is run to gen-

erate streamflow for the lower sub-basin. The streamflow obtained for both upper and
lower sub-basins is combined according to the size (area) of each sub-basin, as is the
case in operations. The aggregated flow is routed using the operational unit hydro-25

graph, yielding streamflow predictions at the NFARB outlet.
Four scenarios are considered in our study. The first two scenarios produce single-

valued streamflow predictions. The last two involve EnKF applications and thus
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produce an ensemble of streamflow predictions. The first scenario (entitled “RFC”) di-
rectly adopts model parameters used in RFC operations. The second scenario (named
“ISURF”) differs from the first one in that it uses ISURF-derived optimal model pa-
rameters (both SNOW17 and SAC-SMA) for the upper sub-basin. The third scenario
(entitled “EnKF”) applies a stand-alone EnKF technique configured with preset forcing5

uncertainty and limited information (i.e., the type of posterior distribution) on parameter
uncertainty derived from the ISURF. The fourth scenario (entitled “ICEA”) differs from
the third one in that it uses both the posterior distribution and optimal posterior param-
eter ranges derived from the ISURF as inputs to the EnKF. For comparison to the first
two deterministic scenarios, the ensemble mean is estimated in the last two scenarios.10

It is worth noting that, in all scenarios, streamflow (at 6-hourly time step) generated
from both the training and prediction periods at the basin outlet are aggregated to the
daily time step in order to compare with daily streamflow observations from the USGS
gauge.

3.3 Areal SWE data15

Snow information, including SWE, is routinely recorded by both in situ observational
networks (e.g., the SNOTEL in the western US) and remote sensing platforms (e.g.,
satellites). However, in situ snow stations are generally sparse and thus not sufficient
to provide accurate areal SWE information. For instance, in the western US there are
over 1700 snow stations which provide SWE observations. Nevertheless, they are still20

not adequate to resolve the variability of SWE at the basin scale (Bales et al., 2006).
There are studies which produce areal SWE estimates from point SWE observations
either through interpolation (Fassnacht et al., 2003) or binary tree methods (Molotch
and Bales, 2005); however, these studies are limited to specific regions and are less
readily applied over broad areas. These conversion methods have also not been ap-25

plied in operations. There are also remotely sensed SWE data available (e.g., from
AMSR-E). However, the data suffers from poor spatial resolution (e.g., AMSR-E at 25
km resolution) and poor accuracy (e.g., Andreadis and Lettenmaier, 2006; De Lannoy
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et al., 2009). There are also remotely sensed snow cover area (SCA) data available
(e.g., from MODIS), which can be transformed to SWE via a snow depletion curve
(Andreadis and Lettenmaier, 2006; Durand et al., 2008b, a; Su et al., 2008; Zaitchik
and Rodell, 2009; Su et al., 2010; Thirel et al., 2011). However, the SCA data is error
prone (e.g., MODIS SCA data is highly impacted by cloud cover). Furthermore, the re-5

lationship between SCA and SWE varies across different hydroclimatic and geographic
regimes. Additionally, incorporation of SCA information into hydrologic models may not
necessarily lead to improved streamflow simulations (Clark et al., 2006).

Parsimonious methods are typically used to derive areal SWE from in situ SWE mea-
surements in operations. For instance, the NWS River Forecast Centers (RFCs) in10

the western US typically use a regression-based technique to reconcile the SNOW17-
simulated areal SWE and the SWE observations from available snow stations. In the
current study, we use a similar regression method. The method utilizes SWE informa-
tion from both the SNOW17 model and the snow stations but assumes that the areal
SWE is a linear combination of point SWE measurements so that it resembles the15

SNOW17 simulated SWE as much as possible. Specifically, the areal SWE is calcu-
lated via a non-negative least-squares algorithm as follows:

SWEareal=min

∥∥∥∥∥∥
T∑

t=1

[
3∑

k=1

(Ck×SWEt
k)−SWEt

model

]2
∥∥∥∥∥∥ , ∀SWEt

k ≥0 (5)

Where SWEt
k represents the SWE observations from the kth snow station (k = 1,2,3)

at time t (t = 1,2,...,T, where T is the total length of prediction period in days); Ck is20

the weight corresponding to the kth snow station; SWEt
model denotes the SNOW17-

modeled SWE for the upper sub-basin at time t; and SWEareal designates the areal
SWE data to be assimilated. By applying the above equation, the weights of three
snow stations (Ck) are calculated (Table 2). It should be noted that the final weights do
not necessarily add up to be 1.25
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The measurement error associated with the areal SWE is assumed to be normally
distributed white noise with zero mean and a standard deviation of 25 mm. Sensitivity
test at six SNOTEL sites illustrates that this error definition leads to satisfactory ensem-
ble SWE estimates via the EnKF in multiple years with contrasting wetness when using
an ensemble size of 100 (He, 2010). In the EnKF applications (the last two scenarios)5

in this study, the ensemble size is also set to be 100.

