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Abstract

An uncertainty cascade model applied to stream flow forecasting seeks to evaluate
the different sources of uncertainty of the complex rainfall-runoff process. The cur-
rent trend focuses on the combination of Meteorological Ensemble Prediction Systems
(MEPS) and hydrological model(s). However, the number of members of such a HEPS5

may rapidly increase to a level that may not be operationally sustainable. This arti-
cle evaluates a 94% simplification of an initial 800-member HEPS, forcing 16 lumped
rainfall-runoff models with the European Center for Medium-range Weather Forecasts
(ECMWF MEPS). More specifically, it tests the time (local) and space (regional) gen-
eralization ability of the simplified 50-member HEPS obtained using a methodology10

that combines 4 main aspects: (i) optimizing information of the short-length series us-
ing k-folds cross-validation, (ii) implementing a backward greedy selection technique,
(iii) guiding the selection with a linear combination of diversified scores, and (iv) for-
mulating combination case studies at the cross-validation stage. At the local level,
the transferability of the 9th day member selection was proven for the other 8 fore-15

cast horizons at an 82% success rate. At the regional level, a good performance was
also achieved when the 50-member HEPS was applied to a neighbouring catchment
within the same cluster. Diversity, defined as hydrological model complementarities
addressing different aspects of a forecast, was identified as the critical factor for proper
selection applications.20

1 Introduction

The competency of probabilistic forecast to encompass the many sources of uncer-
tainty in Hydrological Ensemble Prediction Systems (HEPS) has already been demon-
strated (Roulin, 2007; Rousset et al., 2007; Velázquez et al., 2010). Yet the simulta-
neous consideration of the uncertainty associated with both the meteorological inputs25

and the structural and parametric configuration of the hydrological models can lead
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to systems consisting of too many members to be computationally and operationally
implementable.

Nonetheless, reliability may only be achieved through the uncertainty cascade model
proposed by Pappenberger et al. (2005), which states that the output uncertainty of
a hydrological model is affected by several components: uncertainty from the meteoro-5

logical data used to drive the model, initialization uncertainty (i.e. the initial state of the
model), and the model uncertainty (from parameter identification to model conceptual-
ization).

Combining information derived from the many Meteorological Ensemble Prevision
Systems (MEPS) is another avenue that has been shown to improve early flood warn-10

ing systems (He et al., 2009) – the THORPEX Interactive Grand Global Ensemble
(TIGGE) (Bougeault et al., 2010) favors this new opportunity. Moreover, if the para-
metric uncertainty of hydrological models is assessed under the principle of equifi-
nality (Beven and Binley, 1992) and if the structural uncertainty is tackled through
a multi-model approach, the number of scenarios in the uncertainty cascade model15

may rapidly turn out to be huge. Simplification of such a HEPS thus becomes a manda-
tory step from an operational standpoint.

In such a context, the hydrological and meteorological community has focused their
efforts on many lines of simplification. For instance, Pappenberger et al. (2005) evalu-
ated 10-day ahead rainfall forecasts, consisting of one deterministic, one control, and20

50 ensemble forecasts, resorting to a rainfall-runoff model (LisFlood) for which pa-
rameter uncertainty was represented by six different parameter sets identified through
a Generalized Likelihood Uncertainty Estimation (GLUE) analysis and functional hy-
drograph classification. Raftery et al. (2005) proposed the Bayesian Model Average
methodology (BMA) as a means for the statistical post-processing of forecast ensem-25

bles derived from numerical weather prediction models. The BMA predictive probabil-
ity density function (PDF) is a weighted average of the PDF’s centered on the bias-
corrected forecasts from a set of different models. The weights assigned to each
model reflect that model’s contribution to the forecasting skill over a training period
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(Vrugt et al., 2006). In this same line, Vrugt et al. (2008) proposed evaluating BMA
weights with the DiffeRential Evolution Adaptive Metropolis (DREAM) Markov Chain
Monte Carlo (MCMC) algorithm.

Other studies identified the meteorological forecasts as the most uncertain compo-
nent of the uncertainty cascade model (Todini, 2004; Jaun et al., 2008; Pappenberger5

et al., 2005), triggering interest in novel member selection techniques. For example,
Marsigli et al. (2001); Jaun et al. (2008); Molteni et al. (2001) select MEPS members
based on lagging ensembles and deriving representative members through hierarchi-
cal clustering over the domain of interest. Ebert et al. (2007) analyzed the relation
between the atmospheric circulation patterns and extreme discharges to select rep-10

resentative members of MEPS or, in a deterministic way (“best match” approach), to
determine the location of the forecast that most resembled the rainfall pattern over the
catchment (Xuan et al., 2009). In a companion paper, Brochero et al. (2011) presented
the HEPS member selection methodology adopted here: a Backward greedy selec-
tion algorithm (Alpaydin, 2010) retaining the uncertainty properties of a 800-member15

ensemble derived from the 50 members of the European Center for Medium-range
Weather Forecasts (ECWMF) and 16 simple lumped hydrological models (see Sect. 2).

Another aspect of particular interest in the evaluation of probabilistic forecast, and
therefore in member selection, is the identification of a pertinent criteria set. In con-
ventional forecasting, i.e. when confronting an observation against a single predic-20

tion, it is now generally accepted that the calibration of hydrological models should
be approached as a multi-objective problem (Gupta et al., 1998, 1999; Yapo et al.,
1998; Wagener et al., 2001; Confesor and Whittaker, 2007). Probabilistic forecasting
is not different in that regard. In fact, the complexities of confronting an observation
against an ensemble of predictions calls for a variety of criteria, here called scores,25

that specifically focus on one or more characteristics of the probabilistic sets. So, to
assess these properties, several statistical measures should be considered concur-
rently (Wilks, 2005; Cloke and Pappenberger, 2009). Few studies have experimented
member selection with a multi-score focus. Vrugt et al. (2006) posed the BMA inverse
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problem in a multiobjective framework, examining the Pareto set of solutions between
the Continuous Rank Probability Score (CRPS), the Mean Absolute Error (MAE), and
the Ignorance Score. This is achieved using the A Multi-ALgorithm Genetically Adap-
tive Multiobjective (AMALGAM) method, which combines two new concepts: a simulta-
neous multi-method search and self-adaptive offspring creation (Vrugt and Robinson,5

2007). The present paper explores member selection from a linear combination of dif-
ferent scores (see Sect. 3). Selection based on individual criterion has already been
presented in the companion paper (Brochero et al., 2011).

Finally, it has been shown that the enhancement of HEPS is related to the quality
of available information, particularly the number of extreme events, and the possibility10

of combining results of different studies (Cloke and Pappenberger, 2009). Although
more case studies are needed, the improvement of HEPS should be aligned under
reforecasting studies (Hamill et al., 2004). Here, the optimal use of the information
is addressed through k-folds cross-validation and subsequent combination of the k
experiments (see Sect. 4), local evaluation of selection in different forecasting hori-15

zons and regional integration of the selection based on a k -means clustering algorithm
(Sect. 5.2). Results and discussion are gathered in Sect. 6, while conclusions and
a guideline for future work are drawn in Sect. 7.

