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Abstract

Calculating return periods and design quantiles in a multivariate framework is a difficult
problem: essentially, this is due to the lack of a natural total order in multi-dimensional
Euclidean spaces. This paper tries to make the issue clear. First, we outline a possible
way to introduce a coherent notion of multivariate total order, and discuss its conse-5

quences on the calculation of multivariate return period: in particular, the latter is based
on Copulas and the Kendall’s measure, which provides a consistent notion of multivari-
ate quantile. Secondly, we introduce several approaches for the identification of critical
design events: these latter quantities are of utmost importance in practical applications,
but their calculation is yet limited, due to the lack of a suitable theoretical setting where10

to embed the problem. Throughout the paper, a case study involving the behavior of a
dam is used to illustrate the new concepts outlined in this work.

1 Introduction

The Return Period (hereinafter, RP) of a prescribed event is frequently adopted in
hydrology (as well as in water resources and civil engineering, and more generally in15

geophysical and environmental sciences) as a criterion for the identification of critical
events, and provides a means for rational decision making (for a review see Singh
et al., 2007, and references therein).

The traditional definition of the RP is as “the average time elapsing between two
successive realizations of a prescribed (critical) event”, which clearly has a statistical20

base. Equally important is the related concept of design quantile, usually defined as
“the value of the variable(s) characterizing the event associated with a given RP”. In
engineering practice, the choice of the RP depends upon the importance of the struc-
ture, and the consequences of its failure. For example, the RP of a dam design quantile
is usually 1000 years or more (Midttomme et al., 2001), while for a sewer it is about25

5–10 years (Briere, 1999).
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While in the univariate case the RP and the design quantile are usually identified
without ambiguity – and widely used in the engineering practice (Chow et al., 1988) –
in the multivariate one this is not so, essentially due to the lack of a natural total order in
multi-dimensional Euclidean spaces. In particular, the identification problem of design
events in a multivariate context is of fundamental importance: however, its troublesome5

nature has strongly limited the application of multivariate analyses. Recently, several
efforts have been spent on the issues of multivariate RP’s and quantiles (see, e.g.,
Serfling, 2002; Belzunce et al., 2007; Chebana and Ouarda, 2011a, 2009; Chaouch
and Goga, 2010, and references therein; for a methodology to identify multivariate ex-
tremes by using depth functions see Chebana and Ouarda, 2011b). Here we address10

the following crucial question: “How is it possible to calculate, in a meaningful way, the
critical RP’s and the corresponding design event(s) in the multivariate case?” Below,
we outline how to circumvent the problem, and provide consistent answers.

As we shall show later, the notion of multivariate RP is strictly related to the one of
Copula. The use of copulas in environmental sciences is recent and rapidly growing.15

Shortly, a multivariate copula C is a joint distribution on Id = [0,1]d with Uniform mar-
gins. The link between a multivariate distribution F and the associated d -dimensional
copula C is given by the functional identity stated by Sklar’s Theorem (Sklar, 1959):

F(x1,...,xd )=C(F1(x1),...,Fd (xd )) (1)

for all x ∈ Rd , where the Fi ’s are the univariate margins of F. If all the Fi ’s are con-20

tinuous, then C is unique. Most importantly, the Fi ’s in Eq. (1) only play the role of
(geometrically) re-mapping the probabilities induced by C on the subsets of Id onto
suitable subsets of Rd , without changing their values: viz., the dependence structure
modeled by C plays a central role in tuning the probabilities of joint occurrences. In
fact, under weak regularity conditions, any point x ∈ Rd can be uniquely re-mapped25

over u∈ Id (and vice-versa) via the Probability Integral Transform:

(u1,...,ud )= (F1(x1),...,Fd (xd )). (2)
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For a thorough theoretical introduction to copulas see Joe (1997); Nelsen (2006); for
a practical approach see Salvadori et al. (2007); Jaworski et al. (2010). In order to
avoid troublesome situations, hereinafter we shall assume that F is continuous (but
not necessarily absolutely continuous), and strictly increasing in each marginal: these
regularity constraints are rather weak, and satisfied by the majority of the distributions5

used in applications. Clearly, also pathological cases can be carried out, but they
require suitable techniques that go beyond the scope of this work.

Later we shall use the Kendall’s distribution (or measure) function KC : I→ I (Genest
and Rivest, 1993, 2001) given by

KC(t)=P(W ≤ t)=P(C(U1,...,Ud )≤ t), (3)10

where t ∈ I is a probability level, W =C(U1,...,Ud ) is a univariate random variable (here-
inafter, r.v.) taking value on I, and the Ui ’s are Uniform r.v.s on I with copula C. Note that
Eq. (3) represents a multivariate quantile relationship (Genest and Rivest, 2001; Nappo
and Spizzichino, 2009): practically, it measures the probability that a random event will
appear in the region of Id defined by the inequality C(u)≤ t. Thus, as we shall see, KC15

turns out to be a fundamental tool for introducing a suitable (copula-based) definition
of RP for multivariate events.

Unfortunately, at present no general analytical expressions of KC are known – except
for special cases, like the one of bivariate Extreme Value copulas (Ghoudi et al., 1998),
and some Archimedean copulas (McNeil and Nešlehová, 2009) – and it is necessary20

to resort to simulations (see, e.g., Algorithm 1 outlined later).
The paper is organized as follows. In Sect. 2 we first illustrate the case study. In

Sect. 3 we introduce a suitable notion of multivariate RP, and in Sect. 4 we show how
to calculate the corresponding multivariate quantile. Then, in Sect. 5 we present two el-
ementary strategies to calculate critical design events in a multivariate context. Finally,25

in Sect. 6 we discuss the results outlined in the paper, and draw some conclusions.
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2 The case study

Although this work is of methodological nature, we feel important to illustrate with prac-
tical examples the new concepts introduced. For this reason, we first present the case
study that we shall use throughout the paper.