3.4 Model forcing uncertainty

In previous EnKF applications (e.g., Margulis et al., 2002; Durand and Margulis, 2006;
Clark et al., 2008a; Leisenring and Moradkhani, 2011; Wu and Margulis, 2011, among
others), model forcing uncertainty is generally considered by treating input variables10

(i.e., precipitation and air temperature observations) as random variables and perturb-
ing these variables according to predefined error distributions and characteristics. In
operations, however, it may be difficult to determine credible information on error distri-
butions and characteristics that regional forecasters would agree on and implement in
their forecasting practices.15

This study adopts an alternative, but simpler, method to address the uncertainty of
SNOW17 model forcing, which can be easily implemented in an operational environ-
ment. This method draws upon how precipitation and air temperature forcing are cur-
rently utilized within the SNOW17 model to determine snowfall input. Specifically, the
SNOW17 model uses the air temperature and the PXTEMP parameter to determine20

whether precipitation is snowfall or rainfall (Eq. 2). Rainfall goes directly to runoff while
snowfall first accumulates and then melts out. The snowfall input to the model is then
adjusted by a snow correction factor (SCF) (Eq. 1). As such, the actual snowfall di-
gested by SNOW17 model is determined by precipitation and air temperature forcing,
as well as parameters SCF and PXTMEP. Hence, instead of perturbing precipitation25

and air temperature timeseries, we perturb parameters SCF and PXTEMP and as-
sume that the uncertainty identified for these two parameters implicitly represent the
uncertainty in precipitation and air temperature. This method is relatively easier to
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understand in concept and requires no explicit quantification of the distribution type of
precipitation and air temperature. This method has been recently applied in defining
SNOW17 model forcing uncertainty (He et al., 2011a).

3.5 Evaluation metrics

In addition to the deterministic metrics utilized in this study, including the correlation5

coefficient (R), Root Mean Squared Error (RMSE), Nash-Sutcliffe Efficiency (NSE),
and percent bias (Bias), we apply two metrics to quantity the spread dispersion of the
EnKF-derived ensemble streamflow predictions: the Normalized Root Mean Square
Error Ratio (NRR) (Anderson, 2002; Moradkhani et al., 2005b) and the 95th Percentile
Uncertainty Ratio (UR95) (Hossain and Anagnostou, 2005; Moradkhani et al., 2006).10

These two metrics are defined as:

NRR=

√
1
T

T∑
t=1

(Q̄t−Q̂t)2

1
N

 N∑
i=1

√
1
T

T∑
t=1

(Qi
t−Q̂t)2

√
N+1
2N

. (6)

UR95=

T∑
t=1

(Q97.5,t−Q2.5,t)

T∑
t=1

Q̂t

×100 %. (7)

Where N designates the ensemble size (N =100 in this study); T is the length of the
prediction period (in days); Q̂t represents the observed flow at time t; Qi

t indicates the15

predicted flow at time t of the i th ensemble (1≤ i ≤N); Q̄t denotes the ensemble mean
flow at time t; Q97.5,t and Q2.5,t signify the 97.5th and 2.5th percentiles of the ensem-
ble flow values at time t, respectively; and subsequently, (Q97.5,t−Q2.5,t) is the 95th
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percentile prediction uncertainty bound of the ensemble at time t. NRR is a normal-
ized measure of ensemble dispersion relative to the deviation of the ensemble mean
(Anderson, 2002). It is always greater than 0, with a perfect score equivalent to 1. A
value of NRR greater than 1 signifies too little spread. A value of NRR between 0 and
1 indicates too much spread. UR95 is a measure of the aggregate variability of the5

95th percentile prediction range relative to the observations (Moradkhani et al., 2006).
It ranges from 0 to 100 %, with a perfect score equal to 0 %.