2 HEPS configuration

The basic configuration of the HEPS was established by Velázquez et al. (2010) in20

their work on the comparison of the qualities of different types of HEPS, combining
uncertainties from the meteorological input and from the hydrological model structure.
The uncertainty of the inputs is represented by the 50 members from the ECMWF
that are a priori assumed to be equally likely (Gouweleeuw et al., 2005) – a detailed
description of the ECWMF model can be found in Molteni et al. (1996) or Buizza25

(2005). As for the uncertainty of the hydrological process, 16 independent structures
are explored. These hydrological models are lumped reservoir-type models proposing
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various conceptualizations of the rainfall-runoff transformation at the catchment scale
(Table 1). It is important to note that some models such as the HM02 were specifically
devised for the catchment scale, whereas others such the HM06 or HM08, inspired
from distributed models, have suffered a series of substantial changes bringing them
to a lumped state.5

On average, 29 years of observations were available for the hydrological model cal-
ibration, based on the RMSE objective function. It is beyond the scope of this article
to present these models and their respective different settings. A detailed explanation
of each model and the various adjustments made can be found in Perrin (2000) with
the exception of models GR4J (Perrin et al., 2003), MORDOR (Garçon, 1999), MO-10

HYSE (Fortin and Turcotte, 2006; Roy et al., 2010), SIMHYD (Chiew et al., 2002) and
Probability-distributed store (PDS) (Yadav et al., 2007).

This HEPS was implemented over 28 French catchments, representing a large range
of hydro-climatic conditions (Fig. 1), and evaluated over a 17-month period. The
main characteristics of these catchments are summarized in Table 2, where maximum15

values stress the problem variability: mean rainfall is equal to 2.6 mm with a stan-
dard deviation of 0.5 mm and a mean flow equal to 1.0 mm with a standard devi-
ation of 0.5 mm. Codification and flow data are from the Banque Hydro database
(http://www.hydro.eaufrance.fr) while rainfall observations originate from Météo-France
SAFRAN. As already mentioned, the rainfall probabilistic forecasts are from the20

ECMWF.

3 Scores: verification metrics

There are various attributes to ensemble forecast quality such as bias, sharpness, reli-
ability and consistency that are considered important for accurate probabilistic weather
forecasting (Murphy, 1993; Wilks, 2005). Each of them is represented to a greater or25

lesser degree by a different metric (score).
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In some cases, it is necessary to establish an a priori probabilistic distribution func-
tion that systematically fits the prediction ensembles at each time step. In hydrology, it
is generally accepted that the adjustment of the gamma distribution is more appropriate
than that of the normal distribution, given asymmetry in the distribution of precipitation
and discharge (Vrugt et al., 2008); however, the gamma function evaluation involves5

more complex computations than for the normal distribution, for which an explicit math-
ematical expression exists.

Here, after some tests assessing disparities between normal and gamma distribu-
tions in the case of the CRPS and the IGNS, results showed small differences in con-
trast to the high computational cost imposed by the gamma distribution (1.7 h vs. 47 h10

of calculations). However, it is important to note that the disparities may increase for
ensembles of less than 30 members, which is not an issue here.

The following scores are considered here: the mean Continuous Ranked Probability
Score (CRPS) that principally measure the ensemble sharpness or spread (Gneiting
and Raftery, 2007; Hersbach, 2000; Boucher et al., 2009), the mean ignorance score15

(IGNS) that strongly reacts to bias (Roulston and Smith, 2002), the rank histograms uni-
formity evaluated from the δ ratio that determines the consistency condition (Candille
and Talagrand, 2005), the reliability diagram error (RDMSE) that evaluates the reliability
properties in a single scalar value, and finally a simple measure of spread proposed
by Brochero et al. (2011): the median of the coefficients of variation evaluated for each20

ensemble (Eq. 5). A detailed version of each metric can be found in the companion
paper (Brochero et al., 2011). These five metrics can be computed as follows:

CRPS
(
F (yt),ot) = σt

[
1
√
π
−2φ

(
ot−µt

σt

)
−
(
ot−µt

σt

)(
2Φ

(
ot−µt

σt

)
−1

)]
(1)
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IGNS(Y,o) = − 1
N

N∑
t=1

log2
[
f (yt)ot

]
(2)

RDMSE(Y,o) =
1
M

M∑
m=1

(ōm− Im)2 (3)

where ōm =
1
N

N∑
t=1

r t, r t =
{

1 if ot ∈ Im
0 otherwise

δ(Y,o) =

∑d+1
c=1 (Sc−href)

2

∆0
(4)

where href =
N

d +1
and ∆0 =

dN
N+1

5

MDCV(Y) =
N

med
t=1

CV (yt), (5)

where in the Eq. (1) F (y)t represents the cumulative distribution function fitted to the
ensemble y

t with mean µt and variance σ2
t at the time t, ot denotes the observation; φ

and Φ denote the normalized variables for the probability density function and cumu-
lative distribution function, respectively, and N is the total number of observations. The10

ignorance score (IGNS) is calculated from the evaluation of the logarithm of the f (yt)
at the point corresponding to the observation ot (Eq. 2). Note that the IGNS score
equals the average of the natural logarithms evaluated at the observations, and the
CRPS is equivalent to the mean absolute error for a deterministic forecast (Hersbach,
2000). Smaller values of the diagnostic measures are preferred and indicate a better15

performance.
RDMSE represents the mean squared differences in the reliability corresponding

to squared vertical distances between the conditional event relative frequency ōm =
P (ot |Im) and the M forecast probabilities Im (Eq. 3). These distances are all small for
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well-calibrated forecasts.
The rank histogram (Sc occurrences inside each rank or class c) is used to eval-

uate whether the ensembles apparently include the observations being predicted as
equiprobable members. Candille and Talagrand (2005) proposed the δ ratio as a mea-
sure of the reliability of an ensemble prediction system for a scalar variable, where d5

indicates the total number of members in each forecast ensemble. A value of δ that is
significantly larger than 1 is a proof of unreliability.

Here, instead of using a single measure or characteristic to select the representative
members of the HEPS, a linear multi-score function proposed by Brochero et al. (2011)
is considered for calibration of the forecast ensemble (Eq. 6). This metric reflects10

different but complementary scalar measures.