The data are collected at the Ceppo Morelli dam, and are essentially the same as5

those investigated in De Michele et al. (2005), to which we make reference for further
details. The dam, completed in 1929, is located in the valley of Anza catchment, a sub-
basin of the Toce river (Northern Italy), and was built to produce hydroelectric energy.
The dam is characterized by a small water storage of about 0.47×106 m3. The min-
imum level of regulation is 774.75 m a.s.l., while the maximum is 780.75 m a.s.l. The10

maximum water level is at 782.5 m a.s.l., and the dam crest level is at 784 m a.s.l. The
dam has an uncontrolled spillway (84 m long) at 780.75 m a.s.l., and also intermediate
and bottom outlets (the latter ones are obstructed by river sediments).

In De Michele et al. (2005), “undisturbed” flood hydrographs incoming the reservoir
were fixed by using the inverse reservoir routing, the water levels in the reservoir, and15

the operations on the controlled outlets. Then, maximum annual flood peaks Q and
volumes V were identified and selected for 49 years, from 1937 to 1994. As a result of
a thorough investigation, almost all of the occurrence dates of the Q’s and the V ’s were
the same: i.e., they happened during the same flood event.

As an improvement over De Michele et al. (2005), beyond the pair (Q,V ), also the20

initial water level L in the reservoir before the flood event (Q,V ) is considered in this
work, in order to analyse the triple (Q,V,L) of practical interest: in fact, on the one hand
L represents the starting state of the dam; on the other hand, (Q,V ) is the hydrologic
“forcing” to the structure. Clearly, there are physical reasons to assume that L is inde-
pendent of (Q,V ) – see also below. The sample mean of L is about 780.44 m a.s.l.,25

with a sample standard deviation of about 1 m a.s.l. The small variability of L with re-
spect to its range (here [774.75,780.75] is the regulation range), is mainly due to the
management policy of the reservoir: the target of the dam manager is to keep a high
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water level, in order to get the maximum benefit concerning the production of electric
energy.

Using the pair (Q,V ), it is possible to calculate the associated flood hydrograph with
peak Q and volume V , once the shape of the hydrograph has been chosen. As first
approximation, it is possible to consider a triangular shape, where the base time is5

equal to Tb = 2V/Q, the time of rise equals Tr = Tb/2.67, and the time of recession
is equal to 1.67Tr (see Soil Conservation Service, 1972; Chow et al., 1988, p. 229).
Consequently, the flood hydrograph q is given by

q(t)=

{
1.335tQ2/V, 0≤ t≤ Tr

1.6Q−0.8tQ2/V, Tr ≤ t≤ Tb
.

Later, in Sect. 5, we shall test the behavior of the dam subject to selected hydrographs.10

More particularly, we shall first operate the reservoir routing of the flood hydrograph
(see, e.g., Bras, 1990, p. 475–478; Zoppou, 1999) considering as outlet only the un-
controlled spillway, and then we shall check whether or not the reservoir level exceeds
the crest level of the dam.

In Fig. 1 we show the trivariate plot of the available observations, as well as the fits of15

the marginal distributions. However, we shall not insist on this point, being of secondary
importance with respect to the actual methodological target of the paper. The GEV law
is used to model the statistics of both Q and V , since these are annual maxima: the
estimates of the parameters are reported in Table 1. The fits are valuable, as they
passed standard goodness-of-fit tests (namely, Kolmogorov–Smirnov and Anderson–20

Darling) at all usual levels (viz., 1 %, 5 %, and 10 %). Instead, the behavior of the
variable L is quite tricky (as explained above, the water level is arbitrarily fixed by the
dam manager): for this reason, its law is calculated via a non-parametric Normal Kernel
estimation (Bowman and Azzalini, 1997). As a result, also in this case the Kolmogorov-
Smirnov test is passed at all usual levels.25

REMARK 1. The trivariate plot of the observations, as shown in Fig. 1, is the first step
usually carried out by unskilled practitioners to investigate the multivariate behavior of

5528

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/5523/2011/hessd-8-5523-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/5523/2011/hessd-8-5523-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 5523–5558, 2011

Multivariate design

G. Salvadori et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the phenomenon. However, we want to stress that this type of graph only provides
partial information, and should not be used to draw rough conclusions about the de-
pendence structure of (Q,V,L) – see below, and also Genest and Favre (2007) for
a thorough review.

A further step concerns the investigation of the joint behavior of the variables (Q,V,L):5

as is typical in copula analysis, we shall use the normalized ranks to carry out a non-
parametric study. The trivariate rank-plot shown in Fig. 2 provides some rough indica-
tions about the global dependence structure (i.e., the copula) linking the three variables
(Q,V,L): as pointed out in Remark 1, this graph is not equivalent to the trivariate plot
shown in Fig. 1.10

As already mentioned above, there are physical reasons to assume that L is inde-
pendent of (Q,V ): the rank-plots shown in Fig. 2 support this fact. Indeed, the sample
is rather uniformly sparse in both the (Q,L) and (V,L) planes. Also, the estimates of
the Kendall’s τ and the Spearman’s ρ are not statistically significant (as confirmed by
the corresponding p-values), and formal tests of independence suggest to accept the15

hypothesis that L is effectively independent of (Q,V ). On the contrary, the variables
(Q,V ) are significantly positively associated (i.e., concordant), and thus Q and V are
not independent: the estimates of both the Kendall’s τ and the Spearman’s ρ are large,
and the corresponding p-values are negligible (see the values reported in Fig. 2).

