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Abstract

Objective criteria for catchment classification are identified by the scientific community
among the key research topics for improving the interpretation and representation of
the spatiotemporal variability of streamflow. A promising approach to catchment clas-
sification makes use of unsupervised neural networks (Self Organising Maps, SOM’s),5

which organise input data through non-linear techniques depending on the intrinsic
similarity of the data themselves. Our study considers ∼300 Italian catchments scat-
tered nationwide, for which several descriptors of the streamflow regime and geomor-
phoclimatic characteristics are available. We qualitatively and quantitatively compare in
the context of PUB (Prediction in Ungauged Basins) a reference classification, RC, with10

four alternative classifications, AC’s. RC was identified by using indices of the stream-
flow regime as input to SOM, whereas AC’s were identified on the basis of catchment
descriptors that can be derived for ungauged basins. One AC directly adopts the avail-
able catchment descriptors as input to SOM. The remaining AC’s are identified by ap-
plying SOM to two sets of derived variables obtained by applying Principal Component15

Analysis (PCA, second AC) and Canonical Correlation Analysis (CCA, third and fourth
ACs) to the available catchment descriptors. First, we measure the similarity between
each AC and RC. Second, we use AC’s and RC to regionalize several streamflow in-
dices and we compare AC’s with RC in terms of accuracy of streamflow prediction. In
particular, we perform an extensive cross-validation to quantify nationwide the accu-20

racy of predictions in ungauged basins of mean annual runoff, mean annual flood, and
flood quantiles associated with given exceedance probabilities. Results of the study
show that CCA can significantly improve the effectiveness of SOM classifications for
the PUB problem.
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1 Introduction

A common problem in hydrology is the prediction in ungauged basins of the streamflow
regime (e.g., long-term mean value and variability of streamflows, flood flows associ-
ated with a given exceedance probability, low-flow indices, etc.). The scientific literature
has often highlighted the remarkable natural variability of geomorphological character-5

istics of basins and of their hydrological behavior for different climatic inputs. This con-
sideration motivated the pursuit of general laws in hydrology to be used for predicting
the hydrologic behavior of ungauged basins on the basis of historical data.

This issue is eloquently stated by Dooge (1986) in the well known work “Looking
for hydrologic laws”, but, at the same time, it is also the central topic of many recent10

international scientific initiatives, such as the Prediction in Ungauged Basins (PUB)
of the International Association of Hydrological Sciences (IAHS) (see e.g., Sivapalan
et al., 2003). The scientific community states that little progress has been made in this
field in the last two decades and indicates that the formulation of objective criteria for
catchment classification is one of the main objectives for obtaining a better interpre-15

tation and representation of spatiotemporal variability of streamflows (McDonnell and
Woods, 2004; McDonnell et al., 2007; Bai et al., 2009).

The identification of hydrologically homogeneous regions, or equivalently the classifi-
cation of catchments into homogeneous groups having the same hydrologic behaviour,
is the basis of all regionalization procedures. These latter are among the most com-20

monly used approaches for predicting streamflow regimes in ungauged basins (Castel-
larin et al., 2001, 2004; Castellarin, 2007).

A very interesting and promising approach to classification makes use of an inno-
vative and data-driven classification method based on unsupervised artificial neural
networks (ANNs), known as Self Organising Maps (SOM, Kohonen, 1982; Toth, 2009).25

As in previous recent studies (Hall and Minns, 1999; Jungy and Hall, 2004; Srinivas
et al., 2008), the main goal of our study is to assess whether SOM classifications
may be effectively utilized for reducing the uncertainty of hydrological predictions in
ungauged basins.
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The element of novelty of this study consists in the integration of SOM techniques
with two multivariate analysis techniques that reduce the original high-dimensionality
of geomorphoclimatic pattern information, namely the Principal Component Analysis
(PCA) and Canonical Correlation Analysis (CCA) (see e.g., Krzanowski, 1988; Ouarda
et al., 2001). It has been shown for other disciplines that integrating PCA and CCA5

improves the practical usability of SOM classifications (see Yan et al., 2001). Our study
aims at understanding if integrating PCA and CCA with SOM can also be a useful
resource in the PUB context.

Our study considers a national database counting 296 Italian unregulated catch-
ments compiled within the national research project “CUBIST – Characterisation of10

Ungauged Basins by Integrated uSe of hydrological Techniques” (Claps and the Cubist
Team, 2008). The streamflow regime and the physiographic and climatic characteris-
tics of the study catchments are summarised by several catchment descriptors.