CC = w1
CRPSse

CRPSie

+w2
z1− IGNSse

z1− IGNSie

+w3

RDMSEse

RDMSEie
+w4

δse

δie
+w5

z2−MDCVse

z2−MDCVie
(6)

As part of the member selection framework, in order to normalize each of the com-
ponents of the combined criterion (CC), the result of each criterion in the selection15

ensemble (se subscript) is divided by the criterion calculated on the 800-member initial
ensemble (ie subscript). Special formulation requires the normalization of the IGNS
with the threshold z1 to take into account the scale of positive and negative values that
can take this score. It is also necessary to set a threshold z2 for the MDCV function to
change the maximization orientation in terms of the minimization of all the factors to-20

gether. Preliminary analysis showed that z1 =−2 and z2 =1 covers all scenarios of the
series at hand. Finally the last part of the combined criterion consists of the weights
assigned to each component (wcp). Here, the weight assigned to the reliability (the
critical factor) is twice that of the other factors, which have a unit weight.

2791

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/2783/2011/hessd-8-2783-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/2783/2011/hessd-8-2783-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 2783–2820, 2011

Simplifying a
hydrological

ensemble prediction
system – Part 2

D. Brochero et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4 Member selection methodology

More details on the member selection methodology can be found in the companion
paper (Brochero et al., 2011). Figure 2 summarizes the selection procedure applied to
the 800-member HEPS configured from the 50 9th day ECMWF forecasts and the 16
lumped hydrological models. The selection is executed in 3 steps, which are described5

below:
Step 1: Resampling with a variation of the k-fold cross-validation. Because the series

are short-length (500 forecast-observation pairs), a rigorous application of the selec-
tion requires evaluating different types of events in the training (χt), validation (χv) and
test sets (χp). Thus, the process of selecting data follows a k-fold cross-validation10

technique. The dataset (χ ) is divided into 5 equal-sized parts in order to create 5 ex-
periments. In each experiment, a part is set aside for testing, while the remaining four
parts are grouped into n blocks of 10 consecutive pairs of observations-ensemble fore-
cast, randomly choosing 75% of the blocks for the training set and the remaining 25%
for the validation set.15

Step 2: Backward greedy member selection. Optimization relies on the combined cri-
terion (Eq. 6) for a preselected number of members (nm). The mechanism of member
elimination begins with all members (d ), removing at each step the one that decreases
the error the most (or increases it the least). A pseudocode is given (Algorithm 1).

Step 3: Combination of results. It is highly likely that variability in the 5 experiments20

configured in step 1 leads to different solutions. An integration mechanism is thus
needed for a global solution for each catchment. The importance of each member
yi within the ensemble is then assumed as being directly proportional to the iteration
number at which it was eliminated during the selection process in each experiment
(iteryixp). The combined ranking is thus the mean rank of elimination as defined in25

Eq. (7).

R(yi)=
1
5

5∑
xp=1

iteryixp (7)
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Algorithm 1 Backward greedy selection pseudocode
1. Subdivision of the dataset χ in train, validation and test sets.
χ → χt,χv,χp
2. Define Combined criterion as a error function (CC) and the number of members to select
(nm).
3. Initialize ensemble with all d members
Gd = {y1, y2, y3, ...,yd }
4. Remove the worst member
for iter=d −1, d −2, ...,nm do

– Update selection set by removing currently worst member
yj =argminyi∈G iter+1 CC(G iter+1\{yi}|χt)

G iter =G iter+1\yj
– CC evaluation in the validation set
CCiter

v =CC(G iter|χv)
end for

Finally, the final selection (s) of the nm best members corresponds to the members
which have the highest mean rank of elimination (Eq. 8).

s= {Rp,yp}nm
p=1 , R i ≥Rj where 1≤ i ≤ j ≤d (8)

5 Experimental set-up

The generalization ability of a hypothesis, namely, the quality of its inductive bias, can5

be measured if there is access to data outside the training process. The methodology
proposed in the companion paper simulates this by dividing the training set into two
parts. One part is used for training (i.e., to find a hypothesis) and the remaining part
(validation set) is used to test the generalization ability. Nevertheless, if it is necessary
to report the error to approximate the expected selection error, it is compulsory to resort10
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to a third set, a test set, sometimes also called the publication set, containing examples
not used in training or validation (Alpaydin, 2010).

Thus, the method of combining results based on the mean rank of elimination is
founded on the use of all series as a means of optimizing the use of information in
a short-length series (seen from the point of view of the periodicity of the hydrologic5

cycle). However, results of this procedure can be conceived as indicators of relative
performance or otherwise as an optimistic estimate of the selection process (Diaman-
tidis et al., 2000).

This study rigorously tests the outcome of the selection methodology at two levels:
one local that focuses on the extrapolation of results to different forecast time horizons10

in the same catchment and another named regional, testing the temporal and spatial
performance in nearby catchments, or under a broader perspective on the integration
of regional results.

5.1 Extrapolation to a different forecast time horizon

As described in Sect. 2, member selection is performed on the results of 16 hydrologic15

models fed with the 9th day forecast time horizon of the ECMWF MEPS. Thus, the
application of this selection of members for the other eight forecast time horizons (1
to 8) is a first level test. It has to be stressed that the idea of simplifying the HEPS is
only valuable if the member selection is invariant in regard to the forecast time horizon.
However, one may always argue that the assumption of statistical independence be-20

tween the test and training data, principally for forecast time horizons next to the ninth,
may be somewhat questionable.

5.2 Extrapolation to a different catchment

Transferring selected members to a neighbouring catchment, and even further to a dif-
ferent forecast time horizons, constitutes a rigorous test of the generalization ability of25

results at both the temporal and spatial scales. The choice of the second catchment
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could first be viewed as a simple nearest neighbour problem, but in a context of greater
significance, called regional, this problem requires the definition of regions (clusters) of
similar behaviour and a regional integration mechanism to select the final members.

5.2.1 k -means clustering

The k -means clustering algorithm is used to define 5 regions based on the combination5

of different characteristics of the catchments, such as geographic location, minimum,
average and maximum precipitation, evapotranspiration and flow (see Table 2). Of
course, every possible combination of features will yield a different distribution of catch-
ments that will be evaluated through the integration mechanism that will be presented
in Sect. 5.2.2.10

It is convenient at this point to define some notation to describe the assignment of
catchments to a region or cluster. The property set xl for each catchment is introduced
into a corresponding set of binary indicator variables bl

k ∈ {0,1}, where k = 1, ...,K
describe which of the K clusters the catchment l or its property set xl is assigned to,
so that if xn is assigned to cluster k then bn

k =1, and bn
j =0 for j 6=k. Then an objective15

function is given by (Eq. 9).

J =
L∑

l=1

K∑
k=1

bl
k‖x

l −mk‖2 (9)

which represents the sum of the squares of the distances of each catchment to its
assigned vector mk . The goal is to find values for the bl

k and the mk so as to minimize
J . Then the iterative application of Eq. (9) leads to the following procedure for finding20

the mk centers (Algorithm 2). Details of the k -means clustering algorithm are given by
Bishop (2007).