As in De Michele et al. (2005), a Gumbel copula was used to model the depen-20

dence between Q and V , with parameter θ≈3.1378, calculated via the inversion of the
Kendall’s τ. The ability of this copula to model the available bivariate data is checked
via robust multivariate goodness-of-fit tests (Genest et al., 2009; Berg, 2009): the re-
sulting large p-values indicate that the Gumbel copula CQV cannot be rejected at all
standard levels. Furthermore, the analysis of the (Q,V ) rank-plot in Fig. 2 shows a sig-25

nificant association between these two variables in the upper-right corner of the unit
square: in fact, the extreme pairs practically lie on the main diagonal. Thus, it is not
a surprise that the fitted Gumbel copula, having a large upper tail dependence coef-
ficient λUpp ≈ 0.75 (Nelsen, 2006; Salvadori et al., 2007) is suitable for modeling the
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dependence structure of the pair (Q,V ). In passing, note that CQV is an Extreme Value
copula (Nelsen, 2006): since both FQ and FV are GEV distributions, it turns out that
FQV =CQV (FQ,FV ) is a bivariate Extreme Value law (after all, Q and V are annual max-
ima).

Given the previous results, since L can be assumed to be independent of (Q,V ), it5

is immediate to construct a suitable trivariate copula CQV L to model the dependence
structure of the triple (Q,V,L):

CQV L(u,v,w)=CQV (u,v) ·w, (4)

where (u,v,w)∈ I3. As above, the ability of this copula to model the trivariate data is
properly checked, and the resulting large p-values indicate that it cannot be rejected10

at all standard levels. In passing, note that also CQV L is an Extreme Value copula. In
addition, since CQV is Archimedean (Nelsen, 2006), then CQV L is a particular case of
a “nested” Archimedean copula (Joe, 1997; Grimaldi and Serinaldi, 2006; Hering et al.,
2010; Härdle and Okhrin, 2010). However, FQV L = CQV L(FQ,FV ,FL) is not a trivariate
Extreme Value law, since FL is not a GEV distribution.15

3 Multivariate return period

In order to provide a consistent theory of multivariate RP’s, it is first necessary to pre-
cisely define the abstract framework where to embed the question. Hereinafter, we
shall consider as the object of our investigation a sequence X = {X1,X2,...} of indepen-
dent and identically distributed d -dimensional random vectors, with d > 1: thus, each20

Xi has the same multivariate distribution F as of the random vector X∼F=C(F1,...,Fd )
describing the phenomenon under investigation, with suitable marginals Fi ’s and d -
copula C. For example, we may think of a set of flood observations given by the pairs
of non-independent r.v.’s Flood Peak – Flood Volume, joined by the copula C. The case
of a non-stationary sequence X is rather tricky, and will be discussed in a future work.25
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In applications, usually, the event of interest is of the type {X∈C}, where C is a non-
empty Borel set in Rd collecting all the values judged to be “critical” according to some
suitable criterion. Note that the Borel family includes all the sets of interest in practice
(like, e.g., the intervals (−∞,x1),(x1,x2),(x2,∞), as well as the corresponding multi-
variate versions). Let µ> 0 be the average inter-arrival time of the realizations in X5

(viz., µ is the average time elapsing between Xi and Xi+1). Following, e.g., Embrechts
et al. (2003), it is clear that the univariate r.v.’s {Bi = IC(Xi )} form a Bernoulli process
(where I is an indicator set function), with positive probability of “success” pC given by

pC =P(X∈C). (5)

Then, it makes sense to calculate the first random time AC that the sequence B =10

{B1,B2,...}, generated by X , takes on the value 1 (viz., the first random time that X
enters the “critical” set C):

AC =min{i : Xi ∈C}. (6)

Clearly, AC follows a Geometric distribution with parameter pC, and therefore its ex-
pected value is15

E(AC)=µC =µ/pC. (7)

Given the well known “memoryless property” of the Geometric distribution, and the
features of the Bernoulli process (see, e.g., Feller, 1971), it is clear that µC also cor-
responds to the average inter-arrival time between two successive realizations of the
event {X∈C}. Evidently, µC ranges in [µ,+∞): for example, if annual maxima are in-20

vestigated, then µ= 1 year, and hence µC = 1/pC ≥µ. We are now ready to introduce
a consistent notion of RP.
DEFINITION 1. The RP associated with the critical set C ⊂Rd is given by µC.
REMARK 2. Definition 1 is a very general one: the critical set C may be constructed
in order to satisfy broad requirements, useful in different applications. Indeed, most of25
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the approaches already present in literature are particular cases of the one outlined
above.

As a univariate example, let X be a r.v. with distribution FX , and let x∗ denote a pre-
scribed critical design value. Then, e.g., in hydrology, if droughts are of concern, x∗ may
represent a small value of river flow, and the critical realizations of interest are those5

for which X < x∗ (viz., C = [0,x∗)). Instead, if floods are of concern, x∗ may indicate
a large value of river flow, and the critical realizations of interest are those for which
X >x∗ (viz., C = (x∗,∞)). According to Definition 1 and Eq. (7), the corresponding RP’s
are µ/FX (x∗) in the former case, and µ/(1−FX (x∗)) in the latter one.
REMARK 3. The examples given above emphasize the two basic elements necessary10

(and sufficient) in the traditional theory of univariate return periods to define the events
of interest: (i) a design threshold (here, x∗), and (ii) a total order relation (here, “≤” on
R). The same approach can be also adopted in the multivariate case, provided that
consistent notions of multivariate threshold and total order are properly introduced in
Rd .15

The origin of all difficulties in introducing a coherent notion of multivariate RP is the
lack of a “natural” total order in multi-dimensional Euclidean spaces. Unfortunately, this
basic problem is not clear to practitioners, and needs to be fixed before proceeding,
since it represents a pivotal step. We briefly recall that, if a binary order relation is a total
order on a given set, then any pair of elements in the set are mutually comparable under20

the relation. The following definition introduces a total order in Rd .
DEFINITION 2. Let x,y ∈ Rd , and let F = C(F1,...,Fd ) be a multivariate distribution.
Then, by definition,

x
F
�y ⇐⇒ F(x)≤F(y). (8)

The binary relation
F
� is called the total order induced by F over Rd .25

REMARK 4. The idea behind Definition 2 can be found, for instance, in Decision Analy-
sis, when the effects in a decision-making problem are multi-dimensional in nature, and
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F might be a payoff or an utility function (see, e.g., Keeney and Raiffa, 1976; Belloni
and Winkler, 2011).

