
HESSD
8, 6069–6112, 2011

Integrated versus
isolated scenario for

prediction

A. A. Najah et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Hydrol. Earth Syst. Sci. Discuss., 8, 6069–6112, 2011
www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/
doi:10.5194/hessd-8-6069-2011
© Author(s) 2011. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences
Discussions

This discussion paper is/has been under review for the journal Hydrology and Earth
System Sciences (HESS). Please refer to the corresponding final paper in HESS
if available.

Integrated versus isolated scenario for
prediction dissolved oxygen at
progression of water quality monitoring
stations
A. A. Najah1, A. El-Shafie2, O. A. Karim2, and O. Jaafar2

1Postgraduate Candidate, Dept. Civil & Structural Eng, Universiti Kebangsaan Malaysia, UKM
2Lecturers, Dept. Civil & Structural Eng, Universiti Kebangsaan Malaysia, UKM

Received: 15 June 2011 – Accepted: 16 June 2011 – Published: 23 June 2011

Correspondence to: A. A. Najah (ali najah@ymail.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.

6069

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/hessd-8-6069-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/hessd-8-6069-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 6069–6112, 2011

Integrated versus
isolated scenario for

prediction

A. A. Najah et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

This study examined the potential of Multi-layer Perceptron Neural Network (MLP-NN)
in predicting dissolved oxygen (DO) at Johor River Basin. The river water quality pa-
rameters were monitored regularly each month at four different stations by the Depart-
ment of Environment (DOE) over a period of ten years, i.e. from 1998 to 2007. The5

following five water quality parameters were selected for the proposed MLP-NN mod-
elling, namely; temperature (Temp), water pH, electrical conductivity (COND), nitrate
(NO3) and ammonical nitrogen (NH3–NL). In this study, two scenarios were introduced;
the first scenario (Scenario 1) was to establish the prediction model for DO at each sta-
tion based on five input parameters, while the second scenario (Scenario 2) was to10

establish the prediction model for DO based on the five input parameters and DO pre-
dicted at previous station (upstream). The model needs to verify when output results
and the observed values are close enough to satisfy the verification criteria. Therefore,
in order to investigate the efficiency of the proposed model, the verification of MLP-NN
based on collection of field data within duration 2009–2010 is presented. To evaluate15

the effect of input parameters on the model, the sensitivity analysis was adopted. It was
found that the most effective inputs were oxygen-containing (NO3) and oxygen demand
(NH3–NL). On the other hand, Temp and pH were found to be the least effective param-
eters, whereas COND contributed the lowest to the proposed model. In addition, 17
neurons were selected as the best number of neurons in the hidden layer for the MLP-20

NN architecture. To evaluate the performance of the proposed model, three statistical
indexes were used, namely; Coefficient of Efficiency (CE), Mean Square Error (MSE)
and Coefficient of Correlation (CC). A relatively low correlation between the observed
and predicted values in the testing data set was obtained in Scenario 1. In contrast,
high coefficients of correlation were obtained between the observed and predicted val-25

ues for the test sets of 0.98, 0.96 and 0.97 for all stations after adopting Scenario 2. It
appeared that the results for Scenario 2 were more adequate than Scenario 1, with a
significant improvement for all stations ranging from 4 % to 8 %.
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1 Introduction

Water is a vital resource necessary for all aspects of human and ecosystem survival
and health. In addition to drinking and personal hygiene, water is needed for agricul-
tural production, industrial and manufacturing processes, hydroelectric power genera-
tion, waste assimilation, recreation, navigation, enhancement of fish and wildlife and a5

variety of other purposes (Biswas, 1981). The term water quality is used to describe
the condition of water, including its chemical, physical and biological characteristics.
Water quality is one of the main characteristics of a river, which purpose is not only for
human water supply (Dogan et al., 2009; Lopes et al., 2005).

Dissolved oxygen (DO) is one of the important water quality parameters for the sur-10

vival of aquatic life. It is a critical parameter used frequently and continuously to deter-
mine the water quality of rivers. The sources of DO in a water body include re-aeration
from the atmosphere, photosynthetic oxygen production and DO loading. The sinks in-
clude oxidation of carbonaceous and nitrogenous materials, sediment oxygen demand,
and respiration by aquatic plants (Kuo et al., 2007). The problems associated with low15

concentrations of DO in rivers have been recognized for over a century and the impacts
of low DO concentrations or, at the extreme, anaerobic conditions in a normally well-
oxygenated river system, are an unbalanced ecosystem with fish mortality, odours and
other aesthetic nuisances. When DO concentrations are reduced, aquatic animals are
forced to alter their breathing patterns or lower their level of activity. Both of these20

actions will retard their development, and can cause reproductive problems (such as
increased egg mortality and defects) and/or deformities (Kalff, 2002; Cox, 2003)

The simplicity of measurement of dissolved oxygen obscures the fact that a number
of physical and chemical processes within the water body contribute to the dissolved
oxygen level within the stream (Lopes et al., 2005). Notably, the Winkler method is25

the most reliable technique used to measure dissolved oxygen in freshwater systems.
This is a multi-step chemical method, where the test is performed on-site, as delays
between sample collections and testing may result in an alteration in oxygen content
(Sengorur et al. 2006).
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Water quality modelling is the basis of water pollution control project. It predicts the
water quality tendency of varieties according to the current water environment quality
condition, transfer and transformation rule of the pollutants in the river basin (Ali et al.,
2010). In addition, several water quality models, such as determistic and stochastic
models have been developed in order to manage the best practices for conserving5

water quality (Hull et al., 2008; Einax et al., 1999). Most of these models are very com-
plex and require a significant amount of field data to support the analysis. Furthermore,
many statistical-based water quality models, which assume the relationship between
response variable and prediction variable, are linear and distributed normally (Ansare
et al., 2000; Garcia et al., 2002). However, as water quality can be affected by so many10

factors, traditional data processing methods are no longer efficient enough for solving
the problem (Xiang et al., 2006), as such factors show a complicated non-linear rela-
tion to the variables of water quality forecast. Therefore, utilizing statistical approaches
usually does not possess high precision (Rankovic et al., 2010).