We identify a Reference Classification (RC) of the study catchments to be compared
with four Alternative Classifications (AC’s) in the context of PUB. RC results from the15

application of SOM to a set of descriptors of the streamflow regime, whereas AC’s
are identified on the basis of catchment descriptors that are commonly available for
ungauged basins. The first AC adopts a set of geomorphoclimatic descriptors as input
to SOM. The remaining AC’s are identified by applying SOM to three sets of derived
variables obtained by applying PCA (second AC) and CCA (third and fourth AC’s) to20

the available geomorphoclimatic descriptors.
First, the similarity between each AC and RC is assessed qualitatively, analysing

how the study catchments were grouped together. Second, AC’s are compared with
RC in terms of accuracy of streamflow prediction. To this aim, AC’s and RC are used as
basis to regionalise several streamflow indices. In order for the comparison to be fair we25

adopted the same regionalization approach for all classifications, and we performed an
extensive cross-validation procedure to quantify nationwide the accuracy of estimates
of the mean annual flow, mean annual flood, and flood quantiles associated with given
exceedance probabilities.
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2 Catchment classification and SOM

A catchment may be defined as the area which drains naturally to a particular point
on a river or stream. Catchments are very complex systems, these landscape ele-
ments can have different sizes and characteristics. In general it is hard to identify an
appropriate classification system that may have general applicability. The recent em-5

phasis on catchment classification highlights the need for methodical criteria to classify
catchments and their hydrological behaviour. To date, hydrologists have not reached
a consensus on a classification system (Wagener et al., 2007).

Regionalization procedures are generally based on the definition of hydrologically
homogeneous regions or pooling groups of sites. Regionalization is a commonly used10

approach for predicting streamflow regimes in ungauged basins (see e.g., Castellarin
et al., 2001, 2004; Castellarin, 2007).

The majority of the pioneering studies on catchment classification and hydrological
regionalization adopted the geographic contiguity criterion. Nevertheless, very soon
the scientific community urged for a globally agreed upon classification system, based15

on the variability of physical and climatic characteristics of the catchments (Acreman
and Sinclair, 1986) and identifiable by means of objective methodologies (i.e., cluster
analysis, Burn, 1989).

In recent years a number of techniques based on various mathematical approaches
have been proposed by the literature. A very interesting and promising approach to20

classification makes use of unsupervised artificial neural networks (ANN) (see e.g.,
Hall and Minns, 1999). Over the last decades ANN’s have been subject to an increas-
ing interest in water resources problems (see e.g., Maier and Dandy, 2000; Maier et
al., 2010). The increasing number of applications of ANN’s in modelling of hydrological
processes is related to their ability to relate input and output variables in complex sys-25

tems without any requirement of a detailed understanding of the physics of the process
involved (Dawson and Wilby, 2001). The unsupervised ANN differ from supervised
ANN, which are more commonly used in hydrology, because they do not focus on the

395

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/391/2011/hessd-8-391-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/391/2011/hessd-8-391-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 391–427, 2011

Application to the
PUB problem

M. Di Prinzio et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

identification of a relationship between input and output variables. They organize input
data through non-linear techniques depending on their similarity instead.

Concerning the problems of classification and pattern recognition, Self Organising
Maps (SOM’s, Kohonen, 1982; 1997) are an unsupervised learning method to an-
alyze, cluster, and model various types of large databases. The SOM method has5

found increasing interest in water resources applications (see e.g., Kalteh et al., 2008;
Céréghino and Park, 2009), such as classification of hydrological and meteorological
conditions for streamflow forecasting (Toth, 2009). SOM networks cluster groups of
similar input patterns from a high dimensional input space in a non-linear fashion onto
a low dimensional (most commonly two-dimensional for representation and visualiza-10

tion purposes) discrete lattice of neurons in an output layer (Kohonen, 2001; Kalteh,
2008).

Typically a SOM consists of two layers, an input layer and a Kohonen or output
layer (see Fig. 1 after Kalteh et al., 2008). The input layer contains one neuron for
each variable (i.e., catchment attribute) in the data set. The number of classes (i.e.,15

neurons of the output layer) is generally predefined by the modeller and the classes
themselves are ordered into meaningful maps that preserve the topology (see Kalteh
et al., 2008). The output-layer neurons are connected to every neuron in the input layer
through adjustable weights (see Fig. 1), whose values are identified through an iterative
training procedure. Following a random initialisation of the weight vectors , SOM utilizes20

a type of learning that is called competitive, unsupervised, or self-organizing procedure
to match each input vector with only one neuron in the output layer. This is done by
comparing the presented input pattern with each of the SOM neuron weight vectors,
on the basis of a distance measure, like the Euclidean distance. The neuron with the
closest match to the presented input pattern is called winner neuron. Then, the weight25

vector of the winner neuron and of the topologically neighbouring neurons are updated
in such a way as to reproduce the input pattern (see e.g., Kalteh et al., 2008; Toth,
2009 for further details).
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Once trained (calibrated), the network activates only one output node in correspon-
dence of each input vector. Therefore, all input vectors activating the same node belong
to the same class.

3 Multivariate analysis for dimensionality reduction

3.1 Principal component analysis – PCA5

The Principal Component Analysis, PCA, PCA (see e.g., Krzanowski, 1988) is a multi-
variate analysis statistical method that enables one to obtain smaller number of uncor-
related variables from a larger number of possibly correlated variables by constructing
an orthogonal basis for the original variables themselves. The derived uncorrelated
variables are called principal components (PC). The full set of PC’s has the same di-10

mensionality of the original set of variables. They are ordered in such a way that the first
component accounts for as much of the variability in the original dataset as possible,
and each following PC accounts for as much of the remaining variability as possible.