4 Results

4.1 Parameter uncertainty

The GSA method is applied to derive “behavioral” SNOW17 and SAC-SMA model10

parameters for the upper sub-basin. Subsequent sensitivity analysis focuses on the
behavioral SNOW17 parameter set since only SNOW17 parameter uncertainty is ad-
dressed in the data assimilation applications. The analysis shows that two forcing-
related SNOW17 parameters, SCF and PXTEMP as well as parameter MFMAX (which
determines the non-rain melt rate) and parameter SI (which determines the areal ex-15

tent of the snow cover) are sensitive (Fig. 3). The KS value of other parameters are
consistently lower than 0.2. Sensitivity of SCF and PXTEMP is expected because they
control the snowfall input to the model. Sensitivity of MFMAX is also intuitive because
non-rain melt is deemed the dominant melting mechanism in western basins (Franz et
al., 2008). The sensitivity of SI reflects the importance of the snow cover area param-20

eter when the SNOW17 model is applied at the areal scale. Only these four sensitive
parameters are analyzed in the following uncertainty analysis and data assimilation
applications. Other SNOW17 parameters and all SAC-SMA parameters for the upper
sub-basin are fixed at the values which provide the best streamflow simulations (high-
est NSE) during the training period.25
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The DREAM algorithm is subsequently applied to derive posterior information for
the four sensitive parameters. The marginal distributions of parameters SCF, MFMAX,
and SI generally follow a similar distribution type, which can be roughly identified as
a normal distribution (Fig. 4). Parameter PXTEMP shows no apparent distribution in
its optimal range. As such, a uniform distribution is assigned for PXTEMP. SCF is5

significantly correlated to MFMAX (with a correlation coefficient of 0.77). This is due
to the fact that increasing SCF leads to increasing snowfall which results in a deeper
snowpack. A deep snowpack results in a higher maximum melt rate (MFMAX) in com-
parison to a shallower snowpack. MFMAX shows medium correlation to SI. The cor-
relation between other parameter sets is not significant. Despite the existence of the10

cross-correlation among sensitive parameters, for simplicity, this correlation is not ac-
counted for when formulating the EnKF in the current study (in the last two scenarios
considered). However, implementation of the cross-correlation among parameters into
the EnKF is being explored in our ongoing work.

4.2 Streamflow simulation15

The maximum likelihood values of the four sensitive parameters, along with other
SNOW17 parameters and SAC-SMA parameters determined from the GSA for the
upper sub-basin, are applied to simulate streamflow at the outlet (scenario “ISURF”)
following the procedure described in Sect. 3.2. The outflow is compared to that sim-
ulated using the RFC parameter set (scenario “RFC”). Observed flow at the outlet is20

used as the benchmark for comparison. The annual statistics between observed flow
and the flow simulated from both scenarios are calculated both on an annual basis as
well as for the entire training period (Table 4).

In general, the ISURF parameters outperform the RFC parameters in providing
streamflow simulations, not only during the entire training period, but also for each in-25

dividual year. Particularly, the RFC parameters consistently underestimate streamflow,
while the ISURF parameters largely correct these biases. For example, the RFC pa-
rameters provide relatively poor streamflow simulations during WY1979 (e.g., bias of
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−55.96 % and correlation coefficient of 0.38). In comparison, the ISURF simulation
during this year is fairly satisfactory (e.g., with a bias of 1.8 % and a correlation coef-
ficient of 0.77). These results illustrate that there is room to optimize the parameters
currently under use by the RFCs and improve model performance. However, it is worth
noting that during real-time forecasting, RFC forecasters routinely apply run-time mod-5

ifications (MODs) in adjusting initial (i.e., initial model states) and boundary (e.g., pre-
cipitation forcing) conditions in order to improve the quality of streamflow predictions
(Seo et al., 2003). In the current study, no MODs are applied for the RFC simulations.

4.3 Streamflow prediction

For the stand-alone EnKF (scenario “EnKF”), identified sensitive SNOW17 parame-10

ters (SCF, PXTEMP, MFMAX, and SI) from the upper sub-basin model are perturbed
following the identified distributions (Fig. 4) within the pre-defined feasible paramet-
ric ranges (Table 1) to produce parameter ensembles. Note that it is ideal to sample
parameters from their joint distribution. However, joint distribution of DREAM-derived
posterior parameters is generally of a complex form and not straightforward to explicitly15

derive (He et al., 2011b). The last scenario, ICEA, differs from the stand-alone EnKF
only in parameter ranges where the perturbations are conducted. The ICEA scenario
uses the optimal parameter ranges identified via the ISURF (i.e., the ranges shown in
Fig. 4), which is significantly narrower than the feasible parameter ranges (Table 1).
In both scenarios, perturbation of SNOW17 forcing (precipitation and air temperature)20