Recently, the neural networks approach has been applied to many branches of sci-15

ence. There are a number of studies in which neural networks are used to address
water resources problems (Alvisi et al., 2006; Akhtar et al., 2009; Hung et al., 2009;
Ming et al., 2010). In water quality issues, artificial Neural Networks (ANNs) were first
applied by French and Recknagel (1994) to the task of learning to predict algal blooms
from water quality databases. In their application, a feed-forward ANN was trained to20

make predictions of abundance of species of phytoplankton in Saidenbach Reservoir,
Germany. Similarly, Yabunaka et al. (1997) also applied ANNs to predict algal bloom by
simulating the future growth of five phytoplankton species and the chlorophyll-a (Chl-a)
concentrations in the same lake.

Hence, motivated by the successful applications in modelling non-linear system be-25

haviours in a wide range of areas, ANNs are used to predict water quality parameters
in complex systems. The literature offers some recent successful ANNs applications
related to water quality predictions. The main intentions were to minimize fieldwork
and improve the accuracy of prediction. For instance, Hatzikos et al. (2005) utilized
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neural networks with active neurons as a modelling tool for predicting seawater quality
indicators, such as water temperature, pH, dissolved oxygen and turbidity.

This study demonstrated the application of Artificial Neural Network to predict water
quality parameters in terms of dissolved oxygen (DO), having the dynamic processes
hidden in the measured data itself. The use of Multi-Layer Perceptron Neural Network5

(MLP-NN) model in water quality prediction in Johor River could be complementary in
capturing patterns of historical data set and improving the prediction accuracy.

2 Methods and materials

2.1 Study area data analysis

Johor is the second largest state in the Malaysia Peninsular, with an area of 18 941 km2.10

The Johor River and its tributaries are important sources of water supply, not only for
the state of Johor but also for Singapore. The river comprises 122.7 km long drains,
covering an area of 2636 km2. It originates from Mount Gemuruh and flows through
the southeastern part of Johor and finally into the Straits of Johor. The catchment is
irregular in shape. The maximum length and breadth are 80 km and 45 km, respec-15

tively. About 60 % of the catchment comprises undulating highlands rising to a height
of 366 m, while the remainder encompasses lowland and swampy areas. The water
quality of Johor River is deteriorating due to increasing levels of various pollutants. It
continues to be silted and contaminated by wastes due to the lack of enforcement by
local authorities. These contaminants eventually flow into the estuaries of Johor River,20

which are rich habitats that provide spawning and feeding areas for fish and poultry.
The station’s location map is provided in Fig. 1. This station includes four locations
along the main stream of the river, which are near to the mouth of the major tributaries
and the two largest point sources.
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The selection of appropriate input parameters is a very important aspect for the neu-
ral network modelling. In order to use the MLP-NN structures effectively, the input
parameters must be selected with great care. This highly depends on better under-
standing of the problem. In the literature, various input parameters have been used to
create the model for predicting dissolved oxygen (Table 1).5

Based on the literature, existing measured values and statistical analyses, the fol-
lowing five water quality parameters were selected for the ANN modelling in this study,
namely; temperature (Temp), water pH, electrical conductivity (COND), nitrate (NO3)
and ammonical nitrogen (NH3–NL). The river water quality parameters were monitored
regularly each month at four different stations by the Department of Environment (DOE)10

over a period of ten years, i.e. from 1998 to 2007. The analysed results of the study
sites are given in Table 2.

The water quality data that used in this study was collected within the Johor River.
Both in-situ measurements and laboratory analysis were conducted. Four observation
points were selected based on the location of the stations. At each point samples15

were taken at three different depths. These depths are surface, middle and bottom. All
these parameters are measured during sampling using a water quality checker which
is known as Multi-parameter YSI 550A with five sensors. The YSI was re-calibrated
daily to ensure data accuracy.

pH is the indicator for acidic and alkaline conditions of water status. Notably, the20

INWQS threshold range of pH for Malaysian rivers is 5.00 to 9.00 (DOE, 1994). From
the results, the mean pH of the Johor River varied from 6.22 to 6.39. At all stations,
pH was almost equal and did not show a statistically significant difference. Basically,
the pH value is controlled by the dissolved carbon dioxide (CO2), which forms carbonic
acid in water (Hem, 1985). The main source of such chemical should be urban runoff25

or industrial wastewater.
On the other hand, electrical conductivity (COND) is associated with major water

quality parameters due to the dilution effect of stream flow and can be used as a gen-
eral water quality indicator. The mean COND of Johor River varied from 20.01 µs to
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22.14 µs except at Station 3, which was 53.8 µs. This change in COND might be an
indicator of a discharge or some other source of pollution that entered the stream.