It is commonplace for the sum of the variances of the first few PCs to exceed 80% of
the total variance of the original data. By examining plots of these few new variables,15

researchers often develop a deeper understanding of the driving forces that generated
the original data. The literature reports several criteria for selecting the appropriate
number of principal components (see e.g., Kaiser, 1960 criterion and the scree plot).

3.2 Canonical correlation analysis – CCA

Another important multivariate statistical tool for reducing the dimensionality of the orig-20

inal dataset is the Canonical Correlation Analysis (CCA). The multivariate approach
of CCA is most commonly used in the context where there are two sets of random
multidimensional and correlated variables X={X1,X2,...,Xn} and Y={Y1,Y2,...,Ym} (e.g.,
geomorphoclimatic catchment descriptors and indices of the streamflow regime, such
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as the annual flow, the flood associated with a given recurrence interval, etc.). CCA
enables one to identify the dominant linear modes of covariability between the sets X
and Y (see e.g., Krzanowski, 1988; Ouarda et al., 2001). In other words, CCA iden-
tifies two new groups of artificial variables (canonical variables) U={U1,U2,...,Ur} and
V={V1,V2,...,Vr}, with r=min{n,m}, by finding linear combinations of the original Xi , with5

i=1,...,n, and Yj , with j=1,...,m, in such a way that the correlation between the canoni-
cal variables of a pair (Ui ,Vi ) is maximized and the correlation between the variables of
different pairs is null (Chokmani and Ouarda, 2004; Shu and Ouarda, 2007).

If we denote by X and Y the independent and dependent variables respectively and
we consider the linear transformations,10

U =uT
X ·X and V =uT

Y ·Y (1)

characterized by the basis vectors uX and uY , CCA can be defined as the following
optimization problem,

ρ= max
uX ,vY

{corr(U,V )}= max
uX ,vY

cov(U,V )√
var(U)

√
var(V )

. (2)

4 Study area and available information15

The study area consists of the entire Italian peninsula and it is definitely heteroge-
neous in terms of climatic and geomorphologic characteristics that control the stream-
flow regime. In particular, the study focuses on 296 Italian catchments scattered na-
tionwide, whose dataset was compiled within the national research project “CUBIST
– Characterisation of Ungauged Basins by Integrated uSe of hydrological Techniques”20

(see e.g., Claps et al., 2008).
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4.1 Geomorphoclimatic and streamflow variables

We refer to 12 different geomorphological and climatic descriptors of the study catch-
ments, which we term in the study X variables, and 6 descriptors of the streamflow
regime, which we term Y variables.

5

X variables:

– (1 and 2) long. and lat. – UTM longitude and latitude of catchment centroid;

– (3) A – Drainage area;

– (4) P – Perimeter;

– (5) zmax – Highest elevation;10

– (6) zmin – Elevation of the catchment outlet;

– (7) zmean – Mean altitude;

– (8) L – Maximum drainage length;

– (9) SL – Average slope along the Maximum drainage length;

– (10) SA – Catchment average slope;15

– (11) Φ – Catchment orientation;

– (12) MAP – Mean Annual Precipitation;

Y variables:

– (1) MAR – Mean Annual Runoff;

– (from 2 to 5) li – sample L moments of order i=1 (i.e. sample mean), 2, 3 and 420

of the annual maximum series AMS of flood flows (see e.g., Hosking, 1990);
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– (6) REC/l1 – Ratio between the maximum value and the sample mean of AMS of
flood flows.

Tables 1 and 2 summarise X and Y variables in terms of minimum, mean and maximum
values, and 25th, 50th and 75th percentiles for the set of 296 considered catchments.

4.2 Application of PCA and CCA5

We reduced the dimensionality of the 12-dimensional space of the geomorphoclimatic
descriptors (X variables) and the 6-dimensional space of the streamflow regime de-
scriptors (Y variables) through the application of PCA and CCA. In particular we com-
puted all PC’s of X variables relative to the whole set of 296 basins. As said before, the
full set of PC’s is as large as the original set of variables. The 12 PC’s have zero mean10

and a decreasing standard deviation (see Table 3), but the most interesting property
is that the first three principal components explain roughly the two third of the total
variability, in this case more than the 75.4% (Table 3).

Figure 2 reports the coefficients of linear transformation of each X variable for the
first three Principal Components. This information is explained from the eigenvalues15

calculated for our dataset.
Likewise, we applied the CCA to the set of X and Y variables relative to the whole of

the 296 study basins. As reported above, the number of canonical variables is equal
to the smallest minimum dimension of the two sets of variables, in our case the Y
variables. Therefore we obtained 6 canonical variables for each set, U and V .20

The scatter-plots of Fig. 3 illustrate the relationships between the canonical variables
U (x axis) and V (y axis) computed for the study area, also illustrating, as expected,
a significant correlation between the first canonical variables Ui and Vi . Table 4 shows
the significance of the null hypothesis that all correlation coefficients between Uj and Vj ,
with j = i , ..., r=6, are all zero. As Table 4 shows, the first 4 canonical variables are the25

most descriptive for the problem at hand. As done for PC’s, we report in Fig. 4 the coef-
ficients of linear transformation associated with each X variable for all six components
of U.