is assumed to be implicitly included in perturbing parameters SCF and PXTEMP, as
discussed in Sect. 3.4. Areal SWE data for the upper sub-basin is assimilated into the
SNOW17 model to produce rain plus snowmelt ensembles, which are consequently
applied to generate ensemble streamflow predictions at the basin outlet following the
general procedure outlined in Sect. 3.2.25
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Streamflow prediction is investigated in terms of both deterministic (single-valued)
and probabilistic (ensemble) predictions. For the former, streamflow predictions within
the prediction period from all four scenarios are compared to the observed stream-
flow during the same period, using the ensemble mean from the two data assimilation
scenarios (i.e., EnKF and ICEA). This comparison focuses on the whole streamflow5

timeseries as well as the high flows. High flows in each scenario are defined as those
greater than the 95th percentile of the observed streamflow timeseries during the pre-
diction period. The 95th percentile flow and the number of days (with high flows) are
83 m3 s−1 and 110, respectively. Streamflow predictions from the two data assimilation
scenarios are inter-compared from two perspectives. The first involves the ensemble10

statistics (i.e., NRR and UR95) as well as hydrographs. The second focuses on the
predictability of both scenarios for different lead times. Specifically, since the areal
SWE is assimilated once per week (once SNOW17 states are updated, the model is
run up to seven days before the next update occurs), lead times are considered varying
from one day to seven days with a daily interval. Streamflow prediction with a specific15

lead time, day L (L=1, 2, . . . , 7), is a vector containing predicted flow of the Lth day
following each measurement (and update) time during the entire prediction period.

Deterministic metrics (including NSE, RMSE, percent bias, and correlation) from
all scenarios during the prediction period are calculated (Fig. 5). In comparison to
the RFC prediction, the ISURF prediction has a lower bias and RMSE and a higher20

correlation and NSE. However, when compared to the EnKF predictions, the ISURF
prediction is poorer. This reflects the potential of data assimilation approaches for
providing improved streamflow predictions over traditional (i.e., the RFC parameter
calibration method) and advanced (i.e., ISURF) parameter identification methods. The
combination of ISURF and EnKF, the ICEA shows further improvement over the stand-25

alone EnKF. The NSE of the ICEA prediction is 2.4 % higher than that of the stand-
alone EnKF, while the RMSE value of the ICEA prediction is 7.7 % lower. Compared
to the RFC prediction, the ICEA NSE is 14.5 % higher and the RMSE is 27.6 % lower.
The superior performance of the ICEA is even more significant in terms of percent
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bias. The ICEA prediction has a bias of 2.8 %, in comparison to −10.4 % for the stand-
alone EnKF. As a reference, the bias of the RFC prediction is −31.6 %, suggestive
of significant improvements in flow volume using the data assimilation approaches,
especially the ICEA.

The performance of the four scenarios in providing high flow predictions is also inves-5

tigated (Table 5; Fig. 6). Overall, all scenarios underestimate high flows, while the ICEA
(mean) prediction outperforms the other three scenarios and the RFC prediction is least
satisfactory (Table 5; Fig. 6). The ISURF predictions are comparable to the EnKF mean
prediction (Fig. 6), yet the former has slightly better statistics (Table 5).Comparing the
two ensemble scenarios specifically, the ICEA considerably outperforms the EnKF in10

terms of all four metrics (Table 5). Further investigation shows the average replicate-
wise RMSE (averaged RMSE of all individual ensemble prediction traces) values asso-
ciated with the EnKF and ICEA are 62.90 m3 s−1 and 53.18 m3 s−1, respectively. These
observations trace back to the fact that EnKF sample sensitive parameters in wider
ranges relative to the ICEA. Part of these derived parameter sets may lead to flow15

predictions with larger biases. It is thus likely that the (mean) predictive skill of the
EnKF is somewhat diluted by those biased predictions. The error bars of the EnKF
predictions and ICEA predictions are also presented (Fig. 6c–d), while both the RFC
and the ISURF only provide a single-valued prediction. It is evident that the ensemble
predictions of both EnKF and ICEAs encompass the highest peak flow.20