Meanwhile, NO3 ion is usually derived from anthropogenic sources like agricultural
fields, domestic sewage and other waste effluents containing nitrogenous compounds
(Das and Acharya, 2003). It appeared that the mean values among all locations did5

not vary greatly.
Ammoniacal nitrogen (NH3–N) is used to measure the amount of ammonia, i.e. a

toxic pollutant often found in agriculture fertilizer and domestic sewage. NH3–N has
been promoted as a tool to define the status of surface water quality in Malaysia (DOE,
2003). The mean NH3 of the Johor River varied from 0.1 mgL−1 to 0.15 mgl−1. At all10

stations, NH3 was almost equal and did not show a statistically significant difference.
The coefficient of variation (CV) is employed to measure the data statistical disper-

sion, which is the mean normalized standard deviation of the given data set (Singh et
al., 2009).

cv(%)=
SD

Mean
·100 (1)15

All parameters showed a coefficient of variation between 3.08 % and 214.96 %. Such
variability among the samples might be due to the large geographical variations in
climate influences in the study area. Temperature showed the lowest variation which
might be due to the buffering capacity of the river. The correlation coefficient between
DO and the input parameters was calculated and presented in Table 3.20

2.2 Artificial Neural Network (ANN)

An artificial neural network (ANN) is tailored to mimic natural neural networks using
a computing process (Haykin, 1999). Among many types of ANNs, the most widely
used is the feed-forward neural network such as multi-layer perceptron (MLP) network
with back-propagation training algorithm. The MLP is organized as layers of computing25

elements, known as neurons, which are connected between layers via weights. Apart
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from the input layer receiving inputs from the environment and the output layer gener-
ating the network’s response, one or more intermediate hidden layers also exist. For
brevity, we refrain from discussing the details of the neural network methodology and
instead refer the reader to the papers written by Lek et al. (1996b), as well as Olden
and Jackson (2001) for more comprehensive treatments.5

Generally, forecasting models can be divided into statistical and physical based ap-
proaches. Statistical approaches determine the relationships between historical data
sets, whereas physical based approaches model the underlying processes directly.
MLP networks are closely related to statistical models and are the type of ANN most
suited to forecasting applications (Rumelhart et al., 1986). When using ANNs for fore-10

casting, the modelling philosophy employed is similar to that used in traditional statis-
tical approaches. In both cases, the unknown model parameters (i.e. the connection
weights in the case of ANNs) are adjusted to obtain the best match between the his-
torical set of model inputs and the corresponding outputs.

These neural networks are commonly used in ecological studies because they are15

believed to be universal approximates of any continuous function (Hornik and White,
1989). A neural network consists of at least three or more layers, which comprise an
input layer, an output layer and a number of hidden layers, as shown in Fig. 2. Each
neuron in one layer is connected to the neurons in the next layer, but there are no con-
nections between the units of the same layer (Kasabov and Foundations, 1996). The20

number of neurons in each layer may vary depending on the problem. The weighted
sum of the input components is calculated as follows (Freeman and Skapura, 1991):

Netj =
∑n

i=1
Wi j +θj (2)

where Netj is the weighted sum of the j th neuron for the input data received from the
preceding layer with n neurons, wi j is the weight between the j th neuron and the i th25

neuron in the preceding layer, xi is the output of the i th neuron in the preceding layer
and θj is the bias term of the j th neuron. The output of the j th neuron outj is calculated
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with a sigmoid function as follows:

outj = f (Netj )=
1

1+e−Netj
(3)

The network is trained by adjusting the weights. The training process is done with
a large number of training sets and training cycles (epochs). The main goal of the
learning procedure is to find the optimal set of weights, which can ideally produce the5

correct output for the relative input. The output of the network is compared with the
desired response to determine the error. The performance of the MLP is measured
in terms of a desired signal and the criterion for convergence. For one sample, it is
determined by the sum square error (SSE), expressed as follows:

SSE=
∑m

i=1
(Ti −outi )

2 (4)10

where Ti and outi are the desired (target) output and output of the neural network,
respectively, for the i th output neuron, and m is the number of neurons in the output
layer.

2.3 Dissolved Oxygen (DO) Prediction with MLP-NN

In fact, the prediction procedure is, by detention, an operation through which the future15

dissolved oxygen pattern can be provided. In this study, the ANN with its non-linear and
stochastic modelling capabilities was utilized to develop a prediction model that mim-
icked the DO pattern at the Johor River based on the five input parameters (Scenario
1) mentioned earlier, which can be expressed as follows:

DON = fMLP−NN(pHN+TempN+NO3N+NH3N+CONDN) (5)20

N =1,2,3,4

where DON is the dissolved oxygen at station N, and fMLP−NN(.) is the non-linear
function predictor constructed by the MLP-NN network. Hence, a total of four models
for DO prediction were constructed.
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Most of the recent studies attempted to predict the concentrations of DO at each sta-
tion. Generally, the water pollution of a downstream station is affected by the discharge
of local area from the upstream station (Zaqoot et al., 2009). Hence, it was required
to consider the effect of DO at the upstream station in the proposed model. Therefore,
second scenario (Scenario 2) was formed to establish the model prediction for DO at5

each station based on the five input parameters. The predicted DO at the previous
station (upstream) can be expressed following Eq. (6). This procedure of using the
predicted DO can be repeated for the third and fourth stations at downstream. The
schematic representation of the proposed networks for Scenario 2 is shown in Fig. 3.

