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Abstract

Pattern scaling constructs future climate change scenarios using the normalized
change patterns of GCMs, offers the possibility of representing the whole range of
uncertainties involved in future climate change projection. This paper investigates the
applicability and uncertainty associated with the pattern scaling method in constructing
the changes of future precipitation intensity indices at regional scale, using a two-step
ensemble approach. In the first step, the linearity accuracy and GCM internal variabil-
ity were examined explicitly. The inter-model variability of the GCMs and associated
confidence intervals were produced in the second step ensemble. Australia and its 7
administrative regions was selected as the study area and three precipitation intensity
indices, including two precipitation extreme indices, were used for the examination: i.e.,
the 99th percentile daily precipitation intensity (Pyg), the 20-yr-return extreme precipi-
tation intensity (RP,g), and the mean precipitation intensity (precipitation amount per
wet day) (RPD). A total of 12 IPCC AR4 GCMs with 6 simulation samples were used
for the ensemble. For the 3 precipitation intensity indices, good linear relationships
between precipitation intensity indices change and global mean temperature change
at the national level were found for most GCMs, however, the linear relationship weak-
ened when the analysis was applied to the administrative regions. In addition, the
GCM internal signal-to-noise ratios for each GCM tended to decrease at the regional
and grid cell levels, along with the reduction in spatial scale. Both GCM-internal and
inter-model variability was significant, and the inter-model variability was larger than
GCM:-internal variability. The final result of the inter-model ensemble median results
show that for Australia, in general, all three indices will increase under global warm-
ing, with the change rates being 3.56, 7.62 and 2.26 % K™ for Pyg, RP5q and RPD
respectively at the national level.
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1 Introduction

While it is generally agreed that General Circulation Models (GCMs) are still the best
tools in constructing future climate change scenarios, the large variation of simulation
result from different GCM runs, or even from the same GCM but with different radiative
forcing, has caused great difficulty in applying the GCM result directly in climate impact
analysis when the range of uncertainties become an important factor in adaptation
planning consideration. Since early 1990s, an alternative method has been devel-
oped in constructing future climate change scenarios instead of using GCM outputs
directly (Santer et al., 1990). Such a method, known as pattern scaling, was originally
envisaged as a temporary compromise to add a time component to an equilibrium ex-
periment with a GCM, pending the availability of transient experiments, and also to
permit the comparison of standardised spatial patterns from different GCMs (Santer et
al., 1990). However, this technique has been proved to be very useful for a compre-
hensive risk assessment of climate change when more and more GCM outputs have
become publicly available (Mitchell, 2003; Li et al., 2009). Pattern scaling offers the
possibility of representing the whole range of uncertainties involved in future climate
change projections based on various combinations of emission scenarios and GCM
outputs, which allows cross model sensitivity analyses and uncertainty examinations
to be conducted easily (TGICA, 2007). It has been widely used in mean temperature
and precipitation change studies (Mitchell, 2003; Ruosteenoja et al., 2007).

Pattern scaling is based on the theory that, firstly, a simple climate model can accu-
rately represent the global responses of a GCM, even when the response is non-linear
(Raper et al., 2001), and secondly, a wide range of climatic variables represented by
a GCM are a linear function of the global annual mean temperature change repre-
sented by the same GCM at different spatial and/or temporal scales (Mitchell, 2003).
Pattern-scaling does not seem to be a very large source of error in constructing re-
gional climate projections for extreme scenarios (Ruosteenoja et al., 2007), however,
in applying pattern-scaling, two fundamental sources of error related to its underlying
theory need to be addressed: (1) Nonlinearity error: the local responses of climate
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variables, precipitation in particular, may not be inherently linear functions of the global
mean temperature change; and (2) Noise due to the internal variability of the GCM.

Among the wide range of climate variables, precipitation extremes have attracted
much research attention because of the potential disasters these may cause to human
society and natural systems. Extreme precipitation events are projected to increase
with climate change, even in areas where the total precipitation is projected to de-
crease (Meehl et al., 2007), since global warming will noticeably enhance the hydro-
logical cycle at both global and local scales. In order to adequately assess the climate
change impact on extreme precipitation events, the characteristics of GCM-simulated
precipitation and its relationship with global warming need to be evaluated (Perkins et
al., 2007; Alexandra and Arblaster, 2008). The evaluation of observed and modeled
trends has shown that the confidence in GCM projected extremes of precipitation is
much less than that of temperature (e.g. Kharin et al., 2007; Kiktev et al., 2007). In
general, the magnitude of changes in precipitation extremes simulated by GCMs was
found to have a linear relationship with the strength of GHG emissions or in proportion
with the global warming trend (Alexander and Arblaster, 2009; Tebaldi et al., 2006),
which is inline with the linear response theory of pattern scaling.

On the other hand, given the current state of scientific understanding and the limi-
tations of GCMs in simulating the complex climate system, a large ensemble of GCM
simulations is more appropriate in climate change projections than using individual
GCM simulation outputs, particularly if such projections will be used for impact assess-
ments, because only large ensemble of GCM simulations sampling the widest possible
range of modelling uncertainties can provide a reliable specification of the spread of
possible regional changes (Murphy et al., 2004, 2007; Sorteberg and Kvamsto, 2006;
Raisanen, 2007). With respect to using the ensemble approach for inter-model uncer-
tainty analysis, several methods have been introduced from past studies. The Reliabil-
ity Ensemble Average (REA) method (Giorgi and Mearns, 2002) quantifies two criteria,
bias and convergence, for multi-model evaluation, and produces estimates of regional
climate change, the associated uncertainty bounds and model reliabilities through a
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weighted average of the individual GCM results. The REA weights contain a measure
of model bias with respect to current climate and a measure of model convergence
(applied to the models’ projected change), defined as the deviation of the individual
projection with respect to the central tendency of the ensemble (i.e., the final weighted
average). Another method of multi-model ensemble in probabilistic climate projections
is the Bayesian approach (Tebaldi et al., 2005; Ferrer et al., 2007). The premise of this
method is that outliers are likely to be less credible and would lead to over-dispersive
uncertainty estimates if included. This issue is inevitably open to debate, but it is
clear that probabilistic estimates derived from multi-model ensembles are significantly
dependent on methodological choices necessitated by the nature of the ensembles
(Lopez et al., 2006).