The dispersion of the ensemble streamflow predictions derived from the two data
assimilation applications is also investigated (Table 6). Overall, the stand-alone EnKF
ensembles show higher UR95 (25.85 %) when compared to that of the ICEA ensem-
bles (20.58 %), indicating that the 95th uncertainty bound of the EnKF is wider than
that of the ICEA (Table 6). At the annual scale, on average, the ensemble spread asso-25

ciated with the EnKF accounts for around 22 % to (WY1996) to 43 % (WY1995) of the
magnitude of the observations. For the ICEA, the range is from about 3 % (WY1995)
to 34 % (WY1996). This further indicates that the 95th percentile uncertainty bounds
of the ICEA ensembles are relatively narrower. When looking at the entire ensemble,
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however, the spread of predictions from both scenarios are almost identical; not only
during the entire prediction period but also in each individual year. The NRR values are
consistently greater than 1, indicating that ensemble predictions of both scenarios have
too little spread relative to the deviation of the mean prediction. Additionally, it is evident
that the inter-annual variation pattern of NRR is similar for both scenarios. However,5

the inter-annual variation pattern of UR95 is very different in the two scenarios, sug-
gesting that the stand-alone EnKF and ICEA provide significantly different ensemble
predictions though the overall spread of both ensemble sets (NRR) are similar.

To examine the performance of the stand-alone EnKF and ICEA methods at a higher
temporal resolution, ensemble streamflow predictions derived from both approaches10

are investigated at the daily scale against the RFC single-valued predictions as well
as observed streamflow. For demonstration purposes, the results from one year
(WY1995) are presented (Fig. 7). The selection of WY1995 is based on the facts that
(1) it is the wettest year in the prediction period in terms of both annual precipitation and
the total annual flow volume; and (2) the maximum peak flow (515.29 m3 s−1) within the15

prediction period occurs in this year (Table 3). Results indicate that both the EnKF and
ICEA ensembles are fairly narrow, which is consistent with previously discussed results
(Table 6). Both ensembles capture the primary peak at day 103 (Fig. 7), while this peak
is underestimated by the RFC predictions. Both ensembles also contain the secondary
peak at day 162. The high flows at days 106 and 213 are not totally encompassed20

by both ensembles. Performances of the EnKF and ICEA prior to day 230 are almost
identical in terms of the ensemble spread and variation pattern. However, between
day 230 and day 289, the performances of both approaches are considerably different.
First, from day 230 to day 252, the EnKF ensemble is much wider than ICEA ensem-
ble; second, from day 265 to day 289, the ICEA ensemble reasonably captures the25

recession pattern, while the EnKF ensemble follows the variation of RFC predictions
which deviate from the observed streamflow with a negative bias.

Recall that both the EnKF and ICEA assimilate areal SWE to update SNOW17 model
states and thus produce rain plus snowmelt, which serves as input to SAC-SMA model
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to generate streamflow. To examine the underlying cause of the deviations in the ap-
proaches from days 230 to 289, it is necessary to scrutinize the corresponding SWE
and rain plus snowmelt predictions. Given the high variability of the rain plus snowmelt
time series, only the ensemble-mean values during the same year are plotted (Fig. 8).
It is evident that prior to day 230, the mean SWE predictions from both approaches are5

almost identical, as are the rain plus snowmelt predictions. After day 230, the EnKF
predicted SWE declines faster, which is most likely caused by the inconsistent non-
rain melt parameter (MFMAX, which controls the non-rain melt rate of the snowpack)
applied in both approaches. The enhanced decline in SWE produces higher rain plus
snowmelt onward until day 252, which is the period when the EnKF ensemble stream-10

flow predictions significantly spread. From days 253–264, when there is a significant
rainfall event (Fig. 7a), rainfall dominates the rain plus snowmelt. As such, the rain plus
snowmelt predictions and thus streamflow prediction during this period again become
nearly identical for both approaches (Figs. 8b, 7b–c). From day 265 until the snow
melts out, there are no major rainfall events (Fig. 7a). Snowmelt thus dominates the15

rain plus snowmelt. From days 278–289, it is evident that the EnKF predicted SWE
reduces to zero earlier than ICEA predicted SWE (Fig. 8a). This is most likely due to
the fact that the EnKF employs parameter values for MFMAX and SI that produce large
non-rain melt in this period, particularly given the fact that the EnKF samples these
two parameters in significantly larger ranges (Table 1) than the ICEA (Fig. 4). During20

the same period, the rain plus snowmelt prediction of the ICEA is thus considerably
greater than that of the EnKF (Fig. 8b). As a result, the ICEA predicted streamflow
ensembles mimics the observed streamflow much better than the EnKF predicted en-
sembles (Fig. 7b–c).