400

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/391/2011/hessd-8-391-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/391/2011/hessd-8-391-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 391–427, 2011

Application to the
PUB problem

M. Di Prinzio et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

5 Comparison of SOM classifications of the study catchments

5.1 Reference and alternative SOM classifications

There are no predefined classes of the conditions characterising the basin: a clustering
algorithm is here used as an unsupervised classifier, where the task is to learn a clas-
sification from the data. Such partitioning will be based on the most relevant available5

information, that is, descriptors of the streamflow regime and geomorphoclimatic char-
acteristics.

We considered 5 different SOM classifications: a reference SOM classification and 4
alternative SOM classifications. These classifications were obtained for the considered
group of catchments on the basis of the information described below:10

– Reference Classification (RC)

– SOMY is obtained by using indices of the streamflow regime (Y variables);

– Alternative Classifications (ACs):

– SOMX is based upon the geomorphoclimatic descriptors (X variables);

– SOMPC3 uses the first three Principal Components of the X variables;15

– SOMU uses all canonical variables computed by applying CCA to X and Y
variables (i.e., Ui , with i=1, ..., 6);

– SOMU4 uses a subset containing the most descriptive canonical variables
(i.e., Ui , with i=1, ..., 4).

5.2 SOM classification implementation20

A different SOM network was implemented for each set of catchment characteristics
(Y, X, U, U4, PC3). The dimension of the input layer varies from 3 (PC3) to 12 (X). As
far as the output layer is concerned, there is not a predefined number of classes and
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it was here chosen an hexagonal topology formed by three rows by three columns, for
a total of nine nodes, each one corresponding to a class, believing that such number is
adequate for representing a variety of homogeneous, but sufficiently numerous, groups
of watersheds.

We used the Euclidean distance as a measure of the distance between the vectors,5

according to the majority of hydrological applications. Three out of five SOM’s classifi-
cations resulting from the different sets of descriptors are represented in Fig. 5 (SOMX
and SOMU were omitted due to space limitations). Note that no relationship exists
between classes depicted by the same colour in different classifications.

It is worth noting here that RC is identified on the basis of indices characterizing10

the streamflow regime, whereas all AC’s are delineated by applying SOM techniques
to information that can be retrieved for ungauged basins. Any ungauged basin, once
characterized in terms of the 12 considered catchment descriptors, can be allocated to
one of the nine classes of each alternative SOM classifications. The regional stream-
flow information collected within the class to which the ungauged site belongs can then15

be used to infer the streamflow regime of the ungauged site itself.
The next two sections assess the effectiveness of AC’s in terms of (1) affinity to the

RC and (2) usability in the PUB context to predict the streamflow regime in ungauged
catchment.

5.3 Affinities of alternative SOM classifications with the reference classification20

Two indices of similarity were applied to quantify the affinities between reference
(SOMY) and alternative classifications: the Rand Index (Rand, 1971), RI, and its vari-
ation proposed by Hubert and Arabie (1985).

Comparing two partitions (P1 and P2) of the same data set, a couple of objects (i.e.,
catchments) can belong to the same class or different classes in P1 and P2. Let us25

define N00 as the number of catchments that belong to the same class both in P1 and
P2; N10 as the number of catchments that belong to the same class in P2 but not in P1;
N01 as the number of catchments that belong to the same class in P1 but not in P2; N11

402

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/391/2011/hessd-8-391-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/391/2011/hessd-8-391-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 391–427, 2011

Application to the
PUB problem

M. Di Prinzio et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

as the number of catchments that belong to different classes both in P1 and P2. Under
these assumptions, RI reads,

RI=
N11+N00

N11+N00+N10+N01
(3)

RI varies between 1 (perfect agreement between the two partitions) and 0 (no agree-
ment).5

Hubert and Arabie (1985) proposed an adjustment to the Rand Index so that its ex-
pected value is equal to zero for random partitions having the same number of objects
in each class. The index is still equal to 1 for perfect agreement but it can also take
negative values (higher discriminatory power than RI).

The bar-diagram of Fig. 5 shows the values obtained for these indices by comparing10

the RC (i.e., SOMY) with all AC’s (i.e., SOMX, SOMPC3, SOMU and SOMU4). RC
is based on the use of hydrometric information, therefore the effectiveness of all AC’s,
which are suitable for ungauged basins, is “measured” relative to SOMY.

Figure 5 shows that, as it was expected, SOMX and SOMPC3 are similar to each
other in terms of affinity with SOMY. Figure 5 also shows that SOMU and SOMU4 are15

more similar to SOMY than SOMX and SOMPC3, indicating that SOMU4 outperforms
all other classifications in terms of affinity with the reference classification SOMY.