Figure 1 shows an example of k -means clustering based only on the geographic
location of each catchment, the various symbols in the Fig. 1 identify the 5 regions.
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Algorithm 2 k−means pseudocode
1. Define the number of clusters (K ), (here K = 5)
2. Initialize centers mk ,k =1,···,K
repeat

for all xl ,l =1,...,L do

bl
k =

{
1 l =argmink ‖x

l −mk‖
0 otherwise

end for
for all mk ,k =1,···,K do

mk =

∑L
l=1b

l
kx

l

bl
k

end for
until mk converges

Algorithm 3 Regional integration mechanism pseudocode
1. Determine the C catchments in the k region (clustering process).
2. Define the matrix S= {s1,s2,···,sC}
3. Establish the number of members q in the regional solution rs
4. Initialize rs= {},h=0 and i =1
repeat

for j =1,...,C do
if Si ,j /∈ rs then

rs= rs+Si ,j
h=h+1

end if
end for
i = i +1

until h<q
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5.2.2 Regional integration mechanism

The member selection integration for region k, consisting of C catchments, is defined
from matrix S, which has C columns with nm rows representing the most nm important
members as assessed by the mean rank of elimination (R) for each catchment. Then
the process of forming a regional solution rs with q members is based on taking the5

most important members of each catchment without replacement, i.e. each member
cannot be selected again later, until the number of members in rs is equal to the desired
q. Algorithm 3 details this procedure.

6 Results and discussion

The optimal number of members simplifying the HEPS was identified in the companion10

paper to be between 50 and 100, depending on the catchment. In most cases a signif-
icant gain with respect to the balance of the different criteria evaluated from the initial
800-member HEPS was then achieved. Results presented in this section are based on
a selection of 50 members, simplifying the assessment of the participation of members
of the ECMWF MEPS (whose number is also 50) in the final selection.15

Table 3 presents the results of the 50-member selection based on the combined
criterion, for 16 catchments uniformly distributed over France (see Fig. 1). The overall
performance is the normalized sum given by Eq. (6) with unit weights definition. A value
of 5 thus indicates an identical performance for the 50-member selection as for the
800-member reference set. Values lower than 5 reflect a better performance of the20

50-member selection.
Table 3 shows that in all cases the normalized sum (NS) is always lower than 5,

indicating the superiority of the selected 50-member HEPS, even after a size reduction
equivalent to a 94% compression of initial 800-member HEPS. It is important to note
that the normalized sum may hide some deterioration compensated by one or more25

other metrics. It is thus necessary to accompany this measure with the results of each
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of its components, for a collective analysis. In this sense, the analysis is facilitated if
each component is associated with an index (Eq. 10) that reflects the gain or loss of
the selection (se subscript) over the initial 800-member set (ie subscript). Note that
the absolute value is used in the denominator for accounting for negative values that
can take the IGNS. The MDCV function further requires the inversion of the numerator,5

because the purpose of this metric is to maximize the dispersion of the initial HEPS.

Gain(%)=100×
Scoreie−Scorese

|Scoreie|
(10)

Based on this formulation, it is noted that for the 50-member selection, the CRPS and
the MDCV show low variability with gain indexes around 2% and 5%, respectively. The
RDMSE shows minimum gains of 50% (catchment B21) and 87% (catchment K17), re-10

flecting the emphasis given to this property in the formulation of the combined criterion
used for optimizing where this component was given a weight twice that of the others.
With respect to the IGNS, index gains between −5% and 29% (excluding the catchment
B21) reflect an acceptable behaviour.

Finally, the delta ratio is the most difficult to retain; a positive index gain was obtained15

for only 25% of the cases (4/16), while the spread ranged from −41% for catchment
H36 to 31% for catchment B31. Note that the delta ratio has an inverse relationship
with the number of members of the selection (Eq. 4), so it directly follows the complex-
ity in maintaining the value of the initial 800-member HEPS in the selection process.
Nonetheless, it was shown in the companion paper that the delta ratio is the best indi-20

vidual metric for member selection, second only to the proposed combined criterion.

6.1 Local analysis

For operational convenience, it is fundamental that the 50 selected members for the 9th
day forecast time horizon are also appropriate for the 8 previous time horizons. A lack
of transferability of the selected members would considerably reduce the actual level of25

achieved simplification. Here, temporal transferability is first evaluated comparing the
2798
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normalized sum of the performance of the 50-member selection to the 800-member
performance, whose normalized sum equals 5 in all cases. It is then compared to the
performance of 200 50-member random combinations, in order to evaluate if any good
performance may only be attributable to chance. Results for the 8 first time horizons
and 16 watersheds are gathered in box-plot diagrams (Fig. 3).5

The 50 selected members for the 9th day forecast time horizon is superior to the
800 reference members in 82% of the evaluated cases. It is also noteworthy that in
only 11% of the cases (14/128) the 50 selected members lead to a worse performance
than the 25 percentile of 200 random combinations test. Figure 3 also shows that the
selection slowly loses efficiency as it moves away from the 9th day forecast horizon.10

It also detects a systematic deficiency for catchment A69 and to a lesser extent for
catchment B21. Nonetheless, these results are very encouraging.

Figure 4 shows the histogram of the participation of members of the ECMWF MEPS
in the final selection for each of the 16 catchments. The results hint at some degree
of uniformity in the histograms – there are only three occurrences for which a meteo-15

rological member is selected 5 times out of 50 (see catchments A69, A79 and B21).
Such uniformity and the already mentioned high selection level of all hydrological mod-
els (last column of Table 3) support the multi-model trend as an effective mechanism to
shelter the uncertainty related to hydrological processes in the probabilistic forecasting
of stream flows.20

6.2 Regional analysis

As described in Sect. 5.2, the regional analysis assesses the generalization ability of
the member selection for a specific catchment with respect to another one at a different
forecast time horizon. For example, Fig. 5 explores the transferability of the 50-member
selection obtained for catchment Q25 (FTH=9) to catchment P72 at FTH=4.25

In general, Fig. 5 shows that results for the different scores are very similar for the
800-member and 50-member sets, except for the RDMSE where the gain index reaches
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51%. In particular, Fig. 5a shows that the 50-member CRPS equals the reference
value. Taking into account that the CRPS generalizes the mean absolute error (MAE)
for a point forecast (Gneiting and Raftery, 2007), it is important to stress that the CRPS
values are always lower than the MAE values, when the deterministic counterpart was
taken as the mean of each daily ensemble, in agreement with results obtained by other5

authors (Boucher et al., 2009; Velázquez et al., 2010).
Another remarkable feature of CRPS is its direct relationship with the flow magni-

tude; the shapes of the CRPS and of the hydrograph are similar. A direct strategy
of optimization could then focus on the maximum values from the cost function. The
selection thus not only preserves the mean CRPS (0.13) but also the structure of the10

CRPS series.
Figure 5b shows that the 50-member IGNS (−1.65) is also an improvement over

the initial value (−1.59). Regarding the time structure of the IGNS, it is observed that
both the 50-member and 800-member series have high values for extreme events,
showing a systemic problem in terms of ensemble bias, considering that a value of15

10 corresponds to the local assessment of 9.7×10−4 as a probability density function
on-site point observation.