Simulations of extreme precipitation in GCMs cannot be expected to accurately re-
produce observed absolute quantities or rates of change. The relatively coarse resolu-
tion of GCMs prevents the simulation of phenomena that manifest their intensity mainly
at synoptic scales (Dai, 2006; Tebaldi et al., 2006). GCM simulated extreme pre-
cipitation intensities are systemically much lower than the observed data (Dai, 2006;
Kharin et al., 2007), therefore, skill based weighting ensemble method, such as REA or
Bayesian model averaging (Min et al., 2007) are not applicable for precipitation intensity
change predictions for this research.

In this paper we present a two-step ensemble method to test the applicability of pat-
tern scaling in constructing the future change of precipitation intensity indices and the
associated uncertainties. In the first step ensemble, the linearity accuracy and GCM
internal variability were examined. The GCMs inter-model variability with confidence
intervals was produced in the second step ensemble. Australia and its 7 administrative
regions were selected as the study area and three precipitation intensity indices, in-
cluding two precipitation extreme indices, were used for the examination, i.e.: the 99th
percentile daily precipitation intensity (Pyg), the 20-yr-return extreme precipitation in-
tensity (RP5), and the mean precipitation intensity (precipitation amount per wet day)
(RPD).
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Based on the data availability, a total of 12 IPCC AR4 GCMs were selected for this
study. They are labeled as GCM 1 to 12 in this paper, following the sequence of: 1
— BCCR_BCM20; 2 — CCCMA_CGM3(T47); 3 — CNRM_CM3; 4 — CSIRO MK35; 5 —
ECHAM_MPI; 6 — ECHO_G; 7 — GFDL_.CM20; 8 — GFDL_CM21; 9 — IPSL_.CM40; 10
— MIROC_MEDRES; 11 — MRI_.CGCM2; 12 — NCAR_CCSM3. All GCM daily precip-
itation and monthly mean temperature data were obtained from the WCRP CMIP3
multi-model dataset (https://esg.linl.gov:8443/).

2 Methodology and data

The two step ensemble method included a GCM-internal ensemble and an inter-model
ensemble. A linear least square regression line fitting method described by Mitchell et
al. (2003) and Ruosteenoja et al. (2007) was employed for the GCM-internal ensem-
ble in this research. Based on the pattern scaling theory, for a given GCM, the linear
response change pattern of a climate variable to global mean temperature change rep-
resented by the GCM, should be obtained from any one of its GHG emission simulation
outputs. However, such a consistent linear response is rarely found from the outputs of
a given GCM running under different radiative forcings, or for the same radiative forcing
but different simulation periods. The reason is partly due to our limited understanding
of the climate system, and partly due to the randomness of the climate variation in
the GCM simulations. Hence the objective of the first step ensembile is to reduce the
impact of the GCM internal variability from the sampled emission scenarios and time
periods.

Pattern scaling may be described as follows: for a given climate variable V, its
anomaly AV” for a particular grid cell (/), month or season (/) and year or period (y)
under an emission forcing scenario (x):

AV;W./. = ATXy-Al/I./. (1)
AT being the annual global mean temperature change.
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The ensemble pattern value (AV,’/-) was calculated from the GCM simulation anomaly
(AV,,,;) using linear least squares regression, that is, the slope of the fitted linear line.
n
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5 5 (AT,
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where n is the number of emission scenarios and m is the number of future sample
periods used. The size of the GCM-internal ensemble was m x n. In this research, three
SRES scenarios (A1B, A2, and B1) and 2 sample periods (2046—2065 and 2081-2100)
were used. Therefore, the ensemble size was 6 as there were 6 simulation samples
for each of the 12 GCMs. For a given climate variable, its regional change patterns
of per degree global warming were calculated by applying Eq. (2) for each GCM, and
the GCM-internal standard deviation (SD) was calculated based on its 6 simulation
samples. A signal-to-noise ratio (SNR) was used to reveal the significance level of a
climate variable to noise that included in simulations:

SNR = —lAV |

SD(AV')
In the inter-model ensemble step, the median (50th percentile) value was used in pre-
senting the average ensemble result, which is arguably better than the mean value
(Kharin et al., 2007), while the 10th and 90th percentiles were used for the confi-
dence intervals analysis, or to demonstrate the range of uncertainties from different
GCM simulations. The confidence intervals were computed with a bootstrapping ap-
proach (Chernick, 1999). We assumed that the change rate generated from GCMs
fitted with a generalized Weibull distribution. The L-moments method (Hosking, 1992)
was firstly applied in estimating the parameters of the generalized Weibull distribution.
Then the bootstrap mean for a specified confidence interval was generated from 400
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random re-sampling simulations. More detailed descriptions on the application of L-
moment and bootstrapping methods can be found in Kharin et al. (2007) and Tebaldi
et al. (2006). All three precipitation intensity indices were calculated from IPCC AR4
GCM daily precipitation outputs for three SRES scenarios (A1B, A2, and B1) and 2
future periods (2046—2065 and 2081-2100). The period of 1981-2000 was used to
represent the baseline condition as suggested by IPCC AR4 (IPCC, 2007). The 99th
percentile precipitation intensity (Fyg) was estimated using the non-parameter Gauss
kernel density method (Parzen, 1962). The 20-yr return daily precipitation intensity
(RPyg) was calculated from the General Extreme Value (GEV) distribution using the
L-moments parameter estimation (Hosking, 1992). The mean precipitation intensity
(RPD) was calculated as the total precipitation amount divided by the number of wet
days (precipitation >1 mm). Once the intensity indices were calculated for each grid
cell, their simulation anomaly were calculated by comparing the difference between
future projections and the baseline, and then the ensemble pattern values were calcu-
lated using Eq. (2).