These results are a consequence of the intrinsic nature of the alternative SOM clas-
sifications considered in our study. SOMX uses all geomorphological and climatic de-
scriptors, therefore there is no direct relationship with the information used for delin-20

eating SOMY and, also, the information utilised to delineate SOMX presents redun-
dancy that may impact the efficiency of the classification process. SOMPC3 uses
only the most descriptive portion of the available geomorphologic and climatic infor-
mation, therefore removing some noise from the input data, yet no direct relation with
the hydrometric information also in this case. SOMU, instead, uses as input informa-25

tion geomorphologic and climatic information rearranged to maximize the correlation
with the streamflow regime, and SOMU4 uses only the geomorphologic and climatic
information which shows the highest correlation with the streamflow regime.
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5.4 Quantitative comparison of SOM classifications in the PUB context

The effectiveness of each classification has been further assessed relative to the esti-
mation of streamflow regime for ungauged sites. To this aim we developed a number of
multiple regression models for estimating the streamflow index of interest in ungauged
sites and we assessed the performances of these models in cross-validation for all AC’s5

considered in the study, to better understand whether or not the utilization of PCA and
CCA may improve the practical usability of SOM catchment classifications, reducing
the uncertainty of predictions in ungauged sites.

For the sake of generality and simplicity, we referred in the study to the simplest
possible model structure, therefore adopting a linear multiregression model as the ref-10

erence model. The model reads,

ŷi =A0+A1PC1i +A2PC2i +A3PC3i +ϑ (4a)

where A0, A1, and A3 are the parameters of the multivariate linear regression model;
PC1i , PC2i and PC3i are the first three principal components of variables X for site
i , with i=1, ..., 296, which explain more than the 75.4% of the total variance and, for15

consistency, are used as explanatory variables in all multiregression models developed
in the study; ϑ is the residual of the model; and ŷi is the normalized streamflow index
of interest for site i ,

ŷi =
ẑi − z̄
sZ

, (4b)

with ẑi empirical value of the streamflow index for site i , and z̄ and sZ empirical mean20

and standard deviation of the streamflow index of interest for the entire dataset.
We performed this analysis by developing for each catchment classification of in-

terest four different multiregression models (Eq. 4a), namely one model for estimating
of Mean Annual Runoff (MAR) and three models for estimating the first 3 sample L
moments of the annual maximum series l1, l2 and l3. In particular, four models were25

identified for RC (i.e., SOMY), which represents the optimal classification, and for each
404
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of the four AC’s (i.e., SOMX, SOMPC3, SOMU and SOMU4). Four multiple linear re-
gression models were also identified for the entire national set of basins (NOCLASS),
which represents a baseline condition in the comparison and sets the minimum level
of performance.

We assessed the efficiency of each alternative classification AC by referring to the5

results of an extensive jack-knife cross-validation of all 24 regression models developed
for the six identified classifications (i.e., RC -optimal-, AC’s, NOCLASS -baseline-).

The jack-knife cross-validation procedure is applied in order to quantify the accuracy
of each model when applied in ungauged basins; it is also called in the literature as
delete-one or leave-one-out cross-validation procedure (see e.g., Efron, 1982; Zhang10

and Kroll, 2007; Brath et al., 2003; Castellarin et al., 2004). This method is extremely
versatile and capable of providing adequate evaluation of the performance of the in-
terpolation techniques, since it simulates the ungauged conditions for each site in the
study region. The procedure can be illustrated as follows,

(a) one catchment is eliminated from the set of N catchments;15

(b) an empirical multiregression model is identified on the basis of the information col-
lected at the N−1 remaining catchments (i.e., the first three principal components
are computed and the coefficients Aj of Eq. (4a), with j=0, ..., 3, are estimated
through linear multiregression techniques);

(c) the model developed at step (b) is used for estimating the streamflow index at the20

discarded site;

(d) steps (a) to (c) are repeated N−1 times, each time by eliminating a different catch-
ment.

In a few words, the jack-knife procedure estimates the streamflow index at stake in
a given site without taking into account the hydrometric information available at the site25

itself.
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The results of the various cross-validations were quantified in terms of Nash-Sutcliffe
efficiency measure (NSE) (Nash and Sutcliffe, 1970). The NSE varies in the range
]−∞, 1], where 1 corresponds to a perfect agreement between modelled and empirical
values, NSE=0 indicates that estimated values are as accurate as the mean of the ob-
served values, while negative values occur when the observed mean value is a better5

predictor than the model. The performance index reads

NSE=1−

∑
i=1,N

(
ηJK,i −ηi

)2
∑

i=1,N

(
ηi −

∑
i=1,N

(
ηi
N

))2
(5)

where ηJK,i indicates the jack-knife estimate and ηi the empirical value for site i , with
i =1, ..., N.