DON+1 = fMLP−NN(pHN+1+TempN+1+NO3N+1+NH3N+1+CONDN+1+DOpN) (6)10

The ANN models were established using the above two equations. The architec-
ture of the networks consisted of an input layer of five and six neurons for Scenario
1 and Scenario 2, respectively. The hyperbolic tangent sigmoid transfer function was
employed between the input and the hidden layers. Moreover, a linear transfer function
was employed between the hidden and output layers (corresponding to the predicted15

DO). Finally, the optimal ANN, together with a flowchart of the algorithm’s procedure,
is shown in Fig. 4.

It is important to divide the data set in such a way that the training, validation and
test data sets are statistically comparable. In this study, the water quality data were
divided into three sets. The first set contained 60 % of the data set used as the training20

set; the second test contained 25 % of the data set used as the validation set and 15 %
of the data set, which the network had never seen before, was used as the testing
set. The statistical properties (i.e. mean, standard deviation, range) from them were
compared, as shown in Fig. 5. According to the statistical properties of those data
sets, no significant differences between the divisions of the data were observed. All25

samples were normalized in the [0 1] range. Thus, all of the data sets (Xi ) from the
training, validation and test sets were scaled to a new value xi as follows:

xi =
Xi−Xmin

Xmam−Xmin
(7)
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2.4 Selection of back propagation training algorithm

The back propagation (BP) learning algorithm (Rumelhart et al., 1986) is a method
conventionally used to perform the training of Artificial Neural Networks for adjusting
weighted connections. Standard back propagation is a gradient descent algorithm in
which the network weights are moved along the negative of the gradient of the perfor-5

mance function. Although traditional BP uses a gradient descent algorithm to deter-
mine the weights in the network, it computes rather slowly due to linear convergence.

There are a number of variations on the basic algorithm that are based on other stan-
dard optimization techniques. In this paper, Levenberg–Marquardt algorithm (LMA)
was used, which appears to be the fastest method for training moderate-sized feed-10

forward neural networks (Demuth et al., 2008). The LMA is a very simple but robust
method, which provides a numerical solution to the problem of minimizing a function
over a space of parameters for the function. Principally, it involves in solving the follow-
ing equation:

(J tJ+λI)δ=JtE (8)15

where I is the identity matrix, J is the Jacobian matrix for the system, λ is the Lev-
enberg’s non-negative damping factor, δ is the weight update vector that we want to
find and E is the error vector containing the output errors for each input vector used
in training the network. The δ tells us by how much we should modify our network
weights to reach a better solution. λ is adjusted at each iteration. If the reduction of20

E is rapid, a smaller value can be used, bringing the algorithm closer to the Gauss–
Newton algorithm, whereas if iteration gives insufficient reduction in the residual, λ can
be increased, giving a step closer to the gradient descent direction. In that way, LMA
is considered as a hybrid between the classical Newton and steepest descent algo-
rithms (Souza et al., 2009). The Jacobian matrix can be created by taking the partial25

derivatives of each output in respect to each weight and has the following form:
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J =


∂F (x1,ω)

∂ω1
··· ∂F (x1,ω)

∂ωW
...

. . .
...

∂F (xN ,ω)
∂ω1

... ∂F (xN ,ω)
∂ωW

. (9)

2.5 Performance criteria

Due to the fact that water parameters had been truthfully monitored over the 10-year
period, the performances of the proposed models could be examined and evaluated.
The performances of the models were evaluated according to three statistical indexes.5

Coefficient of Efficiency (CE) is often used to evaluate the model performance, intro-
duced by Nash and Sutcliffe (1970).

CE=1−

n∑
i=1

(DOm−DOp)2

n∑
i=1

(DOm−DOm)2

(10)

where n is the number of observations, DOp and DOm are the predicted and measured

dissolved oxygen, respectively, and DOm is the average of measured dissolved oxygen.10

The Mean Square Error (MSE) can be used to determine how well the network output
fits the desired output. The smaller values of MSE ensure better performance. It is
defined as follows:

MSE=
1
n

n∑
i=1

(DOm−DOp)2 (11)

6080

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/hessd-8-6069-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/hessd-8-6069-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 6069–6112, 2011

Integrated versus
isolated scenario for

prediction

A. A. Najah et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The coefficient of correlation (CC) is often used to evaluate the linear relationship
between the predicted and measured dissolved oxygen. It is defined as follows:

CC=

n∑
i=1

(DOm−DOm)(DOp−DOp)√
n∑

i=1
(DOm−DOm)2

n∑
i=1

(DOp−DOp)2

(12)

3 Results and discussion

3.1 Optimizations of the Neurons Number5

One of the most important characteristics of MLP-NN is the number of neurons in the
hidden layer. If an insufficient number of neurons are used, the network will be unable
to model the complex data and the resulting fit will be poor. On the contrary, if too many
neurons are used, the training time may become excessively long and the network may
over fit the data. In this study, the number of neurons needed in the hidden layers to10

achieve the precision criteria was generally determined by trial and error approach.
The optimum number of neurons was determined based on the minimum value of
Mean Square Error (MSE) of the training data set. The training of the MLP-NN was
performed with a variation of 1–20 neurons. Figure 6 shows the relationship between
the numbers of neurons versus MSE during training. It was obvious from the figure15

that the MSE equalled to 0.2761 when one neuron was used and decreased to 0.0310
when 17 neurons were used. Enlarging the neurons more than 17 did not significantly
decrease MSE. Thus, 17 neurons were selected as the best number of neurons.
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3.2 Test and Validation of the Model