With regard to the reliability diagram, Fig. 5c shows a considerable agreement im-
provement (4.21×10−3) over the initial value (8.67×103). This gain in reliability may be
traced back to the optimization criterion used: the combined criterion (CC) that focuses20

primarily on system reliability as defined by its weights set. Similarly, Fig. 5d reveals
that the rank histograms have a nearly uniform distribution, even if the first and the last
rank reflects a slight bias. Those imperfections demonstrate the difficulty inherent in
minimizing the δ ratio.

Figure 5e illustrates the occurrence of each lumped model within the 50-member25

ensemble. A wide selection of models alone could justify the multi-model approach
advocated here. Results show that 12 models out of 16 were selected in this case, and
that no models were selected more than 9 times. Knowing that these models are not
of equal quality with regards to MSE performance, for instance, this suggests that the
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selection favored a diversity of errors. At the end of the selection process, the median
of the coefficients of variation series (MDCV) has slightly increased, from 0.15 to 0.16.

The regional analysis, which seeks to identify features that facilitate the combina-
tion of results from different basins, revealed that geographical location is the most
important feature, followed by evapotranspiration, precipitation and flow, when the nor-5

malized sum is used to evaluate the gain. However, consideration of the geographic
location was found to be sufficient. Such results are presented in Table 4, after ap-
plication of the k -means algorithm and of the regional integration procedure already
described in Sect. 5.2.

In Table 4, the normalized sum (NS) for FTH = 9 is always lower than 5 for catch-10

ments subjected to the regional integration. Furthermore, in 38% of such assessments
(catchments H24, K17, U25, K73, M04 and H36) the regional integration gave better
results than the local performance relative indicators showed in Table 3.

Although the regional integration in clusters 1, 2 and 3 shows that 93% of the normal-
ized sums are lower than 5, it is less efficient for clusters 4 and 5, whose normalized15

sums are higher to 5 in 57% of the cases. Such expense may be assessed by the
participation of members of the ECMWF MEPS in the selection of each catchment
(Fig. 4) or the participation of the hydrological models in the regional selection (Fig. 6).
However, MEPS members selected catchments for clusters 4 and 5 (Fig. 4a–d) do not
show a different behaviour with respect to the other catchments, so the difference may20

be attributable to the selection hydrological models.
In this regard, Fig. 6 shows that 70% of the cluster 4 members originate from only 3

hydrological models (HM03, HM06 and HM14), which is a quite different behaviour than
for clusters 1, 2 and 3 where the portion of the three most selected models reaches
58%, 56% and 44%, respectively. In that regard, cluster 5 is similar to cluster 3; how-25

ever, it is important to note that cluster 5 integrates 4 catchments while cluster 3 inte-
grates only 2.

The participation of hydrological models in the regional selection stresses the im-
portance of the integration of models with different characteristics. To view this in
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a deterministic framework, an index based on the performance rank assigned to each
model in each catchment is proposed. Its calculation is summarized as follows:

– The mean square error MSEi ,j for catchment i and hydrological model j is first
calculated.

– The performances are next ranked for each catchment, leading to PRi ,j , for which5

the model with the lowest MSE is assigned the rank PR=16 and the highest MSE
is assigned the rank PR=1.

– Finally, the mean rank RIj for each model is estimated based on the results of all
28 basins (Eq. 11).

RIj =
1

28

28∑
i=1

PRi ,j (11)10

Mean ranks RIj are illustrated in Fig. 6f. It is noteworthy that the most selected models
(HM01, HM03, HM06, HM09, and HM14) occupy quite different ranks. For instance,
HM03 and HM09 are high performance while HM01, HM06 and HM14 are of lower
performance. This feature exemplifies the notion of diversity discussed in different
stages of the scientific community concerning ensemble methods.15

Alpaydin (2010) shows statistically that if an ensemble of d models, independent and
identically distributed, has a negative correlation between their error, the error variance
of the average ensemble decreases proportionally with d2. For hydrological model
combination, Vrugt et al. (2008) proposed positive correlation (lack of diversity) as an
efficient mechanism for removal of members of an ensemble.20

Diversity can be defined as the search for models that complement their skills, so
that each model focuses on different objects. Diversity in the ensemble is thus a vital
requirement for successful modeling. In practice, it appeared to be difficult to define
a single measure of diversity and even more difficult to relate that measure to the

2802

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/2783/2011/hessd-8-2783-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/2783/2011/hessd-8-2783-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 2783–2820, 2011

Simplifying a
hydrological

ensemble prediction
system – Part 2

D. Brochero et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ensemble performance in a neat and expressive dependency (Kuncheva, 2004). Nev-
ertheless, the regional clusters in Fig. 6 make use of most of the 16 available models,
whatever their performance rank. For example, the most frequently selected models
in cluster 2 are HM03 and HM06 despite the fact that HM02 exhibits the same rank of
performance as HM03 and that HM06 presents one of the lowest rank in the ensemble.5

7 Conclusions

A companion paper has already demonstrated the success of the backward greedy
member selection technique for simplifying a 800-member HEPS combining the 50
forecasts from the ECMWF MEPS with 16 lumped hydrological models (Brochero et al.,
2011). The present paper has focused on the generalization quality in time and space10

of a 50-member HEPS selected from the 9th day time horizon forecasts of the 800-
member ensemble. When applied to the other 8 time horizons, the 50 selected mem-
bers again improved performance over the initial 800-member HEPS in 82% of the sit-
uations. It was also quite successful when applied to a nearby catchment of the same
cluster. Member diversity seems to be the key to this simplified HEPS that makes use15

of only 6.25% of the initial structure. Indeed, it has been shown that most 50-member
HEPS relied on a broad selection of meteorological members and hydrological models.

Comparing scores obtained for the 50 representative member ensembles to the ones
of the initial 800-member ensembles showed that the proposed selection methodology,
which is based on cross-validation and the combination of scores into a single function,20

generally leads to good performance in terms of gains of individual scores. However,
these gains were not entirely transferable. This drawback may in part be attributable
to the simple selection methodology used here along a linear integration of scores that
has no real control over balance. A more sophisticated approach would optimize all
performance diagnostics simultaneously or find a Pareto set of solutions identifying25

trade-offs among the various performance metrics. Such a framework was proposed
by Vrugt et al. (2006) that consists in the optimization of Bayesian Model Averaging
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weights and variance using the A Multi-ALgorithm Genetically Adaptive Multiobjective
(AMALGAM) method.