We computed the performance index relative to jack-knife and empirical values of10

MAR (Mean Annual Runoff) and l1 (mean annual flood). Producing reliable predictions
of MAR and l1 in ungauged sites is of primary concern (see e.g., Brath et al., 2001;
Castellarin et al., 2004; Kjeldsen and Jones, 2010). Concerning the higher order L mo-
ments (i.e., l2 and l3), instead of comparing directly empirical and jack-knife values we
preferred to focus on flood quantiles (i.e. flood flows associated with a given recurrence15

interval T ), computed on the basis of the L-moments. We deem the flood quantiles to
be more meaningful and understandable than l2 and l3 for summarising the flood fre-
quency regime from a practical viewpoint. Ultimately, hydrologists and practitioners
are interested in the estimation of the design flood in ungauged sites rather than the L
moments’ values.20

We estimated the flood quantiles at each and every site from a Generalized Extreme-
Value (GEV) estimated with the L moments method (GEV-LMOM algorithm), which is
often more efficient than the maximum likelihood when used with small to moderate
length samples (please refer to Hosking and Wallis, 1997 for details of the frequency
distribution and the method of L moments). The GEV distribution was selected in light25
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of its satisfactorily reproduction of the sample frequency distribution of hydrological
extremes in Italy and around the world (see e.g., Stedinger et al., 1993; Robson and
Reed, 1999; Castellarin et al., 2001).

We arbitrarily selected three different return periods, T=10, 50 and 100 years and
we estimated the flood quantiles through the GEV-LMOM algorithm by referring to the5

sample L moments l1, l2 and l3 and their jack-knife estimates for all classifications of
interest (RC, AC’s, NOCLASS). We then compared these estimates in terms of Eq. (5).
To avoid unduly extrapolations, we limited the comparison for T=10 and 50 years to
the 92 out of 296 sites with at least 30 years of observed annual maxima, and to the
34 out of 296 sites with at least 40 years of observations for T=50 and 100 years.10

It is worth highlighting here that even though the use of NSE has become a natural
part of the modelling practice, its utilization is still a matter of concern (see e.g., Gupta
et al., 2009). In fact, the usefulness of the observed mean as a reference value varies
strongly in practical applications. Like all the squared measures, NSE weights the
largest observation very heavily at the expense of smaller values, to overcome this15

problem we performed the NSE on logflows, this is typically considered valuable for
flood and mean annual streamflows.

6 Results and discussion

Table 5 reports the values obtained for NSE for all cross-validated streamflow indices
and classifications. The scatter plots of Fig. 6 report sample estimates of streamflow20

indices of interest against predicted values obtained in cross-validation for some of
the classifications considered in the study. Distribution of relative residuals between
empirical and jack-knifed values of the streamflow index of interest are illustrated in
Fig. 7 for NOCLASS, SOMY, SOMPC3 and SOMU.

The comparison between the results obtained for the baseline condition (NOCLASS)25

and alternative classifications (i.e., SOMX, SOMPC3, SOMU, SOMU4) indicate that all
SOM classifications led to a remarkable improvement in the prediction ability of the
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considered multiregressive model for all streamflow indices considered in the study.
NSE values show significant improvements for all streamflow indices and alternative
classifications relative to NOCLASS (see Table 5). Also, the comparison between the
results obtained for SOMX and those relative to SOMPC3, SOMU and SOMU4 points
out that combining SOM with PCA or CCA can improve effectiveness and usefulness5

of SOM classifications in the PUB context, that is for predictions of streamflow indices
in ungauged basins.

Results reported in Table 5 indicate that multiregression models based on SOMU4
outperform the other models for predicting MAR in ungauged basins. SOMU4 is as
accurate as the optimal classification SOMY in predicting MAR in ungauged basins.10

Table 5 illustrates a different picture for the prediction of the annual flood (l1). In this
case the application of SOMPC3 results in the best NSE value, but, above all, perfor-
mances of all alternative classifications are similar and low, definitely lower than SOMY
and comparable with NOCLASS performances. This result was somehow expected,
ours study adopts a very simplistic model (see Eq. 4) and the prediction of the central15

tendency of the flood frequency distribution (e.g., annual flood, median, index-flood,
etc.) is indicated by the literature as one of the most critical steps required by the ap-
plication of regional models to ungauged sites and is generally associated with a large
uncertainty (see e.g., Brath et al., 2001; Castellarin, 2007; Kjeldsen and Jones, 2010).

Concerning the prediction of flood quantiles, the results of our study point out a clear20

supremacy of SOMU. Table 5 indicates that SOMU is associated with the highest NSE
values 3 out of 4 times. It is interesting to note that also SOMPC3 shows good perfor-
mances, implying that the removal of redundant information involved in the identifica-
tion of SOMX improves the accuracy of the regional models. Nevertheless, the lower
bias and variability of residuals of SOMU relative to SOMPC3 is also evident in the25

boxplots of Fig. 7.
Concerning the box-plots of Fig. 7, a striking figure is the large number of outliers

(circles) of relative residuals for the predictions of all streamflow indices considered in
cross-validation (outliers are defined as values situated at a distance from the lower
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and upper quartiles which is 1.5 times larger than the distance between the quartiles
themselves). This may be due to the extreme simplicity of the linear regional model and
the huge variability of climatic and hydrological characteristics of the consider catch-
ments.