The stand-alone EnKF and ICEA predictions at different lead times are also exam-25

ined. Both deterministic (using ensemble mean prediction) and ensemble statistics are
calculated for lead times up to seven days (Fig. 9). The ICEA mean prediction on av-
erage outperforms the EnKF mean prediction at all lead times investigated (Fig. 9a–d),
except at lead time day 2, where the NSE and correlation values of the ICEA mean
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prediction are slightly lower (Fig. 9c–d). This is similar to what is observed for the ICEA
and EnKF mean predictions over the entire prediction period (Fig. 6). Particularly, the
ICEA predictions have considerably lower bias (Fig. 9a) and generally smaller RMSE
(Fig. 9b) compared to the EnKF predictions, indicating that ICEA outperforms the EnKF
in providing both overall and high flow predictions. At all lead times, the 95th percentile5

ensemble predictions of the EnKF are wider than that of the ICEA (Fig. 9e), which is
also the case when looking at the entire prediction period (Table 6). In contrast, the
whole EnKF predicted streamflow ensemble is wider than the ICEA ensemble at sev-
eral lead times (day 2, day 6, and day 7), while the ensemble is narrower at other lead
times (Fig. 9f). In general, the performance of both approaches remain fairly stable10

across all lead times (Fig. 9), while the predictive skill of operational models normally
decreases with increasing lead times in real-time hydrologic forecasting. This is due to
the fact that the precipitation and forcing data applied in the current study are actually
observed values. In real-time forecasting, precipitation and air temperature are pre-
dicted future values (from numerical weather models) where accuracy decreases with15

increasing lead times (e.g., Cloke and Pappenberger, 2009; Wu et al., 2011).

5 Discussion and conclusions

The current study proposes an integrated uncertainty and ensemble-based data as-
similation framework, ICEA. This framework, consisting of a parameter uncertainty
analysis algorithm (ISURF) and a data assimilation technique (EnKF), systematically20

addresses uncertainty in model forcing and parameters for the SNOW17 model. The
performance of the framework is evaluated against observed streamflow and com-
pared to the performance of three alternative scenarios: the current RFC operational
parameters, the stand-alone ISURF, and the stand-alone EnKF. Datasets from a NWS
operational basin are applied in the evaluation and comparison. The key findings of25

the study include:
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1. The current RFC prediction is improved by applying a parameter identification tool
(i.e., the ISURF) to update model parameters or by employing a data assimilation
technique (i.e., the EnKF) which assimilates SWE information to provide updated
snow model states, or by using a combination of both (i.e., ICEA). The improve-
ment over the current RFC prediction is most significant for the ICEA (in terms of5

ensemble-mean prediction), followed by the EnKF (ensemble-mean prediction)
and then the ISURF. However, when evaluating only high flows (top 5th per-
centile), ISURF and EnKF (mean) predictions are comparable to each other and
the ICEA (mean) prediction shows the most skill.

2. The 95th percentile streamflow prediction range of the stand-alone EnKF is gen-10

erally wider than that of the ICEA, which is expected since the uncertainty ranges
of the four sensitive SNOW17 parameters employed in the EnKF are wider. How-
ever, the spread of the whole ensemble (rather than 95th percentile) associated
with the EnKF is comparable to that of the ICEA. The spread, based on the en-
semble metric calculated (i.e., NRR), is too narrow relative to the (ensemble)15

mean prediction. This most likely stems from the definitions of uncertainty in
forcing as well as areal SWE measurements. Specifically, precipitation and air
temperature uncertainty are implicitly accounted for by the uncertainty of parame-
ters SCF and PXTEMP. While this method is straightforward in concept and easy
to implement in operations, it limits the spread of forcing ensemble since theo-20

retically there are feasible bounds for those parameter values. Furthermore, a
consistent standard deviation is assigned to the SWE measurement error. Sen-
sitivity tests at the point scale illustrates this error definition provides satisfactory
ensemble results, leading to limited variations to large SWE values (He, 2010).
Our ongoing work is investigating an alternative definition, namely, assuming this25

deviation is proportional to the observed SWE value.

3. Both the stand-alone EnKF and ICEA predicted streamflow ensembles con-
tain peak flows during the prediction period, while the RFC prediction generally
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underestimate peaks. For the selected (extreme wet) year, both EnKF and ICEA
ensembles perform similarly in the snow accumulation period, but dramatically
different in the ablation period. This deviation stems from different melt rate val-
ues produced by both approaches which subsequently produce different rain plus
snowmelt output. The streamflow ensembles predicted by both approaches rea-5

sonably capture the variation patterns of the observed streamflow; however, the
ensembles are not wide enough to enclose all the observations. This further indi-
cates that the uncertainty defined in the current study can be improved upon.