Consistency of the HEPS, evaluated from the rank histogram or its scalar variable
named the delta ratio, turned out to be important. However, the delta ratio is inversely
related to the number of members of the ensemble, which becomes an unfavorable5

factor regarding the direct comparison between two sets of different numbers of mem-
bers. An alternative to the evaluation of the uniformity of the rank histograms should be
considered. For example, it could be based on a classic fit measure such as the MSE
between the relative frequency of the rank histogram and the value that represents an
equiprobable histogram behaviour.10

Appendix A

Notations

[t] Time-step
[N] Number of pairs observations-forecasts
[d ] Total number of members in the forecast ensembles
[M] Total number of m intervals to analyze the reliability diagram
[c] Identification of the rank or class to analyze the uniformity in

the rank histogram
[ot] Observed flow at the time t
[yt] Ensemble flow forecast at the time t
[y t

i ] i th flow forecast member in y
t

[Y] Ensemble flow forecast from t=1 to N
[o] Observations vector from t=1 to N
[F ] Cumulative distribution function
[f ] Probability density function
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[ōm] Conditional probability of the event as a function of the interval
Im assigned to the forecast m→ P (ot |Im)

[r t] Binary indicator, 1 if the event occurs for the tth forecast-event
pair, 0 if it does not

[Sc] Absolute frequency or occurrences in each rank c in the rank
histogram

[medN
t=1] Median value evaluated from t=1 to N

[µt] Mean ensemble flow forecasts at the time t
[σ2

t ] Variance ensemble flow forecasts at the time t
[χt] Training set
[χv] Validation set
[χp] Test or publication set

[{xt}Nt=1] Set of x with index t ranging from 1 to N
[argminθg(x|θ)] The argument θ for which g has its minimum value
[E (θ|χ )] Error function with parameters θ on the sample χ
[wcp] Weights of the components of the combined criterion (CC)
[iteryixp] Iteration number at which was eliminated the

yi member during the selection process in the xp experiment

[R(yi)] Mean rank of elimination of the yi member
[s] Final selection of the nm best members in the individual

selection process
[xl ] Property set of the l catchment in the clustering process
[k] Cluster indicator
[mk ] Center of the kth cluster
[bl

k ] Membership binary indicator of the l catchment to the kth cluster
[S] Matrix which includes local solutions s in each cluster
[rs] Regional ensemble of the best q members
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[PRi ,j ] Performance rank based on the MSE for catchment i and hy-
drological model j

[RIj ] Mean rank RIj of performance for each hydrological model j
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Table 1. Hydrological models. The number of parameters used in each model are shown in
brackets.

Hydrological Base model Origin Main objective
models (parameters)

HM01 CEQUEAU (9) France Flood forecasting
HM02 GR3J (3) France Application in ungauged basins
HM03 HBV (9) Sweden Flood forecasting, Nordic countries
HM04 IHACRES (6) Australia Regionalization, water quality
HM05 MORDOR (6) France Monitoring of water resources
HM06 SAC-SMA (13) USA Flood forecasting
HM07 SMAR (9) Ireland Flood forecasting, regionalization
HM08 TOPMODEL (8) UK Many applications, SIG coupling
HM09 CREC (8) France Flood forecasting
HM10 GR4J (4) France Application in ungauged basins
HM11 SIMHYD (8) Australia Flood forecasting
HM12 MOHYSE (7) Canada Identification of the components

of the process
HM13 PDM (8) UK, Brazil Flood forecasting
HM14 PDS (5) USA, UK Ensemble predictions in ungauged

basins
HM15 TANK (10) Japan Flood forecasting
HM16 WAGENINGEN (8) Netherlands Identification of the components

of the process
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Table 2. Main characteristics of the studied catchments based on a 36 year length of the series
(1970–2006). P: diary precipitation, ET: diary potential evapotranspiration, Q: diary observed
flow.

Catchment Area Altitude Pmax ETmax Qmax Catchment Area Altitude Pmax ETmax Qmax
codes (km2) (m) (mm) (mm) (mm) codes (km2) (m) (mm) (mm) (mm)

A6921010 2780 200 58.28 4.06 12.68 K5220910 1836 193 57.08 4.08 12.61
A7010610 6830 184 57.44 4.04 20.49 K7312610 1712 85 45.00 4.30 15.14
A7930610 9837 155 56.99 4.07 18.22 M0421510 1890 56 39.42 4.11 7.13
A9221010 1760 195 68.94 4.15 22.58 M0680610 7380 22 35.47 4.17 7.80
B2130010 2290 227 55.11 4.05 17.02 M1531610 7920 21 38.38 4.22 4.90
B3150020 3904 162 56.63 4.04 12.79 M3600910 3910 26 39.79 4.02 16.04
H2482010 2982 85 42.16 4.20 9.77 O3401010 2170 349 182.83 4.01 81.62
H3621010 3900 48 51.29 4.26 6.56 P7001510 1863 87 70.88 4.35 18.83
H5321010 8818 110 43.95 4.11 4.64 P7261510 3752 6 64.50 4.43 9.88
H6221010 2940 76 45.21 4.09 8.73 Q2593310 2500 17 53.63 4.52 12.72
H9331010 4598 21 43.48 4.08 2.25 U0610010 3740 195 57.39 4.14 19.94
J8502310 2465 4 49.34 3.94 15.18 U2402010 3420 305 63.70 3.86 20.67
K1341810 2277 237 49.73 4.19 14.84 U2542010 4970 201 59.04 3.97 22.08
K1773010 1465 196 51.31 4.25 17.75 U2722010 7290 181 59.78 4.03 20.39
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Table 3. Selection of 50 members based on combined criterion and the combination of k-fold
cross-validation results on the forecast time horizon 9. Beside each score is presented the gain
index evaluated by Eq. (10). NS represents the normalized sum (Eq. 6 with unit weights). NHM
indicates the number of hydrological models participating in the solution.

Catchment codes Scores MDCV NS NHM
CRPS RD[e−3] δ IGNS function

A6921010 0.284 (0%) 1.321 (81%) 1.550 (13%) 0.667 (14%) 0.392 (5%) 3.99 9
Ref. Values (800 members) 0.284 6.953 1.778 0.780 0.374 5.00 16

A7930610 0.254 (3%) 1.548 (69%) 3.525 (−8%) 0.344 (23%) 0.407 (−1%) 4.32 11
Ref. Values (800 members) 0.263 5.057 3.264 0.445 0.410 5.00 16

A9221010 0.183 (4%) 0.328 (86%) 2.399 (−33%) −0.417 (27%) 0.565 (0%) 4.36 11
Ref. Values (800 members) 0.192 2.367 1.802 −0.328 0.567 5.00 16

B2130010 0.232 (−1%) 1.231 (49%) 2.432 (−9%) −0.180 (−38%) 0.627 (9%) 4.57 13
Ref. Values (800 members) 0.230 2.427 2.240 −0.291 0.575 5.00 16

B3150020 0.134 (1%) 1.252 (72%) 1.828 (31%) −0.840 (−5%) 0.240 (7%) 3.93 11
Ref. Values (800 members) 0.135 4.507 2.660 −0.882 0.224 5.00 16

H3621010 0.157 (2%) 0.708 (80%) 2.101 (−41%) −1.018 (2%) 0.363 (−1%) 4.55 14
Ref. Values (800 members) 0.161 3.499 1.490 −0.995 0.365 5.00 16