3 Results
3.1 The 99th percentile daily precipitation intensity changes

3.1.1 The linearity of the 99th percentile daily precipitation intensity change (A
Py,) in response to global annual mean temperature change (AT).

Figure 1 shows the linearity of APgyq in response to AT of the 12 GCMs at national
scale. Also shown in the figure is the R?. A value of R? higher than 0.6577 correla-
tion coefficient, r > 0.811, n—2 =4 indicates the linear relationship passed the 95 %
significance level. Among the 12 GCMs, 8 GCMs had R? values that passed the 95 %
significance level, which showed a strong linear response of APgyq to AT. Three GCMs,
BCCR_BCM20, MRI_.CGCM2 and NCAR_CCSM3, have small R values, showing that
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almost no linearity could be detected from these 3 models. CSIRO_MK35 demon-
strated reasonable linearity between APgq and AT, as indicated by its moderate R? val-
ues. GFDL_CM20 had the most rapid change with increased rates exceeding 10 %K™
by all its 6 simulations. The lowest change rate was found in NCAR_.CCSM3, which
had all 6 simulations of less than 1%K™'. A negative sign in APgg against AT was
found in BCCR_BCM20 in its A1B 20462065 simulation, while the change rates from
its other 5 simulations were all positive.

Though most of the GCMs demonstrated a high level of linearity of APyq against AT
at the national scale, such a good linearity was not found at the regional level. Table 1
lists the R? of each GCM for the 7 administrative regions. Compared to 8 GCMs at
national level, there were 3 to 5 GCMs that passed the 95 % significance level for the
linearity test for each administrative region. NSW, TAS, and VIC all had 5 GCMs, while
NT and QLD only had 3 GCMs. For each GCM, normally 2 to 4 regions showed signif-
icant linear correlations, except BCCR_BCM20 with no region having significant linear
correlation between APy and AT. For CSIRO_MK35 and NCAR_.CCSMS, their linear
correlations were not significant at the national scale, but passed the 95 % significance
level in 2 regions.

3.1.2 The comparison of GCM-internal and inter-model variability of the 99th
percentile daily precipitation intensity change

For each GCM, also listed in Table 1 is the ensemble pattern values (AP’yg) and its
signal-to-noise ratio (SNR) calculated from the 6 samples for Australia and its 7 ad-
ministrative regions. ECHAM_MPI, ECHO_G and MIROC_MEDRES showed moderate
to high increase rates (from 6.91 to 10.86 %K™ for ECHAM_MPI, 2.42 to 8.86 %K™ for
ECHO.G and 2.06 to 10.12%K™" for MIROC_MEDRES) and most importantly with
relative strong signals for all regions (SNR from 2.27 to 6.61 for ECHAM_MPI, 2.24
to 6.48 for ECHO_G and 1.72-4.27 for MIROC_MEDRES). Most regions simulated by
CNRM_CM3, CSIRO_MK35, GFDL_CM20, GFDL_CM21 and IPSL_CM40 that had high
change rates were also accompanied with relatively strong signals.
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For some models, the AP’yg varied significantly from one region to another,
GFDL_CM21 in particular with its AP’g9 range from 0.86 to 15.11 %K™, which indi-
cated the significant spatial difference of APgq in response to AT. Furthermore, AP’y
could vary significantly from one GCM to another for the same region. For example, NT
had a AP’gg range from —1.17 to 24.72 % K™'. The range was reduced at the national
level, changing from 0.82 to 13.77 % K= but was still significant.

Figure 2 illustrates the GCM internal and inter-model variability in annual AP’y over
Australia. For each GCM, the 6 sample values were distributed randomly, independent
of both the emission scenarios and the time period. BCCR_.BCM20 and ISPL_.CM40
showed the largest SD among GCMs (shown in Fig. 1), because of the unusual result
from one sample of its simulation. GFDL_CM21 also showed a larger SD with a large
increase rate of AP’gg. Both MRI _.CGCM2 and NCAR_CCSM3 had small SDs with
no increase rates, however, the respective £ values did not pass the 95 % significant
level test. The inter-model SD was 7.23 (shown in Table 5), therefore much larger than
any one of the GCM internal SD, which was also shown in Fig. 2 as the relative short
bars compared to the wide range of AP’yq values from the 12 GCMs.

3.2 The 20-yr return daily precipitation intensity changes

3.2.1 The linearity of the 20-yr return period precipitation intensity change
(ARP,) in response to global annual mean temperature change (AT)

Figure 3 shows the linearity of ARP,, in response to AT and the R? of the 12 GCMs
for Australia. Among them, six of the GCMs passed the 95 % linearity significance level
with R? values larger than 0.6577, showing strong linearity signals were detected by
these models. Almost no linearity signal could be detected from the MIROC_MEDRES
and NCAR_CCSMS3 models. The remaining 4 models, BCCR_.BCM20, CNRM_CM3,
CSIRO MK35 and MRI_.CGCM2 showed some linearity signals, with their R? range
from 0.32 to 0.44.
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Similar to APgg, at the regional level, the significance of the linearity between ARP,,
and AT decreased compared to the national scale, as shown by the R? for each re-
gion in Table 2. For most regions, there were 2 to 5 GCMs that pass 95 % significant
level test, including 5 GCMs for VIC, 2 GCMs for QLD, much less than for the overall
Australian area. Among the GCMs where the correlation coefficients did not pass the
95 % significant level at the national level, MIROC_MEDRES and NCAR_CCSMS had
one region each that did pass the 95 % significant level.