Figure 4 shows the proposed architecture used to predict the dissolved oxygen at Sta-
tion 1 (DONN1), which was developed according to the procedure discussed in the
previous section. Training, validation and testing processes of the MLP-NN model
were performed to minimize the Mean Square Error (MSE) between the output and the5

desired response, as shown in Fig. 7. It was apparent that the performance goal was
achieved in less than 15 iterations (epochs). On the other hand, Fig. 8 illustrates the
comparison between the predicted versus observed DO using 45◦ line of graph and
two deviation lines of ±15 % deviation from the 45◦ line for both validation and testing
data sets. It was obvious from Fig. 8 that DONN1 can predict the DO with a high level10

of accuracy, whereby the error for majority of the records did not reach 15 %, while the
error of a few records fell within 15 %.

3.3 Sensitivity analysis

To evaluate the effect of input parameters on the model, two evaluation processes were
used. First, the performance evaluation of various possible combinations of the param-15

eters was investigated utilizing Coefficient of Efficiency (CE) and Mean Square Error
(MSE) approaches to determine the most effective parameters on the output. Over-
all, six networks were compared, as shown in Table 4. Each one demonstrated how
significant the eliminated parameter would affect the network accuracy. Apparently,
the precision of MLP-NN became higher if all the suggested parameters were used as20

the input to the model, where minimum MSE and CE were determined to be 0.05 and
0.95 for the testing data set, respectively. Meanwhile, the level accuracy of the second
network slightly decreased (MSE=0.07, CE=0.91) when COND was eliminated.

Compared with the results reported in the previous research, Rankovic et al. (2010)
developed a separate neural network model for each independent input variable in25

order to determine the most effective variable. The correlation was 0.4802 between
the conductivity and DO for the testing data set. The negative correlation of DO with
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electrical conductivity was well documented (Zaqoot et al., 2009). Although it was
evident that COND was less effective on the DO, the level of accuracy increased 3 %
when we considered it in the model input, as shown in the first network in Table 4.
Therefore, COND would not be neglected in this study. Conversely, the Coefficient of
Efficiency reduced gradually if any one of the input parameters was removed, which5

reduced the ability of ANN in the capability prediction. Furthermore, DO was found to
be sensitive to the No3 parameter, where the level accuracy of model six (eliminate
No3) decreased (MSE=0.26, CE=0.6) for the testing data set.

Singh et al. (2009) computed the DO levels in the Gomti River (India) using three-
layer feed-forward neural networks with back propagation learning. The sensitivity10

analysis revealed that NO3 provided relatively higher contributions to the network. Fig-
ure 9 shows the effect on predictive accuracy if any one of the input parameters was
removed from the model. For each of the five input parameters, removing the param-
eter dramatically increased the predictive error. Thus, the five input parameters were
essential to the model.15

The second assessment process was based on partitioning the neural network con-
nection weights in order to determine the relative importance of each input parameter
in the network (Garson, 1998; Emad et al., 2010). In this study, the proposed network
consisted of five environmental parameters. Assuming the connection weights from
the input nodes to the hidden nodes demonstrate the relative predictive importance of20

the independent parameter, the importance of each input parameter can be expressed
as follows:

Ij =

∑m=Nh
m=1

((∣∣∣w ih
jm

∣∣∣/∑Ni
k=1

∣∣∣w ih
km

∣∣∣)×∣∣∣who
mn

∣∣∣)∑k=Ni
k=1

{∑m=Nh
m=1

((∣∣∣w ih
jm

∣∣∣/∑Ni
k=1

∣∣∣w ih
km

∣∣∣)×∣∣∣who
mn

∣∣∣)} (13)

where Ij is the relative importance of jth input parameter on the output parameter,
Ni and Nh are the numbers of input and hidden neurons, respectively, and W is the25

connection weight. Meanwhile, superscripts “i ”, “h” and “o” refer to the input, hidden
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and output layers, respectively, whereas subscripts “k”, “m” and “n” refer to the input,
hidden and output neurons, respectively.

Table 5 shows the connection weights values for the proposed model. It is im-
portant to note that Garson’s algorithm uses the absolute values of the connection
weights when calculating parameter contributions. The relative importance of each5

of the input parameters as computed by Eq. 13 is shown in Fig. 10. The relative
importance showed the significance of a parameter compared with the others in the
model. Although the network did not necessarily represent physical meaning through
the weights, it suggested that all the parameters had strong effects on the prediction
of DO, where the predictor contributions ranged from 15 to 25 %. It was obvious that10

the most effective inputs were those which included oxygen containing (NO3) and oxy-
gen demanding (NH3–NL). On the other hand, Temp and pH were found to be the
least effective parameters. Moreover, COND revealed the lowest contribution on the
proposed model. These findings agreed with those found in previous evaluation (the
combinations of parameters).15

3.4 Performance of the proposed scenarios

Considering the same architecture that was used to predict dissolved oxygen at Station
1 (DONN1), the DO at Stations 2, 3 and 4 was predicted. Figure 11 demonstrates the
performance of the proposed models. Apparently, the scatter plot of the three models
showed that the error approximately fell on the ideal line except three records, which20

remarkably exceeded 15 % and were also found in the third model that was used to
predict the DO at Station 3. These three records were more deviated from the observed
value attributes due to the fact that the extreme values were found in the samples which
were polluted by noise signals owing to systematic and random errors.