4. On average, the ICEA mean prediction outperforms the mean prediction of the
stand-alone EnKF for all lead times investigated (day 1 to day 7 with daily interval).10

However, the EnKF 95th percentile prediction bound is consistently larger than
that of the ICEA at all lead times, which is also the case for the entire prediction
period as previously discussed. As for the ensemble predictions at different lead
times derived from both approaches, their spreads are again too narrow when
compared to the (ensemble) mean prediction at each lead time.15

Despite its demonstrated advantages, the ICEA can be further improved by address-
ing several issues in addition to using time-variant error for SWE measurement as
previously mentioned. First, it should be highlighted that the SNOW17 model applies
air temperature input to calculate melt rate during the snow ablation periods in addi-
tion to applying it as a threshold for distinguishing rainfall from snowfall together with20

model parameter PXTEMP. As such, the uncertainty of parameter PXTEMP only par-
tially mimics uncertainty in air temperature forcing. To investigate the impacts of air
temperature measurement error on melt rate, snowmelt, and ultimately streamflow pre-
diction, this error needs to be explicitly defined. This error can be simply assumed to
be a systematic error with zero mean and a certain variance, as with previous studies25

(e.g., Margulis et al., 2002; Durand and Margulis, 2006). In addition, it should also
be pointed out that model error is not considered in the current study, while model
structural error is shown to considerably impact SNOW17 performance and lead to
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SNOW17-predicted SWE ensemble with significant spread (He et al., 2011a). This
error can be addressed by perturbing the predicted SWE using a uniformly distributed
and auto-correlated error assumption as explored in previous studies (e.g., Evensen,
1994; Leisenring and Moradkhani, 2011). Addressing this error is promising for re-
solving the narrow-ensemble issue encountered by the ICEA and stand-alone EnKF.5

Furthermore, it is worth noting that the ensemble streamflow predictions are evalu-
ated only in terms of dispersion, while other aspects of ensemble predictions (e.g.,
reliability and discrimination) also contains meaningful information on the predictions
(e.g., Franz et al., 2003; Brown et al., 2010; Demargne et al., 2010; Franz and Hogue,
2011). Our ongoing work, which attempts to enhance the ICEA framework to further10

improve streamflow predictions including real-time predictions, comprehensively con-
siders the uncertainty in forcing, model structure, and measurement, as well as the
cross-correlation between parameters, and adopts alternative statistical metrics to ver-
ify the ensemble predictions.
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Table 1. SNOW17 model parameters and state variables that are updated in the data assimila-
tion applications. Parameter ranges are estimated from Anderson (1973) and He et al. (2011a,
b).

Parameters Explanation Unit Ranges

SCF Snow fall correction factor – 0.7–1.4
MFMAX Maximum melt factor mm per 6 h per ◦C 0.5–2.0
MFMIN Minimum melt factor mm per 6 h per ◦C 0.05–0.49
UADJ The average wind function during rain-on-snow periods mm per mbar per ◦C 0.03–0.19
NMF Maximum negative melt factor mm per 6 h per ◦C 0.05–0.50
MBASE Base temperature for non-rain melt factor ◦C 0–1.0
PXTEMP Temperature that separates rain from snow ◦C −2.0–2.0
PLWHC Percent of liquid-water capacity – 0.02–0.3
DAYGM Daily melt at snow-soil interface mm day−1 0–0.3
TIPM Antecedent snow temperature index parameter – 0.1–1.0
SI Areal SWE above which all the area is covered by snow mm 0–2000

State variables Explanation Unit

TWE Snow water equivalent mm
WE Water equivalent of ice portion of snowpack mm
LIQW Amount of liquid water held against gravity drainage mm
S Amount of lagged excess liquid water in storage mm
El Average hourly lagged excess water for each time step mm
PACKRO Snowpack runoff mm
ROBG Runoff over bare ground mm
NEGHS Heat deficit mm
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Table 2. Basic information for the three study snow stations and the corresponding weights
used in determining the areal snow water equivalent.

Site Name Latitude Longitude Elevation 1 April Maximum Length of Peak SWE Melt Out Weight
(m) SWE (mm) SWE (mm) Melting Period Date Date

(days)

BL Blue Canyon 39.276 −120.708 1609 142 349 38 27 February 5 April 0.31
HY Huysink 39.282 −120.527 2011 870 943 61 4 April 6 June 0.54
CL CSS Lab 39.333 −120.370 2089 873 1016 64 21 March 24 May 0.44
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Table 3. Precipitation and observed streamflow characteristics during the prediction period.