Before discussing the practical applications and consequences of Definition 2 we
need to introduce the following notion.
DEFINITION 3. Given a d -dimensional distribution F=C(F1,...,Fd ) and t ∈ (0,1), the5

critical layer LF
t of level t is defined as

LF
t = {x∈Rd : F(x)= t}. (9)

Clearly, LF
t is the iso-hyper-surface (having dimension d−1) where F equals the con-

stant value t: thus, LF
t is a (iso)line for bivariate distributions, a (iso)surface for trivariate

ones, and so on. Evidently, for any given x∈Rd , there exists a unique critical layer LF
t10

supporting x (say, using a quick-and-dirty notation, LF
x): namely, the one identified by

the level t = F(x). Note that, thanks to Eq. (2), there exists a one-to-one correspon-
dence between the two iso-hyper-surfaces LC

t (pertaining to C in Id ) and LF
t (pertaining

to F in Rd ).
The critical layer LF

t partitions Rd into three non-overlapping and exhaustive regions:15

1. R<
t , the sub-critical region, containing all the points that (in the

F
�-order sense) are

smaller than any point on LF
t ;

2. LF
t , the critical layer, where F≡ t;

3. R>
t , the super-critical region, containing all the points that (in the

F
�-order sense)

are larger than any point on LF
t .20

Practically, at any occurence of the phenomenon, only three mutually exclusive and
exhaustive things may happen: either the realization lies in the sub-critical region, or it
is critical, or it lies in the super-critical region. Note that all the three regions R<

t , LF
t ,

and R>
t are Borel sets.
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Thanks to the above discussion, it is now clear how to introduce consistent notions of

multivariate threshold, i.e. LF
t , and total order, i.e.

F
�, in Rd . Obviously, many others are

possible, but those given above are quite “natural” ones, since essentially they depend
upon the multivariate distribution F ruling the stochastic dynamics of the phenomenon
under investigation. In particular, a variant of Definition 2 can be given as follows:5

x
F
�y ⇐⇒ P(X∈R<

r )≤P(X∈R<
s ), (10)

where r and s are, respectively, the levels of the critical layers associated with x and
y. Then, the following notion of multivariate RP is analogous to the one used in the
univariate framework.
DEFINITION 4. Let X be a multivariate r.v. with distribution F=C(F1,...,Fd ). Also, let10

LF
t be the critical layer supporting X, and R>

t be the corresponding super-critical region.
Then, the (super-critical) RP TX associated with X is defined as

TX =µ/P(X∈R>
t ). (11)

Clearly, an analogous definition can also be given by considering a sub-critical region
R<
t . Now, in view of the results outlined in Nelsen et al. (2001, 2003), it is immediate to15

show that

TX =
µ

νF({x∈Rd : F(x)> t})

=
µ

1−νF({x∈Rd : F(x)≤ t})

=
µ

1−KC(t)
,

(12)

where νF is the probability measure induced by F over Rd , and KC is the Kendall’s
distribution function associated with C (see Eq. 3 and the ensuing discussion).
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DEFINITION 5. The quantity

κX =
µ

1−KC(t)
(13)

is called the Kendall’s RP of the realization X belonging to LF
t (hereinafter, KRP).

REMARK 5. Clearly, κX is implicitly a function of the critical level t, uniquely identified
by the relation t=F(X). The KRP partitions the sample space Rd into three disjoint and5

exhaustive regions: namely, R<
t , LF

t , and R>
t . Indeed, all the sub-critical realizations

(i.e., those Y∈R<
t ) have a KRP κY <κX, whereas all the super-critical ones (i.e., those

Y∈R>
t ) have a KRP κY >κX. Instead, all the realizations associated with LF

t share the
same KRP κX.

For the sake of convenience, we report below the algorithm explained in Salvadori10

and De Michele (2010) for the calculation of KC (see also Genest and Rivest, 1993),
which yields a consistent maximum-likelihood estimator of KC. Here we assume that
the copula model is well specified, i.e. it is available in a parametric form.
ALGORITHM 1. Calculation of the Kendall’s measure function KC.

1. Simulate a sample u1,...,um from the d -copula C.15

2. For i =1,...,m calculate vi =C(ui ).

3. For t ∈ I estimate K̂C(t)= 1
m

∑m
i=11(vi ≤ t).

As an illustration, in Fig. 3a we plot an estimate of the function KC associated with
the copula CQV L: here Algorithm 1 is used, running a simulation of size m= 5×107

(thus, almost a “continuous” approximation is achieved). Also shown is the empirical20

estimate of KC calculated by using the available observations: the horizontal ties are
simply due to the small sample size.

Roughly, if the super-critical region R>
t is used to identify the “dangerous” occur-

rences (viz., involving the events “exceeding” the prescribed critical layer, as in the
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approach outlined above), then, the sub-critical ones are safe realizations, whereas
the critical ones are alert events, and the super-critical ones are potentially destructive
occurrences. As a consequence, a notion of criticality (total) order can be introduced
in Rd via the following formula:

x
c
�y if κx ≤ κy. (14)5

In simple words, x is “less critical” than y if its KRP is smaller than the one of y: this ex-
actly corresponds to the intuitive meaning of the concept of return period. Conversely,
y is “more critical” than x if it is more improbable to exceed the critical layer associated
with y than the one associated with x.