The Coefficient of Efficiency (CE) and MSE computed for validation and testing data25

sets used for the three stations are presented in Table 6. The CE values for the three
stations for the validation data set were controlled within an acceptable range, i.e. 0.9–
0.97, while the CE values for the three stations for the test data set were 0.83, 0.89 and
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0.86, respectively. The respective MSE values of validation and testing data sets for
the three locations were 0.03–0.05 for DONN2, 0.03–0.10 for DONN3 and 0.06–0.10
for DONN4.

The relatively low correlation between the observed and predicted values in the test-
ing phase was perhaps due to the non-homogenous nature of water quality parame-5

ters. Moreover, Ying et al. (2007) showed that the selection of affecting factors (input
parameters) plays a key role since these factors have great impact on the forecast re-
sults. Thus, it was evident that the low correlation in this study was attributed to the
fact that, the input parameters did not include all the relevant parameters. In addi-
tion, water pollution at the downstream station was related to the discharge from the10

upstream station. Hence, to overcome the problem, this study introduced another ap-
proach (Scenario 2) so that a high level of accuracy could be reached. This approach
was related to the prediction of the DO, with consideration of the predicted DO at the
upstream station as the input to the model, as expressed by Eq. (6).

Figure 12 demonstrates the performance of the proposed models (Scenario 2). Ap-15

parently, the scatter plot of the three models showed that the error approximately fell
on the ideal line for both validation and testing data sets.

In comparison between Scenario 1 and Scenario 2, Scenario 2 was able to achieve
a high level of accuracy in simulating the magnitude and patterns of DO at all stations
and reducing the deviation error from ±15 % that reached by Scenario 1 to ±10 %.20

For further analysis, we adopted the accuracy improvement (AI) index for correlation
coefficient statistical index to measure the significance of the proposed Scenario 2 over
Scenario 1, expressed as follows:

AI(%)= (
CCScen2−CCScen1

CCScen2
) ·100 (14)

Where CCScen2 is the value of the correlation coefficient for Scenario 2, while CCScen125

is the same statistical index for Scenario 1. Examining Table 7 carefully, it can be
observed that Scenario 2 was more adequate than Scenario 1, with a significant
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improvement for all stations ranging from 4 % to 8 %. Prediction accuracy was sig-
nificantly improved after introducing Scenario 2 for all stations.

For further assessment, the proposed models were compared with the results re-
ported in the literature. Soyupak et al. (2003) employed the ANN modelling approach
to calculate the pseudo steady state time and space dependent DO concentrations in5

three different reservoirs, with entirely different properties. The correlation coefficients
between neural network estimates and field measurements were higher than 0.95. In
addition, Sengorur et al. (2006) employed the feed-forward (FF) type ANN for comput-
ing the monthly values of DO. The findings demonstrated that the ANN results were
very close to the observed values of DO where the correlation coefficient equalled to10

0.9186. Ying et al. (2007) adopted the BP neural network to forecast water quality at
Yuqiao Reservoir. The correlation between the forecast and actual measured of DO
values was 0.9418. Likewise, Kuo et al. (2007) used the back-propagation neural net-
work for predicting the dissolved oxygen in the Te-Chi Reservoir in Taiwan. The corre-
lation coefficients between the predicted values and measured data of DO were above15

0.7 for training and testing data sets. Meanwhile, Zaqoot et al. (2009) used the ANNs-
Multilayer Perceptron (MLP) network to predict the next fortnight’s dissolved oxygen
concentrations in the water of Mediterranean Sea along Gaza. The coefficient of deter-
mination between the measured and model computed values of DO was 0.996. On the
other hand, Singh et al. (2009) constructed an artificial neural network (ANN) model20

to predict the water quality at Gomti River, India. The coefficients of determination be-
tween the measured and model computed values of DO for the training, validation and
test sets were 0.70, 0.74 and 0.76, respectively. Furthermore, Rankovic et al. (2010)
developed a feed-forward neural network (FNN) model to predict the dissolved oxygen
in Gruza Reservoir, Serbia. The correlation coefficients between the predicted values25

and measured values of DO were 0.974 and 0.8738 for training and testing data sets,
respectively.

The developed model was compatible with the results of other researchers/authors.
High coefficients of correlation were obtained between the observed and predicted
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values for the test sets of 0.98, 0.96 and 0.97 for all stations. These results revealed
that the input parameters selected in this study had direct relevance with the target
(DO). The selection of input parameters might affect the model output remarkably
(Singh et al., 2009). The results also indicated that the proposed model was basi-
cally an attractive alternative, offering a relatively fast algorithm with good theoretical5

properties to predict the dissolved oxygen and can be extended to predict different
water quality parameters.

The model needs to verify when output results and the observed values are close
enough to satisfy the verification criteria. Therefore, in order to investigate the effi-
ciency of the proposed model, the verification of MLP-NN based on collection of field10

data within duration 2009-2010 is presented. Scatter plots between the observed and
predicted value for each of the DO are presented in Fig. 13. It can be seen that most
of the predicted water quality parameter values are close to the actual observation. A
value of R2 should be close to 1, R2 more than 0.9 indicates a very satisfactory model
performance, a value between 0.6- 0.9 indicates a fairly good performance, and values15

below 0.5 indicate unsatisfactory performance. The proposed model showed efficiency
in predicting the concentration of water quality parameters in the Johor River, and it was
compatible with the results of other researchers/authors. The results also indicated that
the proposed model was basically an attractive alternative, offering a relatively fast al-
gorithm with good theoretical properties to predict the water quality parameters and20

can be extended to predict different water quality parameters.