H5321010 0.165 (3%) 1.924 (74%) 4.129 (−31%) −0.763 (8%) 0.357 (8%) 4.43 11
Ref. Values (800 members) 0.171 7.396 3.160 −0.706 0.332 5.00 16

H2482010 0.180 (2%) 2.237 (68%) 4.007 (−36%) −0.821 (9%) 0.368 (6%) 4.59 12
Ref. Values (800 members) 0.185 7.084 2.943 −0.756 0.349 5.00 16

K1773010 0.205 (4%) 0.458 (87%) 1.901 (−9%) −0.729 (12%) 0.385 (−2%) 4.15 12
Ref. Values (800 members) 0.213 3.560 1.746 −0.650 0.393 5.00 16

U2542010 0.290 (0%) 0.889 (74%) 2.522 (4%) −0.404 (13%) 0.376 (7%) 4.18 14
Ref. Values (800 members) 0.289 3.391 2.620 −0.356 0.350 5.00 16

J8502310 0.159 (2%) 0.438 (80%) 1.632 (0%) −1.002 (2%) 0.396 (8%) 4.11 14
Ref. Values (800 members) 0.163 2.164 1.630 −0.982 0.368 5.00 16

K7312610 0.160 (3%) 0.936 (70%) 2.171 (−17%) −0.932 (0%) 0.381 (9%) 4.41 11
Ref. Values (800 members) 0.165 3.087 1.860 −0.930 0.348 5.00 16

M0421510 0.158 (1%) 0.552 (68%) 1.726 (−14%) −0.981 (−1%) 0.374 (2%) 4.45 13
Ref. Values (800 members) 0.160 1.737 1.510 −0.987 0.366 5.00 16

M0680610 0.153 (4%) 0.292 (79%) 1.567 (−6%) −1.093 (6%) 0.389 (1%) 4.11 13
Ref. Values (800 members) 0.159 1.418 1.478 −1.028 0.384 5.00 16

O3401010 0.166 (2%) 1.003 (71%) 1.628 (−6%) −0.906 (5%) 0.372 (3%) 4.26 13
Ref. Values (800 members) 0.169 3.459 1.540 −0.861 0.360 5.00 16

Q2593310 0.159 (3%) 0.587 (73%) 1.147 (21%) −0.940 (−5%) 0.390 (4%) 4.03 12
Ref. Values (800 members) 0.163 2.148 1.460 −0.984 0.374 5.00 16
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Table 4. Test based on the normalized sum with unit weights in new catchments and different
forecast time horizons (FTH) of regional integration given by the analysis of clusters by location.
Values lower than 5 determined that the scores of selection are better than the reference set.
See clusters’ distribution at the Fig. 1. In each cluster, the catchments highlighted in bold
represent the series that are not used by the members’ selection methodology.

FTH Cluster 1 Cluster 2

H24 K17 U25 K13 K52 U06 U24 U27 J85 K73 M04 M06 H93 M15 M36

1 4.86 4.90 4.77 4.94 6.08 4.94 4.78 4.71 4.83 4.87 4.89 4.88 4.93 4.81 4.80
2 5.03 4.97 4.77 4.92 5.40 4.72 4.33 5.51 4.91 4.87 4.83 4.70 4.76 4.91 4.83
3 5.61 7.74 4.90 4.21 4.93 5.29 5.23 4.86 4.41 4.56 4.43 4.44 4.60 4.37 4.35
4 4.34 4.55 4.52 4.62 4.79 4.52 4.63 4.67 2.69 4.99 1.20 4.20 4.50 2.56 −1.81
5 4.92 4.66 4.59 4.68 4.87 4.69 4.80 4.65 4.80 4.44 4.71 4.90 4.91 4.69 4.48
6 4.95 4.79 4.79 4.68 4.92 4.68 4.92 4.78 4.60 4.51 4.54 4.35 4.41 4.68 4.42
7 4.46 4.46 4.42 4.44 4.66 4.42 4.55 4.39 5.08 5.05 4.92 5.01 4.79 4.78 4.91
8 4.34 4.25 4.22 4.22 4.68 4.24 4.36 4.22 4.46 4.68 4.77 4.56 4.44 4.83 4.55
9 4.48 3.95 4.05 4.02 4.32 4.12 4.26 4.19 4.19 4.35 4.32 4.35 4.25 4.43 4.27

FTH Cluster 3 Cluster 4 Cluster 5

O34 Q25 P70 P72 B31 H36 H53 H62 A69 A79 A92 B21 A70

1 4.88 4.68 4.74 4.78 5.69 5.21 4.92 5.09 4.20 4.78 4.42 4.98 4.94
2 4.83 4.61 4.73 4.81 5.85 5.11 4.64 5.15 4.40 4.98 4.78 4.52 5.22
3 4.16 4.36 5.98 4.74 5.83 4.69 7.24 4.65 5.03 5.42 5.02 4.96 5.45
4 4.77 3.43 4.47 4.28 5.97 4.49 5.23 7.01 5.19 5.57 5.58 5.11 6.22
5 4.80 4.53 4.69 4.68 5.71 5.29 5.24 5.60 5.10 5.80 4.74 5.50 5.60
6 4.68 4.47 4.59 4.55 5.78 4.96 5.41 5.45 4.78 5.62 5.32 5.31 5.45
7 4.62 4.74 4.45 4.32 5.24 4.60 4.81 5.16 5.12 5.11 4.35 5.53 5.57
8 4.70 4.34 4.39 4.28 4.58 4.57 4.91 5.46 4.97 5.22 4.25 5.50 5.08
9 4.36 4.15 4.28 4.12 4.26 4.08 4.50 4.74 4.87 4.66 4.45 4.92 5.38
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0 100 km

N

Fig. 1. Selected catchments. Each catchment is identified with the first three digits of each
code used in Table 2.
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D. Brochero et al.: Simplifying a Hydrological Ensemble Prediction System, Part II. 5

As part of the member selection framework, in order to
normalize each of the components of the combined criterion
(CC), the result of each criterion in the selection ensemble
(se subscript) is divided by the criterion calculated on the
800-member initial ensemble (ie subscript). Special formu-
lation requires the normalization of the IGNS with the thresh-
old z1 to take into account the scale of positive and negative
values that can take this score. It is also necessary to set
a threshold z2 for the MDCV function to change the maxi-
mization orientation in terms of the minimization of all the
factors together. Preliminary analysis showed that z1 =−2
and z2 =1 covers all scenarios of the series at hand. Finally
the last part of the combined criterion consists of the weights
assigned to each component (wcp). Here, the weight assigned
to the reliability (the critical factor) is twice that of the other
factors, which have a unit weight.