3.2.2 The comparison of GCM internal and inter-model variability of the 20-yr
return period precipitation intensity change

For each GCM, Table 2 also lists the ensemble pattern values for the 20-yr return
period precipitation intensity change (ARP’5,) and its SNR calculated from 6 simulation
samples for Australia and its administrative regions. In general, the 6 models that
had good linearity signals at the national level also had high SNR for most regions.
IPSL_.CM40 showed a negative ARP’,, (-0.23 %K‘1) for VIC but with a very small
SNR (0.06). GFDL_.CM20, GFDL_CM21, and CCCMA_CGM3 (T47) showed a relatively
high increase rate of ARP,, for most regions, even though there was large variability
between regions. MRI_.CGCM2, NCAR_CCSMS3 had poor SNR for almost all regions,
while other models had varied SNR for different regions. Again, for the same region,
the ARP’, varied significantly from one GCM to another, NT in particular had a ARP’5,
ranging from 0.97 to 36.87 %K™, The range was reduced at the national level, from
2.21 10 20.40 %K.

Figure 4 gives the GCM internal and inter-model variability in annual ARP’,yover
Australia. For each GCM, the 6 sample values were distributed randomly, similar to that
of APgg. Compared with APgyg, the SD values of ARP,, were larger. IPSL_.CM40, CC-
CMA_CGCM3 and MRI_.CGCM2 showed the largest SD among GCMs. GFDL_CM21
also showed a larger SD with a large increase rate of ARP’,,, similar to its perfor-
mance in AP’y9. CSIRO_MKS35 had relatively smaller SD, however, its R? did not pass
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the 95 % significance level test. Only ECHO_G gave both higher R? and lower SD. The
inter-model SD of ARP’;, was 9.36 %K™ (shown in Table 5), which was the largest
among all the GCM internal SD values.

3.3 The mean daily precipitation intensity changes

3.3.1 The linearity of the mean daily precipitation intensity change (ARPD)
in response to global annual mean temperature change (AT)

At national scale, Fig. 5 shows the linearity of the change of mean daily precipitation
intensity (ARPD) in response to AT for the 12 GCMs. Nine GCMs showed a strong
signal of linear response of ARPD to global mean temperature change, with R? values
higher than the 95 % significance level. CSIRO_MK35 and MRI_.CGCM2 showed no
linearity signals, while BCCR_BCM20, GFDL_CM21 and MIROC_MEDRES show some
linearity signals (F?2 are 0.68, 0.40 and 0.69 respectively). ECHAM_MPI shows the
most rapid change and the lowest change rate is found in CSIRO_MK35.

The R? values of ARPD for each region and each GCM are shown in Table 3. In
each region, there were 2 to 7 GCMs passed the 95 % significance level test, which
was less than the 9 GCMs at the national level for Australia. In VIC, 7 GCMs passed
95 % significant level test, while in QLD 2 GCMs passed. Among GCMs which showed
a significant correlation between ARPD and AT for Australia, there were 0 to 6 regions
which showed significant correlations. For IPSL_CM40 the national correlation coeffi-
cient passed the 95 % significance level test, but no region in Australia passed the test.
For ECHAM_MPI, 6 regions passed the test with some high R? values. Noticeable, for
NCAR_CCSM3, the overall R of ARPp is 0.92 and 5 regions also passed the 95 %
significance level test, however, in ARP,, and APy no significant correlations were
detected. Among the GCMs for which the correlation coefficients did not pass the 95 %
significance level, GFDL_CM21 had one region which did pass the 95 % significance
level. The ARPD had the best performance, in terms of the linear relationship with AT,
among the three precipitation intensity indices.
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3.3.2 GCM internal variability of the mean daily precipitation intensity change

For each GCM, Table 3 lists the ensemble pattern values (ARPD’) and its SNR calcu-
lated from 6 simulation samples for Australia and its 7 administrative regions. The 9
models that had good linearity performance at the national level also showed reason-
ably high SNR for most regions, except GFDL_CM20 that had small SNR for 4 out of the
7 regions. In general, the 3 GCMs that showed some linearity signals (BCCR_BCM20,
GFDL_CM21 and MIROC_MEDRES) all had reasonable SNR. As shown in Table 3,
the internal variability was small across regions compared to AP’y and ARP’;,, which
indicated relatively consistent projections of ARPD’ from all GCMs. ECHAM_MPI had
relatively high ARPD’ for all regions except TAS; and IPSL_CM40 had the largest range
of ARPD’ across the country (from —1.94 to 4.22 %K‘1). A few models projected de-
creased APRD’ for some regions shown by the negative numbers in Table 3. For the
same regions, the ARPD’ varied from one GCM to another, but with a smaller range
compared to AP’yg and ARP’;,. The ARPD’ range was 1.49 to 5.19%K™" at the na-
tional level for the 10 models that showed moderate to good linearity.

The variations of ARPD’ were generally smaller than the other two indices (Fig. 6).
MRI_CGCM2 had the largest SD (2.4), while others were less than 1.0. NCAR_.CCSM
and ECHO_G had the smallest SD with high R?. Negative ARPD’ values appeared in
several simulations of CSIRO_MK35 and MRI_CGCM2. The inter-model SD for ARPD
was 2.41, which was larger than the GCM internal SDs over Australia.