Furthermore, results obtained for SOMY (reference classification) and SOMX,5

SOMPC3, SOMU4 and SOMU reported in Table 5 and Fig. 7 also point out rather
clearly that, aside from predictions of MAR, there is still a great margin for improve-
ments. The gap in terms of performance between regional models based on SOMY
and models based on all alternative classifications is significant. It is worth noting that
this outcome has nothing to do with the limitations of the simplistic regional model10

adopted in the study (i.e., Eq. 4), nor the information used by the regional model. The
structure of the regional model does not vary and the predictions in cross-validation
of all regional model are based upon the same information (i.e., first three principal
components of X variables). Simply, SOMY transfers the streamflow information from
gauged sites to ungauged ones in a more effective way. None of the catchment classi-15

fications based directly (SOMX) or indirectly (SOMPC3, SOMU, SOMU4), on the avail-
able catchment descriptors is as efficient as SOMY in transferring the streamflow infor-
mation form gauged to ungauged sites. This gap may be reduced by identifying more
informative catchment descriptors (see e.g., Savenije, 2010) given the growing avail-
ability of easily accessible high resolution topographic and land-cover data, together20

with GIS tools for hydrologic analysis. Further improvements may probably stem from
a process-based reorganization of the available information based on physically-based
criteria that aims at further removing some noise characterizing the available set of
catchment descriptors.

Future analyses, possibly focussing on larger datasets and diverse climatic and25

hydrological conditions, could further test the same classification algorithm (i.e.,
PCA/CCA and SOM) for catchment descriptors that combine (1) raw morphological
information (e.g., catchment area, main channel and drainage network length, altime-
try) to compute hydrologically significant characteristics, such as for instance the time
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of concentration or drainage density (Pallard et al., 2009), and (2) raw climatic informa-
tion (e.g., catchment scale mean monthly and annual precipitation and temperature) to
estimate aridity indices or net precipitation (Castellarin et al., 2007).

7 Conclusions

Our study analyses the effectiveness of unsupervised neural networks (Self Organising5

Maps, SOM) coupled with multivariate techniques for reducing the high dimensional-
ity of catchment descriptors (i.e., Principal Component Analysis, PCA, and Canonical
Correlation Analysis CCA) for producing catchment classifications on objective bases.

Catchment classification does not have a purpose in itself in the context of our anal-
ysis, and does not represent a mere scientific exercise, but represents the means to10

transfer information from gauged sites to ungauged ones, reducing the uncertainty of
hydrological predictions in ungauged sites.

We consider some 300 Italian catchments scattered nationwide, which represent
a complex compound featuring all Italian hydro-climatic settings, from Alpine to Mediter-
ranean, from humid to semiarid, and from continental to maritime conditions.15

The catchments are grouped into five different classifications, all delineated by
means of unsupervised neural networks. One reference classification is identified by
using as catchment descriptors indices of the streamflow regime and flood statistics
(reference classification). Four alternative classifications are derived by referring to
a number of geomorphologic and climatic catchment descriptors which can be com-20

puted for ungauged basins. One of this classification uses the entire set of descriptors
as input variables to SOM, whereas the remaining three alternative classifications uti-
lize as input variables a limited number of measures that are linear combinations of the
original catchment descriptors obtained by applying PCA or CCA.

We compared the similarity of the alternative classifications with the reference clas-25

sification. We also compared the accuracy of regional predictions of mean annual
runoff, mean annual flood and flood quantiles for various recurrence intervals based
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on the alternative catchment classifications with the accuracy of the same predictions
based on (1) the reference classification and (2) a baseline condition which groups
together the entire system of Italian catchments (absence of classification). The re-
gional predictions are obtained through the application of an extensive cross-validation
procedure that simulates the ungauged conditions at each and every site.5

Main outcomes of the study may be summarised as follows: (i) SOM’s confirm their
effectiveness and usefulness as objective criteria for pattern recognition and, in par-
ticular, for delineating catchment classifications; (ii) PCA and CCA can significantly
improve the effectiveness and usefulness of SOM in the context of PUB, that is for
reducing the uncertainty of hydrological predictions in ungauged sites; we strongly en-10

courage to perform PCA, and in particular CCA, on the available set of catchment
descriptors before applying SOM; (iii) catchment classification provides a great deal of
information for enhancing hydrological predictions in ungauged basins, yet the applica-
tion of objective but merely statistical criteria and algorithms (PCA and CCA with SOM)
revealed some limitations that may be significantly reduced by switching from data-15

driven to data- and process-driven catchment classification. Designing a theoretical
framework for combining these two different perspectives is an exciting open problem
for future analyses.