4 Multivariate quantile10

Traditionally, in the univariate framework, once a RP (say, T ) is fixed (e.g., by design
or regulation constraints), the corresponding critical probability level p is calculated as
1−p=P(X > xp) = µ/T , and by inverting FX it is then immediate to obtain a critical

quantile xp = F (−1)
X (p), which is usually unique. Then, xp is used in practice for design

purposes and rational decision making. As shown below, the same approach can15

also be adopted in a multivariate setting: the next definition is fundamental, since it
introduces a coherent notion of multivariate quantile (to be compared with Belzunce
et al., 2007).
DEFINITION 6. Given a d -dimensional distribution F=C(F1,...,Fd ) with d -copula C,
and a critical probability level p∈ I, the critical multivariate quantile qp ∈ I of order p is20

defined as

qp = inf{t ∈ I : KC(t)=p}=K (−1)
C (p), (15)

where K (−1)
C is the inverse of KC.
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REMARK 6. Definition 6 provides a close analogy with the definition of univariate
quantile: indeed, recall that KC is a univariate distribution function (see Eq. 3), and
hence qp is simply the quantile of order p of KC. Thanks to Eq. (2), it is clear that the

critical layer LF
qp

is the iso-hyper-surface in Rd where F takes on the value qp, while

LC
qp

is the corresponding one in Id where the related copula C equals qp.5

Now, let LF
qp

be fixed. Then, according to Eq. (3), p = KC(qp) =
P(C(F1(X1),...,Fd (Xd )) ≤ qp). Therefore, p is the probability measure induced by C
on the sub-critical region R<

qp
, while (1−p) is the one of R>

qp
. From a practical point

of view this means that, in a large simulation of n independent d -dimensional vectors
extracted from F, np realizations are expected to lie in R<

qp
, and the others in R>

qp
.10

REMARK 7. It is worth stressing that a common error is to confuse the value of the
copula C with the probability induced by C on Id (and, hence, on Rd ): on the criti-
cal layer LC

qp
it is C = qp, but the corresponding sub-critical region R<

qp
has probabil-

ity p= KC(qp) 6= qp, since KC is usually non-linear (the same rationale holds for the
super-critical region R>

qp
). In other words, while in the univariate case the values of FX15

correspond to the probabilities induced on the Real line (specifically, on the sub-critical
region), this is not so in the multivariate case. As a consequence, FX cannot be freely
substituted for C, otherwise inconsistencies have to be expected, and the different roles
played by these two functions must not be confused and used improperly (see, e.g.,
Zhang, 2005; Singh et al., 2007, and below).20

Since KC is a probability distribution, and qp is the corresponding quantile of order
p, we could use a standard bootstrap technique (see, e.g., Davison and Hinkley, 1997)
to estimate qp if it cannot be calculated analytically. The idea is simple, and stems
directly from the very definition of qp: viz., to look for the value qp of C such that, in
a simulation of size n, np realizations show a copula value less than qp. Then, by25

performing a large number of independent simulations of size n, the sample average of
the estimated qp’s is expected to converge to the true value of qp by virtue of the Law
of Large Numbers (see also Genest and Rivest, 1993; Barbe et al., 1996). A possible

5537

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/5523/2011/hessd-8-5523-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/5523/2011/hessd-8-5523-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 5523–5558, 2011

Multivariate design

G. Salvadori et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

algorithm is given below, most suitable for vectorial software. Here we assume that the
copula model is well specified, i.e. it is available in a parametric form.
ALGORITHM 2. Calculation of qp. First of all, choose a sample size n, a critical
probability level p, the total number of simulations N, and fix the critical index k = bnpc.
for i =1 :N5

S = sim (C;n); % simulate n d -vectors from copula C
C=C(S); % calculate C for simulated vectors
C = sort (C); % sort-ascending simulated C values
E (i )=C(k); % store new estimate of qp into vector E
q = Mean(E ); % calculate new mean estimate of qp10

Q(i )=q; % store new mean estimate of qp into vector Q
end

Then, once the loop is completed, q provides a consistent estimate of the critical
multivariate quantile qp of order p. Practically, Algorithm 2 does the “inverse” task of15

Algorithm 1. The bootstrap method may also yield an approximate confidence inter-
val for qp (see DiCiccio and Efron, 1996, for more refined solutions): for instance, at
a 10 % level, the random interval (q0.05,q0.95) can be used, where q0.05 and q0.95 are,
respectively, the quantiles of order 5 % and 95 % extracted from the vector Q. Using
Algorithm 2 (and setting n= 5×105, p= 0.999, and N = 5×105, for a total of 250×109

20

simulated triples), we estimated q0.999 ≈0.946519 for the copula CQV L of interest here,
and a 10 % confidence interval (0.944570,0.948446), a process that took about 4 days
of CPU time on a iMac equipped with a 3,06 GHz Intel Core 2 Duo processor and
8 GB RAM. As an illustration, in Fig. 3b we show an estimate of the function KC, as-
sociated with the copula CQV L, at the critical quantile t∗ ≈ 0.946519 (corresponding to25

a millenary KRP): as expected, the value is almost exactly equal to 99.9 %.
As a further illustration, in Fig. 4 we plot the critical iso-surface LC

t∗ of the trivariate
copula CQV L for the critical level t∗ ≈ 0.946519, corresponding to a regulation return
period of 1000 years (viz., all the realizations on LC

t∗ have a KRP equal to 1000 years).
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Then, CQV L = t∗ for all points belonging to LC
t∗ . Instead, CQV L < t∗ (and κX < 1000

years) in the region R<
t∗ “below” LC

t∗ , the one containing the origin 0= (0,0,0), whereas

CQV L > t∗ (and κX > 1000 years) in the region R>
t∗ “above” LC

t∗ , the one containing the
upper corner 1 = (1,1,1). On average, only 0.1% of the realizations extracted from
a simulation of CQV L are expected to lie in the super-critical region. However, the level5

of the critical layer is t∗ =q0.999 ≈ 0.946519<p= 0.999, as indicated by the diamonds
markers in the plot.