4 Member selection methodology

Basic HEPS 
(ECMWF+Hydrological Models)

Dataset

Resampling with a variation of

Members selection with 
backward greedy technique

Combined criterion

Minimum number of 
members (        )

-results
Members elimination history

Combination of results

Final HEPS with          members

k -fold cross-validation

k

nmin

 nmin

Fig. 2. Members selection methodology

More details on the member selection methodology can
be found in the companion paper (Brochero et al., 2011).
Figure 2 summarizes the selection procedure applied to the
800-member HEPS configured from the 50 9th day ECMWF
forecasts and the 16 lumped hydrological models. The selec-
tion is executed in 3 steps, which are described below:

Step 1: Resampling with a variation of the k-fold cross-
validation. Because the series are short-length (500 forecast-
observation pairs), a rigorous application of the selection re-
quires evaluating different types of events in the training (χt),
validation (χv) and test sets(χp). Thus, the process of se-

lecting data follows a k-fold cross-validation technique. The
dataset (χ) is divided into 5 equal-sized parts in order to cre-
ate 5 experiments. In each experiment, a part is set aside
for testing, while the remaining four parts are grouped into
n blocks of 10 consecutive pairs of observations-ensemble
forecast, randomly choosing 75% of the blocks for the train-
ing set and the remaining 25% for the validation set.

Step 2: Backward greedy member selection. Optimization
relies on the combined criterion (Eq. (6)) for a preselected
number of members (nm). The mechanism of member elim-
ination begins with all members (d), removing at each step
the one that decreases the error the most (or increases it the
least). A pseudocode is given (Algorithm 1).

Algorithm 1 Backward greedy selection pseudocode
1. Subdivision of the dataset χ in train, validation and test sets.
χ→χt,χv,χp

2. Define Combined criterion as a error function (CC) and the
number of members to select (nm).
3. Initialize ensemble with all d members
Gd = {y1, y2, y3, ...,yd}
4. Remove the worst member
for iter= d−1, d−2, ..., nm do

- Update selection set by removing currently worst member
yj =argminyi∈Giter+1CC(Giter+1\{yi}|χt)

Giter =Giter+1\yj
- CC evaluation in the validation set
CCiter

v =CC(Giter|χv)
end for

Step 3: Combination of results. It is highly likely that
variability in the 5 experiments configured in step 1 leads to
different solutions. An integration mechanism is thus needed
for a global solution for each catchment. The importance of
each member yi within the ensemble is then assumed as be-
ing directly proportional to the iteration number at which it
was eliminated during the selection process in each experi-
ment (iteryi

xp). The combined ranking is thus the mean rank
of elimination as defined in Eq. (7).

R(yi)=
1

5

5∑
xp=1

iteryi
xp (7)

Finally, the final selection (s) of the nm best members cor-
responds to the members which have the highest mean rank
of elimination (Eq. (8)).

s= {Rp,yp}nmp=1 , Ri ≥Rj where 1≤ i≤ j≤ d (8)

5 Experimental set-up

The generalization ability of a hypothesis, namely, the qual-
ity of its inductive bias, can be measured if there is access
to data outside the training process. The methodology pro-
posed in the companion paper simulates this by dividing the

Fig. 2. Members selection methodology.

2816

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/2783/2011/hessd-8-2783-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/2783/2011/hessd-8-2783-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 2783–2820, 2011

Simplifying a
hydrological

ensemble prediction
system – Part 2

D. Brochero et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Catchment

N
or

m
al

iz
ed

 s
um

 (
re

fe
re

nc
e 

va
lu

e 
=

 5
)

3

4

5

6

7

8

9

10
a) FTH = 1 day

A
69

A
79

A
92

B
21

B
31

H
24

H
36

H
53 J8

5
K

17
K

73
M

04
M

06
O

34
Q

25
U

25

3

4

5

6

7

8

9

10
b) FTH = 2 days

A
69

A
79

A
92

B
21

B
31

H
24

H
36

H
53 J8

5
K

17
K

73
M

04
M

06
O

34
Q

25
U

25

3

4

5

6

7

8

9

10
c) FTH = 3 days

A
69

A
79

A
92

B
21

B
31

H
24

H
36

H
53 J8

5
K

17
K

73
M

04
M

06
O

34
Q

25
U

25

3

4

5

6

7

8

9

10
d) FTH = 4 days

A
69

A
79

A
92

B
21

B
31

H
24

H
36

H
53 J8

5
K

17
K

73
M

04
M

06
O

34
Q

25
U

25

3

4

5

6

7

8

9

10
e) FTH = 5 days

A
69

A
79

A
92

B
21

B
31

H
24

H
36

H
53 J8

5
K

17
K

73
M

04
M

06
O

34
Q

25
U

25

3

4

5

6

7

8

9

10
f) FTH = 6 days

A
69

A
79

A
92

B
21

B
31

H
24

H
36

H
53 J8

5
K

17
K

73
M

04
M

06
O

34
Q

25
U

25

3

4

5

6

7

8

9

10
g) FTH = 7 days

A
69

A
79

A
92

B
21

B
31

H
24

H
36

H
53 J8

5
K

17
K

73
M

04
M

06
O

34
Q

25
U

25

3

4

5

6

7

8

9

10
h) FTH = 8 days

A
69

A
79

A
92

B
21

B
31

H
24

H
36

H
53 J8

5
K

17
K

73
M

04
M

06
O

34
Q

25
U

25
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Fig. 3. Box-plot diagrams to evaluate the response sensibility with regard to 200 random ex-
periments in different forecast time horizons (FTH). Each catchment is identified with the first
three digits of each code used in Table 2. The crosses represent the outliers detected by the
assumption of normality in the box plot diagram. In an effort to not lose sight of the behavior
around the NS equal to 5 and the extent of the boxes, random results greater than 10 have
been truncated.
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Fig. 4. Evaluation of the ECMWF members participation in the final selection of 50 members
in the 16 catchments evaluated.
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 e) EMPLOYED MODELS

Opt. criterion = CC. Train = Catchment Q2593310 − FTH = 9. Test = Catchment P7261510 − FTH = 4
Reference values (800 members) P7261510 → CRPS = 0.132, RD(e−3) = 8.67, δ = 3.2, MDCV = 0.15, IGNS = −1.59

Fig. 5. Comparison between the initial ensemble in catchment P7261510 (800 members),
FTH = 4 days, and the 50 selected members in catchment Q2593310 with FTH = 9 days.
(a) Figure above: observed flow; figure below: CRPS. Note the correspondence between
higher observed flows and higher CRPS. (b) Figure above: observed flow; figure below: IGNS.
Note that there is no full correspondence between the higher IGNS and higher observed flow.
(c) Reliability Diagram error (MSE based on vertical distances between the points). (d) Rank
histogram for the 50 selected members. The horizontal dashed gray lines indicate the fre-
quency (N/d +1) attained by a uniform distribution, (e) occurrences of the employed models in
the final solution of 50 members.
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Fig. 6. Hydrological Models participation. (a) Distribution in the five regions (clusters) pre-
sented at the Fig. 4. (b) Model performance evaluated as the mean rank.
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