3.4 Comparison of the grid cell to grid cell signal-to-noise ratios (SNR)

Further studies were carried out at the grid-cell (0.25*0.25 degree) scale to investigate
the spatial pattern of signal-to-noise ratios of the three indices. A larger percentage
of high SNR at the grid cell level, represented a more consistent result from different
simulation samples of a GCM. For each GCM, we analysed the SNR level of 0.5, 1.0
and 2.0 based on grid cell, and the statistical results are displayed in Table 4.
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For AP’yg, the average SNR for all GCMs showed that more than 80 % of the grid
cells had values larger than 0.5, about half larger than 1.0, and a little over 10 %
larger than 2.0. Among the GCMs, ECHAM_MPI had the best performance, followed
by ECHO_G and MIROC_MEDRES. More than 20% of the grid cells of the above
GCMs had their SNR greater than 2.0. Four GCMs, i.e., BCCR_.BCM20, MRI_CGCM2,
NCAR_CCSM3 and GDFL_CM21, had less than 10% of the grid-cells with a SNR larger
than 2.0 and less than 50 % grid cell SNR larger than 1.0, and BCCR_BCM20 had the
lowest values in all three SNR levels of the GCMs.

Compared to AP’yg, a small improvement was shown in the grid cell SNR level of
ARP’,. On average, nearly 90 % grid cells had values larger than 0.5, more than half
passed 1.0, and about 17 % passed 2.0. This improvement was the result of increased
SNR values for most GCMs. However, 2 GCMs showed worse SNR performance than
for AP’g (these were CSIRO_MK35 and MIROC_MEDRES).

The ARPD’ had the highest SNR levels among the three indices. Four GCMs had
more than half of the grid cells that show strong signals with SNR greater than 2.0. In
contrast to its performance of AP’yg and ARP’,;, NCAR_.CCSMS3 had a high level of
SNR with 55.26 % of its grid cells greater than 2.0. ECHO_G and ECHAM5_MPI had
the best values, similar to their performance in the other 2 indices. On average, more
than 60 % grid cells had SNR higher than 1.0 and about a third had SNR close to 2.0.

The spatial patterns of these SNRs can be found in the Supplementary Fig. 1 to
supplementary Fig. 3

3.5 Inter-model ensemble

Inter-model variability is one of the major sources of uncertainty for future climate pro-
jection. As demonstrated in the previous sections, for the same region the change
pattern of precipitation indices can vary significantly among GCM simulations, usually
much larger than any GCM-internal variability from pattern scaling. As a result of such
high uncertainties, a large ensemble of GCM predictions sampling the widest possible
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modelling range are needed to understand the range of uncertainties due to different
GCM results and to have such uncertainties properly analyzed in subsequent impact
assessments.

For the three precipitation indices, we carried out an inter-model ensemble based on
the 12 GCMs. The first step of the ensemble was to generate the normalised climate
change pattern value AV’ for each grid cell, which was calculated from the 6 samples
(3 SRES scenarios by 2 sample periods) for each GCM. The second step was to apply
the bootstrap method to obtain the median, as well as the 10th and 90th percentiles of
AV’ for each grid cell based on the 12 GCM projections. Figure 7 shows the spatial
distributions of the median and SD of the AP’q9, ARP’,o and ARPD’ from the ensemble.
It showed that the change rates of the 3 indices all increased under global warming, as
AP’y9 and ARPD’ had positive median values for most of the country, while the median
values of ARP’,, were positive for the entire country. In general, southeast regions
(NSW, SA, TAS, and VIC) had lower SD than the north and west regions (NT, QLD
and WA), which meant a smaller inter-model variability in the southeast (Fig. 7). VIC
had the highest change rates for both Fyg and RPD among regions, also with relatively
small SD, indicating a consistent projection of high APyq and ARPD change rates from
all GCMs for VIC. The boarder between QLD and NT was another area that had the
high change rate for all 3 indices, but was accompanied with relatively high SD, which
meant relatively high inter-model uncertainties.

To reveal the statistical nature of the uncertainties in the ensemble results, we ag-
gregated their median value to regional and national levels, then, calculated the aver-
ages. Table 5 lists the average median value results for Australia and its administrative
regions, as well as the inter-modal standard deviation (SD) and the 10th, 90th per-
centiles. At the regional average, the median values of the 3 indices were all positive,
indicating enhanced precipitation extremes for the whole country for this century. Most
of the 10th percentiles for the 3 indices are around zero, which means that 10 % of
GCMs simulated change rates which were not significant. On the other hand, another
10 % of GCMs demonstrate a dramatically increased change rates, shown by the large
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change values of the 90th percentiles. VIC had the highest average median values for
AP’y9, and ARPD’, which was consistent with Fig. 7.

As summarized in Table 5, the annual median value of AP’y at the national level for
Australia was 3.56 % K™, with significant inter-model standard deviations (7.23 % K ).
Most of the 10th percentile AP’ggvalues were negative, except for TAS, while most of
the 90th percentile values ranged from 10-20 % K='. The median value of annual
ARP’,, over Australia was 7.62 % K'1, with a relative standard deviation of more than
100 % (SD =9.36 % K‘1). The 10th and 90th values ranged from 0.71 to 20.22 % K.
The difference of ARP’,, among the administrative regions was not significant, varying
from 7.21 to 8.40%K™'. NT had the largest median value and largest standard devi-
ation. The median of annual ARPD’ was 2.26 % K™ with 10th percentile —0.31 % K™
and 90th percentile 4.85 % K='. VIC was projected for the largest increase among ad-
ministrative regions, with up to 3.45%K™'. QLD had the lowest increase value and
largest SD, and the largest negative value (-1.01 % K'1) in the 10th percentile projec-
tion.