4 Conclusion

Rivers are the most important sources of water for industrial, irrigation and other uses.
The river systems are the most adversely affected due to their dynamic nature and
easy accessibility for waste disposal. The term “water quality” is used to describe the25

condition of water, including its chemical, physical and biological characteristics. Mod-
elling water quality parameters is a very important aspect in the analysis of any aquatic
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systems. Prediction of surface water quality is required for proper management of the
river basin so that adequate measure can be taken to keep pollution within permissi-
ble limits. Accurate prediction of future phenomena is the life blood of optimal water
resources management. Classical process-based modelling approaches can provide
relatively accurate predictions for water quality parameters; however, these models5

rely on data sets that require a long time to process and a large amount of input
data that is often unknown. Artificial Neural Network (ANN) is a new technique with
a flexible mathematical structure that is capable of identifying complex non-linear rela-
tionships between input and output data when compared to other classical modelling
techniques. Among many types of ANNs, the most widely used are the feed-forward10

neural network, multi-layer perceptron neural network (MLP-NN) and back-propagation
network. This study examined the potential of Multi-layer Perceptron Neural Network
(MLP-NN) in predicting the dissolved oxygen (DO) at Johor River Basin. The proposed
model showed efficiency in predicting the concentration of dissolved oxygen in Johor
River. The results revealed that the input parameters selected in this study had direct15

relevance with the target.
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Table 1. Input parameters used in previous studies for the ANN model.

Author(s)and year Input Variable Location(s)

Sengorur et al. (2006) BOD, Temp, Water discharge,
NO2-N, NO3-N

N/A

Kuo et al. (2007) pH, Chl-a, NH4N, No3N, temp,
month

Te-Chi Reservoir, Taiwan

Ying et al. (2007) Turbidity, Temp, pH, Hardness,
Alkalinity, Chloride, NH4–N,
NO2–N

Yuqiao reservoir, china

Palani et al. (2008) DO, Chl-a, temp Singapore coastal,
Singapore

Zaqoot et al. (2009) Conductivity, Turbidity, Temp,
PH, Wind speed

Mediterranean Sea along
Gaza, Palestine

Singh et al. (2009) pH, TS, T-AlK, T-Hard, CL, PO4,
K, Na, NH4N, No3N, COD

Gomti, India

Rankovic et al. (2010) Temp, PH, Chloride, Conductiv-
ity, phosphate, NH3, Mg, No2,
Fe, No3

Gruza reservoir, Serbia
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Table 2. Basic statistics of the measured water quality parameters in Johor River.

Sampling COND PH NH3-NL TEMP NO3 DO
Site (µs) – (mg L−1) (c◦) (mg L−1) (mg L−1)

DO-1 Mean 22.14 6.39 0.14 27.03 0.64 6.25
Min 3.00 5.49 0.01 24.08 0.01 2.91
Max 56.00 7.83 1.07 30.33 2.93 7.34
SD 6.67 0.45 0.18 0.83 0.36 0.59
CV 30.13 7.07 129.30 3.08 56.00 9.52

DO-2 Mean 53.80 6.22 0.10 27.20 0.66 6.15
Min 42.00 5.43 0.01 25.34 0.27 4.84
Max 69.60 7.28 0.38 29.82 1.28 6.96
SD 7.03 0.33 0.08 0.87 0.20 0.37
CV 13.06 5.39 81.43 3.19 29.40 6.10

DO-3 Mean 20.22 6.36 0.15 27.31 0.76 5.79
Min 1.00 5.67 0.01 23.35 0.01 4.43
Max 45.00 8.41 2.46 31.93 4.70 6.78
SD 6.98 0.44 0.31 1.20 0.61 0.66
CV 34.51 6.98 214.96 4.41 80.34 11.44

DO-4 Mean 20.01 6.29 0.14 27.42 0.64 5.55
Min 9.00 5.59 0.01 24.58 0.01 4.41
Max 38.00 8.09 0.83 29.78 3.22 7.53
SD 4.54 0.38 0.15 1.03 0.35 0.61
CV 22.66 6.10 106.55 3.74 53.69 11.05
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Table 3. The correlation coefficient between DO and the input parameters.

COND pH NH3-NL TEMP NO3

DO-1 0.041324 0.461876 0.057188 0.351994 0.016422
DO-2 −0.09643 0.061553 −0.21588 0.355585 −0.25981
DO-3 0.17228 −0.26767 −0.04009 0.197713 −0.40085
DO-4 −0.0658 −0.18141 −0.33326 −0.06502 −0.32051
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Table 4. Predictive accuracy if any one of the input parameters was removed from model.

Model Combination Structure MSE CE

Validate Test Validate Test

1 pH, Temp, COND, NH3–NL, No3 5-17-1 0.03 0.05 0.94 0.95
(all parameters)

2 pH, Temp, NH3–NL, No3 4-17-1 0.01 0.07 0.98 0.91
(eliminate COND)

3 Temp, COND, NH3–NL, No3 4-17-1 0.02 0.09 0.94 0.88
(eliminate pH)

4 pH, COND, NH3–NL, No3 4-17-1 0.026 0.18 0.96 0.84
(eliminate Temp)

5 pH, Temp, COND, No3 4-17-1 0.025 0.19 0.96 0.76
(eliminate NH3–NL)

6 pH, Temp, COND, NH3–NL 4-17-1 0.16 0.26 0.81 0.6
(eliminate No3)
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Table 5. Connection weights between the input and hidden layers (W1) and weights between
hidden and output layers (W2).