Acknowledgement. The study has been partially supported by the Italian Government through
its national grants to the programmes on “Advanced techniques for estimating the magnitude20

and forecasting extreme hydrological events, with uncertainty analysis” and “Relations between
hydrological processes, climate, and physical attributes of the landscape at the regional and
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Table 1. Minimum, mean and maximum values, and 25th, 50th and 75th percentiles for the
set of X variables considered in the study. These data were either derived from a SAR-DTM
(Synthetic Aperture Radar-Digital Terrain Model) with grid size 100 m or (**) retrieved from Rep.
no. 17 of the former Italian SIMN (National Hydrographic Service of Italy.

long. lat. A P zmax zmin zmean L SL SA Φ MAP (**)
(m) (m) (km2) (km) (m a.s.l.) (km) (%) (%) (◦ N) (mm)

Minimum 319 450 4 170 550 3.2 8.0 284 3.0 127.0 2.6 1.8 6.2 0.7 602.0
Mean 704 261 4 752 661 1060.8 157.8 2092 342.0 986.7 54.8 10.1 29.1 186.6 1224.2
Maximum 1 162 850 5 195 450 17 512.1 1115.0 4727 1812.0 3110.0 357.9 35.4 63.0 359.3 2289.0
25th 505 825 4 545 450 98.0 52.75 1409 77.7 567.5 18.7 5.3 18.4 73.9 960.75
50th 680 450 4 814 250 331.0 102.5 1814 231.5 838.5 35.9 8.5 26.8 204.0 1152.5
75th 897 475 4 922 150 930.7 187.25 2625 462.5 1242.7 66.1 13.6 38.5 276.8 1410.0
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Table 2. Minimum, mean and maximum values, and 25th, 50th and 75th percentiles for the
set of Y variables considered in the study. These data were either computed from the digital
database of Italian AMS of flood flows compiled during the Italian VaPi (GNDCI-CNR) project
or (**) retrieved from Rep. no. 17 of the former Italian SIMN (National Hydrographic Service of
Italy).

MAR (**) l1 l2 l3 l4 REC/l1
(mm) (m3/s) (m3/s) (m3/s) (m3/s) (–)

Minimum 84.0 1.0 0.3 −27.3 −32.3 1.2
Mean 780.6 309.0 86.1 21.0 16.5 2.7
Maximum 4406.0 1881.6 584.8 154.6 222.1 9.5

25th 384.7 56.1 17.8 2.6 2.3 1.9
50th 653 163.0 51.7 12.1 9.5 2.5
75th 1080.2 418.0 123.6 29.3 21.7 3.3
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Table 3. Principal components of X variables: variability accounted for.

Standard Proportion Cumulative
deviation of variance proportion

(−) (%) (%)

PC1 2.11 37.00 37.00
PC2 1.84 28.20 65.20
PC3 1.11 10.20 75.40
PC4 0.97 7.90 83.30
PC5 0.89 6.53 89.83
PC6 0.67 3.69 93.52
PC7 0.60 3.02 96.54
PC8 0.49 1.98 98.52
PC9 0.28 0.64 99.16
PC10 0.25 0.54 99.70
PC11 0.15 0.19 99.88
PC12 0.12 0.12 100.00
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Table 4. Level of significance α of the null-hypothesis that the i th through the 6th correlations
are all zero.

i ρ (U i , V i ) Significance α

1 0.900 0.00
2 0.830 0.00
3 0.498 0.00
4 0.362 0.00
5 0.244 0.06
6 0.165 0.34

419

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/391/2011/hessd-8-391-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/391/2011/hessd-8-391-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 391–427, 2011

Application to the
PUB problem

M. Di Prinzio et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 5. Cross-validation of multiple regression models: NSE values for log-transformed
streamflow indices (QT indicates the flood quantile with recurrence interval T , the highest NSE
value among alternative classifications is highlighted in bold).

NSE
NO-CLASS SOMY SOMX SOMPC3 SOMU4 SOMU

Minimum MAR 0.53 0.75 0.69 0.66 0.75 0.64
record length l1 0.49 0.76 0.53 0.58 0.54 0.42

30 years Q10 0.52 0.76 0.45 0.55 0.48 0.59
Q50 0.48 0.80 0.45 0.53 0.55 0.61

40 years Q50 0.36 0.79 0.34 0.53 0.43 0.49
Q100 0.30 0.82 0.35 0.52 0.47 0.53
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FIGURES  682 

 683 

 684 

Figure 1 685 

686 

Fig. 1. Structure of a 5×5 two-dimensional self organizing map (SOM) (after Kalteh et al.,
2008).
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Figure 2 689 

690 

Fig. 2. Coefficients of the linear transformation for the first three PC’s of the X variables.
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 691 

 692 

Figure 3 693 

694 

Fig. 3. Canonical variables U and V computed for the study area: scatter-plots between canon-
ical variables Ui and Vj , for i and j equal to 1, 2, ..., 6.
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Figure 4 697 

698 

Fig. 4. Coefficients of the linear transformation for the canonical variables of the X variables.
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Figure 5 701 

702 

Fig. 5. SOM classifications of the study catchments (note that SOMU is omitted) and hexagonal
topology of the output layer; bar-diagram for Rand and Adjusted Rand Index.
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Figure 6 706 

707 

Fig. 6. Examples of scatter-plots (empirical vs. jack-knife values) obtained in cross-validation
for some of the classifications considered in the study (the baseline classification NO-CLASS
is reported in grey in each panel).
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Figure 7 710 

Fig. 7. Distribution of relative errors in terms of 25th, 50th and 75th percentiles, maximum and
minimum values, and outliers (circles).

427

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/391/2011/hessd-8-391-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/391/2011/hessd-8-391-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