4 Discussion

For climate change impact assessment, results based on an ensemble approach is
preferred to a single model run, as a single prediction of future climate made with even
the most sophisticated GCM can be of limited use for impact assessment. Within an
ensemble approach, provided the members of the ensemble are independent, the en-
semble size will have certain effects on the accuracy of the simulation results (Sterl
et al., 2007). Hence, one of the main limitations of this research was that both GCM-
internal and inter-model ensemble size were rather small: 6 samples for GCM-internal
and 12 samples for inter-model ensemble. In addition, the members were assembled
on an opportunity basis from available data, rather than designed to sample modelling
uncertainties in a systematic way. In our view, therefore, this small sample size was
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insufficient to reveal the actual relationship between precipitation intensity indices and
the global warming trend. In order to get more reliable precipitation change projec-
tions especially for extreme precipitation events, more ensemble members are needed
including more sample runs from one GCM and more GCMs.

In the GCM-internal ensemble, all the publicly available GCM daily precipitation out-
puts were used however, this only gave 6 samples. The linearity test of the precipitation
intensity indices passed the 95 % significance level for most of the GCMs at the Aus-
tralian national level, and performed reasonably at the regional level (Tables 1 to 3),
which was justifies applying the pattern scaling technique in impact assessment stud-
ies for precipitation. As expected, the linearity significance became weaker when the
spatial/temporal scale got smaller. It is not possible to say, on the basis of this research,
how much of this weakness is due to a truly nonlinear response of climate variables
to global mean temperature change, and how much is due to the small number in the
ensemble size and the short duration of each sample (20yr). The deteriorating SNR at
the grid cell level (Table 4) also casts doubts in applying the pattern scaling method in
precipitation intensity analysis, more data are needed in order to investigate the causes
for this. The 6 samples of each GCM were from three different emissions scenarios
and two 20-yr periods, and the transient climate effect of aerosols on local precipitation
patterns (Boer et al., 2000; Menon et al., 2002) can pose another source of the internal
variability. More dedicated internal GCM ensemble methods, such as, the perturbed
physical ensemble (Murphy et al., 2007) will also need to be explored. Nevertheless,
for GCM internal ensembles, the sampling uncertainty arising from the parameterisa-
tion of atmospheric physical processes and the effects of natural variability, provide a
first opportunity to quantify the robustness of predictions of changes in precipitation
obtained from GCM simulations (Barnett et al., 2006). At present, using the average
pattern scaling values from all the samples is probably the most appropriate way in
constructing the normalised spatial pattern that the pattern scaling method requires.
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In terms of the GCM inter-model ensemble, the sample size of 12 GCMs used in
this study may also be insufficient to reveal the actual distribution of the spectrum
of uncertainties caused by different GCM simulations. Furthermore, the inter-model
ensemble could be under-dispersive rather than over-dispersive, because the GCM
simulations used are not explicitly designed to sample the range of future responses
consistent with recent historical observations (Allen and Ingram, 2002). More GCM
simulations running under more purposely designed scenarios will be of great help
to expose the real uncertainties of future precipitation intensity responses to climate
change.

5 Conclusions

Estimating future potential changes in precipitation characteristics provides essential
input to urban, regional and national adaptation and planning strategies through the
establishment of, for example, flood prevention strategies. This research attempts to
highlight and examine the fundamental assumptions of the pattern scaling technique,
as well as uncertainty, and contributes to the practical application of GCM-derived cli-
mate projections. Through applying a two-step ensemble to 3 precipitation intensity in-
dices, we found that: (1) The accuracy of pattern scaling linearity varies among GCMs
and regions. The high linearity can be achieved for most of the GCMs at large spatial
scales, such as the national level for Australia. A GCM showing good linearity for one
indicator does not guarantee its good linear performance for any other indicator, and
the GCM internal signal-to-noise ratios tends to decrease with the spatial scale decline
as well. Even though the linearity weakens quickly with increased spatial scale, the
error that might be incurred from such GCM internal variability is still much smaller
compared to the inter-model variability. Pattern scaling is still a good compromised
method in construction of future change of precipitation indices, especially for trend
analysis. (2) The two-step ensemble method utilizes all the available information in
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calculating the scaled response rather than one forcing scenario and/or one GCM, so
that the uncertainty level can be directly assessed by statistical analysing of the ensem-
ble results. This study assumed all GCM ensemble members to be equally plausible,
with no weighting factor introduced. The two-step ensemble offers an opportunity to
evaluate the performance of a given GCM in precipitation simulation, where it is ap-
plicable, as a reference for selecting ensemble members. This can assist in selecting
appropriate GCMs, or giving sensible weighting factors for selected GCMs in an en-
semble. Another advantage of the two step ensemble approach is that it reduces the
influence of GCM internal variability. This is particularly important if, in some of the
GCM simulation output happens to be at opposite direction of other simulations dur-
ing the projection periods (Ruosteenoja, et al., 2007). (3) The uncertainties increase
when the spatial and/or temporal scales become finer in a given study, which was also
found by Tebaldi et al. (2004). Besides obtaining more sample numbers from daily
simulations of different GCMs, statistical downscaling or dynamic downscaling might
produce more regional information based on the coarse resolution GCM data, and
should be more appropriate for regional impact assessments (Wilby et al., 2002; Spak
et al., 2007; Haylock et al., 2006; Kennett and Buonomo, 2006). (4) By applying the
method to Australia and its administrative regions, we found that, as shown in Table 5,
the median value of the annual AP’gg was projected to increase by 3.56 % K=" for the
whole country, with the lowest median increase for QLD (3.16 % K‘1), and the largest
increase for VIC (6.34% K™"). The median value of annual ARP’,, over Australia in-
creases 7.62 % K", with a relative standard deviation of more than 100 % (9.36 % K ).
The 10th and 90th values range from 0.71 to 20.22 % K™'. The different ARP’,, among
the administrative regions were not significant, varying from 7.21 to 8.40 % K. The
overall average annual ARPD’ of 12 GCM ensembles was 2.26 % K™ with the 10th
and 90th percentiles being —0.31 and 4.85%K™" respectively. Compared to the two
extreme precipitation indices, the linear correlation between ARPD and AT was bet-
ter. The most extreme index, ARP’,, had the lowest number of GCMs which showed
significant correlations to AT, this indicates the random nature of extreme precipitation.
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Supplementary material related to this article is available online at:
http://www.hydrol-earth-syst-sci-discuss.net/8/5227/2011/
hessd-8-5227-2011-supplement.zip.
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Table 1. GCM internal ensemble of APgq in response to AT and the signal-to-noise ratio (SNR)

of 6 simulation samples over Australia.