As a further example, consider that the super-critical region identified by the critical
layer LF

0.999 (where the multivariate distribution F, or, equivalently, the copula C, takes
on the value 0.999) has an estimated probability smaller than 10−6, and a correspond-10

ing KRP of about 3×106 years: practically, only one realization of CQV L out of 3×106

simulations is expected to lie in such a super-critical region (instead of 1 out of 1000).
Evidently, if F (or C) were substituted for KC in Eq. (13) during the design phase, then
the structure to be constructed would result over-sized (being expected to withstand
stunning extreme events), and would yield a waste of money.15

5 Design event

The situation outlined in the previous section is generally similar to the one found in
the study of univariate phenomena, where a single r.v. X with distribution FX is used to
model the stochastic dynamics. However, as already mentioned, the multivariate case
generally fails to provide a natural solution to the problem of identifying a unique design20

realization. In fact, even if also the layer LF
t acts as a (multi-dimensional) critical thresh-

old, there is no natural criterion to select which of the ∞d−1 points lying on LF
t should

be used as a design realization. In other words, in a multivariate environment, the sole
concept of RP may not be sufficient to identify a design quantile, and additional consid-
erations may be required. Mathematically speaking, while in the univariate framework25

a single total order over R may suffice to identify a critical design realization, in the
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multivariate case it may be necessary to introduce suitable criteria in order to pick out
a “characteristic” realization over the critical layer of interest. In the following, we out-
line possible ways to carry out such a selection. Clearly, several approaches can be
proposed, each one possibly yielding a different solution: below, we show two possible
elementary strategies to deal with the problem.5

REMARK 8. The design phase should not be confused with the risk assessment one.
In fact, the target of the former one is to provide characteristic realizations useful for
planning a structure before it is built (i.e., only the hazard component is taken into
account), whereas the latter one aims at pointing up possible critical situations – after
the structure has been built – by further introducing the impact ingredient. In simple10

words, the design phase should only provide the “typical size” of the realizations that
the structure to be constructed is expected to withstand during its lifetime in a given
meteo-climatic region.

The basic idea is simply to introduce a suitable function (say, w) that “weighs” the re-
alizations lying on the critical layer of interest. Following this approach, the practitioner15

can then freely choose the criterion (i.e., the function w) that best fits the practical
needs. Clearly, without loss of generality, w can be assumed to be non-negative. In
turn, a “design realization” can be defined as follows.
DEFINITION 7. Let w : LF

t → [0,∞) be a weigh function. The design realization δw ∈LF
t

is defined as20

δw(t)=argmax
x∈LF

t

w(x), (16)

provided that the argmax exists and is finite.
REMARK 9. In general, the unicity of the maximum may not be guaranteed. When
this happens, a recourse to physical/phenomenological considerations, or to additional
procedures (like, e.g., maximum information/entropy schemes Jaynes, 2003), may help25

solving the problem. Furthermore, note that different copulas may share the same
Kendall’s measure KC, and hence the same KRP (e.g., all the bivariate Extreme Value
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copulas with the same Kendall’s τ Ghoudi et al., 1998). However, in general, the critical
layers of such copulas will have a different geometry, and, in turn, will provide different
design realizations.

In passing, we note that, in the present case study, the distribution FQV L and the
copula CQV L are trivariate, and hence the corresponding critical layers are simply two-5

dimensional surfaces in R3 and I3, respectively. Figure 4 shows the critical layer of level
t∗ pertaining to CQV L, and the corresponding one pertaining to FQV L can be drawn by
exploiting Eq. (2). Now, for the sake of graphical illustration, it is possible to parametrize
LF
t∗ in polar coordinates (say, (α,r)) via a one-to-one transformation, and thus re-map

and plot any function w defined over LF
t∗ onto the rectangle (0,π/4)×(0,r̃), for a suitable10

maximum ray r̃ . In turn, it is rather easy to have a peek of the behavior of any weigh
function w over LF

t∗ .
REMARK 10. A delicate problem may arise when adopting the approach outlined
above: to make the point clear, consider the following example. Suppose that we use
the duration of a storm and the storm intensity as the two variables of interest. In a fast15

responding system (e.g., a sewer structure), a storm having short duration but high
intensity may cause a failure, whereas the same storm may not cause any problem at
a catchment level. In the catchment, however, a storm with long duration and interme-
diate to low intensity may cause a flood event, whereas the same storm does not cause
any problem to the sewer system. Now, as a matter of principle, the design realization20

δw for the given return period (i.e., the “typical” critical storm calculated according to
the strategy illustrated here) may not cause any problem in both systems, and therefore
these would be wrongly designed. Practically, the sewer systems should be designed
using critical design storms of short durations and high intensities, whereas a structure
in the main river of the watershed should be designed using storms of long durations25

and low intensities. However, the problem is more apparent than real. In fact, there are
neither theoretical nor practical limitations to restrict the search for the maxima in Eq.
(16) over a suitable sub-region of LF

t∗ : remember that all the realizations on the criti-
cal layer share the same prescribed KRP. Thus, when a sewer system is of concern,
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only storms having short durations and high intensities could be considered, whereas
a critical design storm for a structure in the main river could be spotted by restricting
the attention to storms of long durations and low intensities. Roughly speaking, in the
approach outlined here, the calculation of the critical design realization can be made
dependent on both the environment in which a structure should be designed, as well5

as on the stochastic dynamics of the phenomenon under investigation.
For the sake of illustration, below we introduce two elementary weigh functions.