Water Year 1991 1992 1993 1994 1995 1996

Precipitation (mm) 957 955 1723 870 2366 1792
Peak Flow (m3 s−1) 256.23 120.05 311.44 31.14 515.29 427.52
Median Flow (m3 s−1) 1.64 2.53 15.09 2.80 26.53 8.96
Flow Volume (×108 m3) 3.28 2.45 9.22 2.15 15.40 10.10
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Table 4. Statistics for observed and simulated streamflow using the RFC parameters and
ISURF parameters during the training period.

Metrics Scenarios Period (Water Year)

1979–1984 1979 1980 1981 1982 1983 1984

R ISURF 0.89 0.77 0.96 0.89 0.83 0.87 0.91
RFC 0.78 0.38 0.86 0.85 0.68 0.76 0.84

Bias ISURF −9.02 1.89 −8.48 12.73 −11.11 −13.33 −10.98
(%) RFC −31.87 −55.96 −36.17 −16.04 −37.29 −29.33 −14.02
RMSE ISURF 19.18 10.45 14.32 3.92 35.53 20.01 14.67
(m3 s−1) RFC 27.62 17.11 28.03 4.55 48.51 27.48 19.22
NSE ISURF 0.95 0.91 0.98 0.95 0.91 0.94 0.96

RFC 0.91 0.77 0.97 0.93 0.86 0.91 0.93
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Table 5. Statistics for observed and predicted high flows (above the 95th percentile of observed
streamflow) during the prediction period. The EnKF and ICEA statistics are based on the
ensemble mean predictions.

RFC ISURF EnKF ICEA

R 0.80 0.85 0.83 0.87
Bias (%) −19.58 −13.70 −14.91 −10.02
RMSE (m3 s−1) 65.37 56.47 58.33 49.59
NSE 0.50 0.62 0.60 0.71
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Table 6. Ensemble performance statistics associated with the EnKF and ICEA scenarios during
the prediction period.

Metrics Scenarios Period (Water Year)

1991–1996 1991 1992 1993 1994 1995 1996

UR95 EnKF 25.85 28.15 37.14 25.22 43.19 24.15 21.84
(%) ICEA 20.58 20.82 8.47 27.12 3.01 29.59 34.43
NRR EnKF 1.33 1.40 1.35 1.37 1.35 1.30 1.32

ICEA 1.33 1.40 1.35 1.36 1.39 1.30 1.32
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Fig. 1. Location and elevation ranges of the North Fork of the American River Basin (NFARB)
as well as locations of streamflow and snow observational stations used in the current study.
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Fig. 2. Climatic characteristics of the NFARB sub-basins during the entire study period (WY
1979–2002), training period (WY 1979–1984), and prediction period (WY 1991–1996). Mean
annual temperature at various percentiles over the lower (a) and upper (b) sub-basins are high-
lighted, as well as the annual areal precipitation at various percentiles over the lower (c) and
upper (d) sub-basins.
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Fig. 3. Kolmogorov-Smirnov (KS) values for SNOW17 parameters for the upper sub-basin.
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Fig. 4. Marginal distributions (in bars) and scatter plots (in dots) for posterior SNOW17 param-
eters. R signifies the linear correlation between parameters.
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Fig. 5. Statistics between observed and predicted streamflow during the prediction period
(WY 1991–1996) under four scenarios considered for Bias (a), RMSE (b), Correlation (c) and
NSE (d). The ensemble-mean prediction is used in estimating statistics for the EnKF and ICEA
scenarios.
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Fig. 6. Scatter plot of predicted and observed high flows during the prediction period under
scenarios (a) RFC, (b) ISURF, (c) EnKF, and (d) ICEA. For the EnKF (c) and ICEA (d) scenar-
ios, the entire ensemble prediction ranges (error bars) are also shown except for the ensemble
mean prediction (dots).
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Fig. 7. Basin-average precipitation (a), ensemble streamflow predictions from the stand-alone
EnKF (b), and ensemble streamflow predictions from the ICEA (c) for water year 1995. Also
shown are observed streamflow (circles) and RFC streamflow predictions (black line) during
the same period. The grey regions correspond to the entire ensemble range.
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Fig. 8. Ensemble mean SWE (a) and Rain plus Snowmelt (b) time series for WY 1995 derived
from the stand-alone EnKF (black line) and the ICEA (dash line). Also shown in the upper panel
is the areal SWE (circles) derived from SWE observations at three snow stations.
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Fig. 9. Statistics for streamflow predictions at various lead times from the stand-alone EnKF
and ICEA, including: (a) Bias, (b) RMSE, (c) Correlation, (d) NSE, (e) UR95, and (f) NRR.

7755

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/7709/2011/hessd-8-7709-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/7709/2011/hessd-8-7709-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