NSW NT QLD SA

R* APy SNR R* APg SNR R® APy SNR R®* APy SNR
1 027 345 081 0.43 373 087 0.30 2.67 0.69 059 263 0.76
2 043 236 042 0.63 16.42 3.13 030 432 068 079 320 151
3 008 318 093 070" 593 6.11 060 7.48 374 0777 639 397
4 067 6.62 296 055 858 3.61 0.70° 5.87 422 026 582 1.05
5 084 9.05 6.61 012 803 229 017 691 227 0.38 10.86 3.08
6 083 6.09 648 054 352 250 0.63 3.03 394 095 491 351
7 067 220 060 096" 2472 12.30 0.43 16.38 3.94 0.01 809 122
8 001 086 020 0.63 1511 2.96 0.38 9.87 170 093 080 0.14
9 03 795 152 073 896 364 073 1511 2.31 026 779 1.77
10 075 5.15 3.03 053 240 250 0.83 206 172 025 523 2.11
11 007 262 087 0.01 -117 025 0.12  0.00 0.00 0.19 452 069
12 018 0.28 0.28 0.09 -0.44 0.49 000 1.10 1.62 0.12 -0.53 0.26

TAS vIC WA AUS

R® APy SNR R® APy SNR R® APg SNR R® APy SNR
1 009 249 040 0.60 3.39 0.99 0.15 0.66 0.10 0.30 242 052
2 0.83 1066 428 087 914 1.89 0.08 11.19 268  0.97° 853 10.80
3 099 141 056 024 949 241 0.72° 643 344 091" 656 8.41
4 008 -033 0.16 024 538 091 0.01 327 1.19 0.62 519 4.19
5 079 9.08 486 053 962 346 082 7.89 540 072 801 517
6 076" 6.03 337 072° 886 547 0.33 242 224 086 405 633
7 007 1755 201 053 859 1.49 0.36 12.65 3.37  0.89° 13.77 850
8 003 845 089 001 729 130 094 1398 555 079 10.07 522
9 030 081 068 077 179 082 085 1046 545 079 9.67 3.66
10 056 7.41 3.38 062 1012 4.27 007 235 210  0.69 367 442
11 023 781 206 071° 6.83 1.35 0.01 1.94 1.18 012 3.06 1.39
12 092° 200 180 078 179 201 0.00 1.10 1.69 022 082 1.71

* The confidence level is over 95%.
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Table 2. GCM internal ensemble ARP,, in response to AT and the signal-to-noise ratio (SNR)

of 6 simulation samples over Australia.

NSW NT QLD SA

R® ARP,, SNR R®*  ARP, SNR R®*  ARP, SNR R®*  ARP, SNR
1 026 761 1.71 0.01 415 125 0.46  8.06 2.92 012 452 235
2 071" 862 1.05 043 2490 268  0.81° 1249 279 078 772 1.34
3 013 806 1.14 0.14 1076 261 0.46 843 298 0.44 823 224
4 041 570 202 0.31 598 3.2 061 483 265 012 117 024
5 060 11.10 4.01 024 961 236 052 10.67 3.84 049 1339 3.16
6 091" 7.06 3.41 049 6.84 221 061 529 237 086 948 2.36
7 094 397 089 093 3687 622 078 2247 4.09 041 1241 227
8 012 439 088 097 2839 3.96 049 1552 150  0.87° 143 024
9 051 929 1.41 0777 17.33 276 0.56 20.27 1.90 0.46 863 1.72
10 074" 653 3.93 0.00 154 047 0.09 592 1.80 0.09 9.64 237
11 027 595 086 025 3.85 0.59 040 453  0.96 012 837 1.02
12 008 155 0.39 039 097 027 0.06 223 058 0.05 0.08 0.2

TAS vIC WA AUS

R?® ARP, SNR R* ARP,, SNR R* ARP,, SNR R*  ARP, SNR
1 033 736 147 022 743 157 056 451 173 041 560 296
2 083 276 053 092 816 0.94 041 2181 327 075 1522 3.30
3 020 354 086 0.07 816 1.19 0.15 955 287 0.32 852 265
4 000 -212 036 017 133 0.7 013 127 046 035 279 213
5 010 1624 227 083 1011 532 092 1135 6584 079 1031 653
6 093 540 235 067 1155 325 068 407 165 084 652 3.23
7 032 1802 262 068 1080 1.84 060 1697 228  0.86° 20.46 4.57
8 007 934 1.00 021 861 254 090" 20.81 548  0.83 16.35 4.19
9 067 457 233 058 -023 006 0.88 1641 395 073 1416 245
10 016 835 233 049 813  3.00 0.00 332 148 012 490 240
11 001 1455 1.13 061 9.84 158 051 696 207 0.44 694 147
12 044 1218 246  0.81° 463 127 019 2.08 055 0.04 221 064

* The confidence level is over 95%.
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Table 3. GCM internal ensemble ARPD in response to AT , R square and the signal-to-noise
ratio (SNR) of 6 simulation samples over Australia.