5.1 Component-wise excess design realization

A realization lying on the critical layer LF
t may be marked as critical when all of its

marginal components are exceeded with the largest probability. In simple words, we10

suggest to look for the point(s) x= (x1,...,xd )∈LF
t such that it is maximum the proba-

bility that a super-critical realization y= (y1,...,yd ) satisfies all the following component-
wise inequalities:

y1 ≥x1,...,yd ≥xd , (17)

or y>x using a simplified notation. The next definition is immediate.15

DEFINITION 8. The Component-wise excess weigh function wCE is defined as

wCE(x)=P(X∈ [x,∞)), (18)

where X has distribution F=C(F1,...,Fd ), and [x,∞) is the hyper-rectangle in Rd whose
points satisfy all the inequalities stated in Eq. (17).

Then, by restricting our attention to the critical layer LF
t , the following definition is20

immediate.
DEFINITION 9. The Component-wise Excess design realization δCE of level t is de-
fined as

δCE(t)=argmax
x∈LF

t

wCE(x), (19)
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where t ∈ (0,1).
REMARK 11. Via the Probability Integral Transform and Sklar’s Theorem, it is easy to
show that

wCE(x)=P(U∈ [u(x),1]), (20)

where U has the same copula C as of X and Uniform marginals, u(x) =5

(F1(x1),...,Fd (xd )), and [u,1] is the hyper-rectangle in Id with “lower” corner u and
“upper” corner 1. Thus, the probabilities of interest can be directly computed in the unit
hyper-cube (see, e.g., Joe, 1997) by working directly on the critical layer LC

t (instead of
LF
t ), a solution numerically more convenient. Note that, for large d -dimensional prob-

lems, the CPU time involved may become prohibitive, though clever solutions have10

been proposed for d � 1 (see, e.g., Cherubini and Romagnoli, 2009). In some cases,
δCE can be calculated analytically; otherwise, it can be empirically estimated (e.g., by
performing a suitable sampling over LC

t or LF
t ).

In Fig. 5 we show the behavior of wCE over LF
t∗ , as well as the Component-wise

Excess design realization δCE(t∗) calculated for the case study investigated here. This15

point has the largest probability to be component-wise exceeded by a super-critical
millenary realization, and therefore it should be regarded as a sort of (statistical) “safety
lower-bound”: viz., the structure under design should, at least, withstand realizations
having (multivariate) size δCE(t∗), as reported in Table 2.

As anticipated in Sect. 2, using the design realization δCE(t∗), we operated the reser-20

voir routing of the corresponding flood hydrograph. Then, we checked whether or not
the reservoir level exceeds the crest level of the dam (i.e., 784 m). The column “M.W.L.”
in Table 2 reports the value 782.11 m: thus, no over-topping occurs, i.e. the dam seems
to be safe against Component-Wise Excess millenary realizations.
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5.2 Most-likely design realization

A further approach to the definition of a characteristic design event consists in taking
into account the density of the multivariate distribution describing the overall statistics
of the phenomenon investigated: in fact, assuming that the density f of F is well defined
over LF

t , we may think of using it as a weigh function.5

Clearly, the restriction ft of f over LF
t is not a proper density, since it does not integrate

to one. However, it may provide useful information, since it induces a (weak) form of
likelihood over LF

t : in fact, it can be used to weigh the realizations lying on LF
t , and spot

those that are (relatively) “more likely” than others. Indeed, ft inherits all the features
of interest here directly from the true global density f. The next definition is immediate.10

DEFINITION 10. The Most-Likely weigh function wML is defined as

wML(x)= f(x), (21)

where f is the density of F=C(F1,...,Fd ).
Then, by restricting our attention to the critical layer LF

t , the following definition is
immediate.15

DEFINITION 11. The Most-Likely design realization δML of level t is defined as

δML(t)=argmax
x∈LF

t

wML(x)=argmax
x∈LF

t

f(x), (22)

where t ∈ (0,1).
REMARK 12. As a rough interpretation, δML plays the role as of a “characteristic
critical realization”, i.e. the one that has to be expected if a critical event with given20

KRP happens. In some cases, δML can be calculated analytically; otherwise, it can be
empirically estimated (e.g., by performing a suitable sampling of f over LF

t ).
In general, provided that weak regularity conditions are satisfied, f can be calculated

by using the marginal densities fi ’s of X, and the density c= ∂d

∂u1 ···∂ud
C(u1,...,ud ) of the

copula C:25
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f(x)=
∂d

∂x1 ···∂xd
C(F1(x1),...,Fd (xd ))

=c(F1(x1),...,Fd (xd )) ·
d∏
i=1

fi (xi ).

(23)

Since our target is to compare the “weight” of different realizations, from a computa-
tional point of view it may be better to minimize −ln(f) over LF

t (since the maxima are
preserved).