Neuron W1 W2

Input parameters Target

COND pH NH3–NL Temp No3 Do

1 −0.3496 −0.5559 0.3896 −2.5327 0.8759 −0.8541
2 −0.4448 1.079 1.0898 −1.1716 −1.1379 0.8674
3 −1.0216 0.669 0.5456 1.8672 1.428 −0.3121
4 1.426 0.0858 −1.5348 1.4329 −1.5608 −2.0752
5 −1.3073 −1.3222 −0.7894 −1.5151 −1.1319 0.8688
6 −0.0383 −1.0967 2.0217 −2.6691 −2.6661 −1.4198
7 −0.2122 0.3851 1.6225 −1.4701 −1.791 1.939
8 −1.1948 1.4197 0.5578 0.3979 −1.936 −1.0546
9 1.3426 −0.2442 −1.8487 1.1279 2.1421 0.8314

10 −0.5551 −2.713 −0.7412 −0.4472 1.2528 1.191
11 −1.1745 −0.3326 −1.6775 −2.2023 1.7435 −1.9648
12 −0.5291 2.4511 −1.3133 −0.2754 0.1694 1.0078
13 0.4766 −1.0507 −1.6751 0.5298 −0.8397 0.9967
14 1.5033 −0.0905 −1.6797 −0.2412 −0.8862 0.3342
15 0.5713 0.7769 −0.2276 1.4275 2.2699 −1.1364
16 −1.7212 −1.2637 −1.1528 0.9447 −1.015 −1.0251
17 0.8254 0.3256 2.8875 −0.5906 1.2672 −1.5751
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Table 6. Coefficient of Efficiency (CE) and Mean Square Error (MSE) associated with MLP-NN
models for each station at Johor River.

Model MSE CE

Validation Testing Validation Testing

DONN2 0.03 0.05 0.90 0.83
DONN3 0.03 0.10 0.97 0.89
DONN4 0.06 0.10 0.92 0.86
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Table 7. A summary of correlation coefficient for Scenario 1 and Scenario 2 and the AI %.

Model Scenario 1 Scenario 2 AI

CC CC CC (%)

DONN2 0.91 0.98 8
DONN3 0.91 0.96 6
DONN4 0.93 0.97 4
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Fig. 1: Map showing the geographical setting of the survey area with four field 

monitoring stations on the main stream 

 

 

 

 

 

 

 

Fig. 1. Map showing the geographical setting of the survey area with four field monitoring
stations on the main stream.

6100

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/hessd-8-6069-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/hessd-8-6069-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 6069–6112, 2011

Integrated versus
isolated scenario for

prediction

A. A. Najah et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 
 

Fig. 2: A typical multi-layer perceptron neural network architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A typical multi-layer perceptron neural network architecture.
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Fig. 3: A schematic representation for Scenario 2 

 

 

 

 

 

Fig. 3. A schematic representation for Scenario 2.

6102

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/hessd-8-6069-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/hessd-8-6069-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 6069–6112, 2011

Integrated versus
isolated scenario for

prediction

A. A. Najah et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 
 

Fig. 4: An optimal architecture of ANN, together with a flowchart of the 

algorithm‘s procedure 
Fig. 4. An optimal architecture of ANN, together with a flowchart of the algorithm’s procedure.
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Fig. 5: Statistical properties (i.e. mean, standard deviation, range) for training, 

validation and testing data sets 

 

 

 

Fig. 5. Statistical properties (i.e. mean, standard deviation, range) for training, validation and
testing data sets.

6104

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/hessd-8-6069-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/6069/2011/hessd-8-6069-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 6069–6112, 2011

Integrated versus
isolated scenario for

prediction

A. A. Najah et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 
 

Fig. 6: Relationship between the number of neurons and MSE 

 

 

Fig. 6. Relationship between the number of neurons and MSE.
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Fig. 7:  Training, validation and test mean squared errors for the developed model 

 

 

 

 

Fig. 7. Training, validation and test mean squared errors for the developed model.
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Fig. 8:  A scatter diagram of the predicted versus observed DO for validation (in 

green dot) and testing (in yellow dot) 

 

 

 

Fig. 8. A scatter diagram of the predicted versus observed DO for validation (in green dot) and
testing (in yellow dot).
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Fig. 9: Percentage error of the model if any one of the input parameters was 

removed 

 

Fig. 9. Percentage error of the model if any one of the input parameters was removed.
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Fig. 10: The relative importance of each input parameter at Station 1 

 

 

 

 

 

Fig. 10. The relative importance of each input parameter at Station 1.
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(a) (b) 

 

 

 

 

 

 

 

 

 

 
 

(c)  

Fig. 11. Scatter diagrams of the predicted versus observed DO for validation (in green dot) and
testing (in yellow dot); (a) DO-NN2, (b) DO-NN3 and (c) DO-NN4.
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(c)  

Fig. 12. Scatter diagrams of the predicted versus observed DO for validation (in green dot) and
testing (in yellow dot); (a) DO-NN2, (b) DO-NN3 and (c) Do-NN4.
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Fig. 13 : Scatter plots between the observed and predicted value for each of the DO 

at each stations 
Fig. 13. Scatter plots between the observed and predicted value for each of the DO at each
stations.
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