NSW NT QLD SA

R?® ARPD’ SNR R? ARPD’ SNR R?® ARPD’ SNR R? ARPD’ SNR
1 067 215 3.91 042 219 1.84 017 093 1.39 0877 159 1.96
2 071" 340 155 0.68° 397 263 061 376 1.82 0.82° 199 169
3 017 0.83 072 0.88° 1.07 274 030 1.60 1.86 0.00 237 144
4 000 130 1.01 0.14 0.83 0.81 025 075 1.04 001 156 050
5 050 4.84 3.8 085 6.5 4.49 0.90° 5.02 6.44 028 7.04 255
6 094 568 888 0.69° 295 527 054 1.44 3.89 0.90° 5.10 5.5
7 037 191 162 048 084 046 0.00 022 0.17 017 211  0.91
8 031 127 068 054 217 128 012 158 0.72 0777 314 158
9 029 1.65 1.76 033 3.33 340 042 422 1.60 000 162 0.96
10 0.80° 3.99 3.38 070" 3.39 263 073" 3.09 255 054 372 344
11 008 150 0.72 0.30 -2.07 052 026 -2.06 0.58 020 254 045
12 0.90° 3.46 824 0.70° 195 4.24 048 216 354 062 312 405

TAS VIC WA AUS

R?® ARPD’ SNR R? ARPD’ SNR R?® ARPD’ SNR R?® ARPD’ SNR
1 076 346 5.16 0.90° 1.85 226 059 1.04 1.63 0.68° 149 233
2 090 170 3.40 095 5.00 284 0.02 319 206 0.96° 348 757
3 087 221 3.16 054 329 224 071 208 3.01 0.76° 2.01 4.47
4 039 -057 048 003 1.22 058 048 -151 265 000 011 0.15
5 052 203 211 079° 4.84 3.46 0.92° 515 7.69 0.89° 519 6.03
6 072 129 1.08 0.95 5.83 5.50 0.81° 201 4.02 0.96° 3.07 13.35
7 091" 223 676 079° 365 1.84 0.00 069 0.78 0.81° 155 3.69
8 046 215 1.45 028 276 1.5 023 325 1.90 040 245 245
9 063 -194 4.04 005 -0.16 0.26 050 2.85 234 077 269  4.01
10 063 242 3.03 073" 5.66 4.29 0.04 192 1.94 0.69° 3.17 345
11 040 452 3.96 062 365 1.32 011 096 045 005 073 030
12 0.75° 0.82 2.16 0.88° 3.4 3.34 0.81° 281 551 0.92° 258 12.29

* The confidence level is over 95%.
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Table 4. The grid cell percentages at different SNR levels for 12 GCMs and 3 precipitation

intensity indices.

BCCR_BCM20
CCCMA_CGCMS3
CNRM_CM3
CSIRO_MK35
MPI_ECHAM5
ECHO.G
GFDL_CM20
GFDL_CM21
IPSL_.CM40
MIROC_MEDRES
MRI_.CGCM2
NCAR_CCSM3

Average

AP’y ARP’,, ARPD’
>05 >10 >20 >05 >10 >20 >05 >10 >20
51.64 10.78 1.09 86.4 42.27 7.16 85.31 57.72 1542
74.88 53.58 13.66 95.57 65.06 25.86 92.35 69.10 19.91
89.22 63.7 8.00 94.06 59.51 15.28 88.66 63.90 18.25
81.05 46.03 13.28 77.53 37.70 5.43 79.21 37.59 5.71
95.72 78.67 24.23 93.42 76.08 31.89 99.55 96.14 65.37
88.08 67.88 24.19 93.78 74.07 23.03 98.66 95.57 71.74
89.37 54.10 16.95 88.67 68.65 25.71 79.39 45.11 8.07
76.17 3717 9.35 82.30 59.77 22.47 73.28 36.79 7.68
85.85 52.14 11.04 95.38 71.77 17.65 76.54 49.60 11.93
87.63 58.63 25.44 80.72 52.34 14.16 95.23 85.52 50.45
64.73 28.54 5.49 82.75 36.40 3.15 56.56 12.76 2.22
82.11 40.8 5.55 77.09 39.79 8.40 97.7 89.74 55.26
80.54 49.34 13.19 87.31 56.95 16.68 85.20 61.63 27.67
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Table 5. The inter- model ensemble results of 3 precipitation intensity indices.

NSW NT QLD SA TAS VIC WA AUS

Median 323 409 316 364 409 634 333 356

, SD 507 957 749 566 516 410 7.60 7.23
AP'sg  10th -140 -0.02 -024 -097 0.81 148 -071 -052
90th 978 1726 1490 1120 11.12 1112 1471 14.01

Median 7.21 840 772 719 7.36 794 7.45 7.62

. sD 467 144 95 672 621 507 989 936
ARP’2  10th 086 098 177 -016 263 059 0.14 0.71
90th 1155 2788 21.05 1438 1654 123 2196 2022

Median 255 223 183 282 191 345 212 226

. sD 194 251 279 239 173 194 235 241
ARPD’  4poth 052 -046 -101 053 -036 1.06 -055 -0.32
90th 479 505 473 578 347 561 442 485
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Fig. 4. The internal and inter-model variability in annual and seasonal ARP’,, over Australia.

Shade- boxes are the median, the 5th and 95th percentiles.
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Fig. 5. The linearity of annual ARPD in responses to global annual mean temperature change

in Australia.
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Fig. 6. The internal and inter-model variability in annual ARPD’ over Australia. The boxes are

the median, 5th and 95th percentile.
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Fig. 7. The comparison of inter-model ensemble annual median values (%/K™') and standard
deviations of change patterns for the three precipitation intensity indicators.
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