As an illustration, in the present (absolutely continuos) case, the expression of the5

trivariate density fQV L is given by

fQV L(x,y,z)=cQV (FQ(x),FV (y)) · fQ(x) · fV (y) · fL(z), (24)

where (x,y,z) ∈ R3, and cQV is the density of the Gumbel copula modeling the pair
(Q,V ). In Fig. 6 we show the behavior of (the logarithm of) wML (i.e., fQV L) over LF

t∗ ,
as well as the Most-Likely design realization δML(t∗) calculated for the case study in-10

vestigated here. The actual values of the function wML are irrelevant (since they do not
represent a true density): in fact, we are only interested in spotting where fQV L is max-
imal. Therefore, the Most-Likely design realization could be regarded as the “typical”
critical realization: viz., the structure under design should be expected to withstand
critical events having (multivariate) size δML(t∗), as reported in Table 2.15

Again, as a test, using the design realization δML(t∗), we operated the reservoir rout-
ing of the corresponding flood hydrograph, and checked whether or not the reservoir
level exceeds the crest level of the dam. The column “M.W.L.” in Table 2 reports the
value 781.95 m: thus, no over-topping occurs, i.e. the dam seems to be safe also
against Most-Likely millenary realizations.20
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6 Conclusions

Before concluding, another interesting test can be carried out. In fact, as a further
possible strategy, suppose that a critical design realization δ1D = (x0.999,y0.999,z0.999) is
defined in terms of the millenary univariate quantiles of the three variables of interest
here (see the last row of Table 2). In turn, the layer LFQV L

t∗1D
supporting δ1D has a critical5

level t∗1D ≈0.997754 (see Fig. 3b), corresponding to a value of KC(t∗1D)≈0.999998, and
a KRP of about 5×105 years. It is then immediate to realize that, in order to provide
a true millenary multivariate design realization, it may not be enough (or necessary)
to rely upon millenary univariate quantiles. Also, operating the reservoir routing using
δ1D, yields a reservoir level of about 784.80 m (see Table 2), which may cause an10

over-topping and a dam failure.
The example given above, as well as the illustrations presented in Sect. 5, may sug-

gest the following empirical consideration (which, however, should be taken with care).
Both the millenary multivariate design realizations δCE and δML yielded a maximum
water level of about 782 m, whereas δ1D (with a KRP of the order of 105 years) gener-15

ated a maximum level over-topping the dam crest by only about 80 cm. Thus, appar-
ently, the dam is over-sized, i.e. it could withstand events with a RP much larger than
1000 years. Clearly, from the safety point of view, this is a good news. On the other
hand, a smaller structure, correctly sized for withstanding true millenary multivariate
events, would probably have costed less money.20

In summary, this paper is of methodological nature, and introduces original tech-
niques for the calculation of multivariate design quantiles. Preliminary studies con-
cerning multivariate RP’s can be found in Salvadori (2004); Salvadori and De Michele
(2004); Durante and Salvadori (2010); Salvadori and De Michele (2010), and some
applications are presented in De Michele et al. (2007); Vandenberghe et al. (2010);25

Salvadori and De Michele (2010). In this work we made an effort to reduce the trouble-
some nature of multivariate analysis – which has always limited its practical application
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– by providing consistent frameworks (the total order
F
�) and techniques (the weighing

functions on the critical layers) to address the identification of the critical design events
when several dependent variables are involved. In particular, the “CE” and “ML”design
values may provide basic realizations with given KRP, of interest in multivariate design
problems. To the best of our knowledge, this is the first time that a similar study is pre-5

sented, and further studies are necessary. Overall, we believe that this paper provides
a significant advancement, and should serve as a guideline for further researches and
applications in all areas of water resources and civil engineering, as well as in geo-
physical and environmental sciences.
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Table 1. Maximum-likelihood estimates of the GEV parameters for Q and V , and corresponding
95% confidence intervals.

Variable Shape Scale Position

Q (m3/s) 0.3677 36.2031 59.3507
95 % C.I. [0.15,0.58] [27.57,47.55] [48.15,70.55]

V (106m3) 0.6149 1.5246 1.7231
95 % C.I. [0.37,0.86] [1.10,2.11] [1.26,2.19]
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Table 2. Estimates of the critical design realizations, for a millenary return period, according to
different strategies – see text. Also shown are the estimates of the univariate quantiles of order
p= 0.999 of the variables of interest. The right-most column shows the maximum water level
of the dam associated with the flood event (Q,V,L) reported on the corresponding row.

Strategy Q V L M.W.L.
(m3 s−1) (106 m3) (m) (m)

C.-E. 360.54 25.06 781.25 782.11
M.-L. 311.35 19.64 781.30 781.95
F (−1)
• (0.999) 1208.9 172.58 781.44 784.80
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Fig. 1. Trivariate plot of the available (Q,V,L) observations, and fits of the marginal distributions
– see text.
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Fig. 2. Trivariate rank-plot of the available (Q,V,L) observations, and bivariate rank-plots of the
marginals – see text. Also shown are the estimates of the Kendall’s τ and the Spearman’s ρ, as
well as the corresponding p-values (derived from non-parametric tests of independence based
on rank statistics).
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Fig. 3. (a) Simulation-based estimate of the function KC (continuous line) associated with the
copula CQV L; also shown is its empirical estimate (markers) calculated by using the available
observations – see text. (b) Plot of the (millenary KRP) multivariate quantile t∗ ≈ 0.946519
(thick-dashed line) associated with the critical probability level p = 0.999; also shown (thin-
dashed line) is the estimate of the value KC ≈ 0.999998 associated with the critical level t∗1D ≈
0.997754 – see text.
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Fig. 4. Critical iso-surface LC
t∗ of the copula CQV L corresponding to the (millenary KRP) critical

level t∗ ≈0.946519, indicated by the diamond markers on the axes.
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Fig. 5. Polar re-mapped plot of the component-wise excess weigh function wCE over the critical
layer LF

t∗ , corresponding to the (millenary KRP) critical level t∗ ≈ 0.946519. The star marker
indicates where the maximum is attained – see text and Table 2.
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corresponding to the (millenary KRP) critical level t∗ ≈ 0.946519 (for the sake of presentation,
the surface is clipped at −20). The star marker indicates where the maximum is attained – see
text and Table 2.
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