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Abstract

Hydrological Ensemble Prediction System (HEPS), obtained by forcing rainfall-runoff
models with Meteorological Ensemble Prediction Systems (MEPS), have been recog-
nized as useful approaches to quantify uncertainties of hydrological forecasting sys-
tems. This task is complex both in terms of the coupling of information and computa-5

tional time, which may create an operational barrier. The main objective of the current
work is to assess the degree of simplification (reduction of members) of a HEPS config-
ured with 16 lumped hydrological models driven by the 50 weather ensemble forecasts
from the European Center for Medium-range Weather Forecasts (ECMWF). Here, the
selection of the most relevant members is proposed using a Backward greedy tech-10

nique with k-fold cross-validation, allowing an optimal use of the information. The
methodology draws from a multi-criterion score that represents the combination of res-
olution, reliability, consistency, and diversity. Results show that the degree of reduction
of members can be established in terms of maximum number of members required
(complexity of the HEPS) or the maximization of the relationship between the different15

scores (performance).

1 Introduction

In hydrology, as in many applications, it is accepted that there is no superior model
for every application under all circumstances (Duan et al., 2007; Alpaydin, 2010). In
general, the models show different capacities to retain certain aspects of the hydrolog-20

ical processes, so focus on the forecasting process in a single model often leads to
predictions that represent either a certain type of phenomena at the expense of others
(Duan et al., 2007). In that sense, a multi-model approach may circumvent structural
errors or inductive biases of the models (Georgakakos et al., 2004; Alpaydin, 2010).

The integration of the responses is central to the multi-model approach. The most25

likely solution is often taken as the average one or the result of a robust method of
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integration such as neural networks (Jeong and Kim, 2009). However, this type of
integration ignores the uncertainty assessment of hydrological forecasting – it is deter-
ministic.

HEPEX (Hydrological Ensemble Prediction Experiment) pointed mainly to the fol-
lowing sources of uncertainty: model parameters, initial hydrological conditions, and5

hydroclimatological forecasts (Schaake et al., 2007). In this respect, the interest of the
hydrological and meteorological community is clearly represented by numerous Hy-
drological Ensemble Prediction Systems (HEPS) to couple Meteorological Ensemble
Prediction Systems (MEPS) and hydrological forecasting systems (Cloke and Pappen-
berger, 2009). The advantage of HEPS in terms of both forecast accuracy and the10

relative economic value in the decision-making has been shown (Roulin, 2007). An
additional gain has been reported when there is a meta-combination involving multiple
hydrological models and a MEPS (Velázquez et al., 2010).

The complexity of such HEPS becomes an operational burden when one has to eval-
uate several hundreds of scenarios at each time step. This situation may be even more15

dramatic considering the current trend of also considering several MEPS (Bougeault
et al., 2010). Although computer capabilities continuously improve, multiple model runs
are time-consuming, whereas real-time forecasts are needed as much for day to day
management as for emergency actions.

This study considers the selection of members as a step towards simplification of20

a HEPS setup. More specifically, the HEPS under study is formed of 16 lumped
hydrological models forced by the 50 meteorological inputs of the European Center
for Medium-range Weather Forecasts (ECWMF), leading to a grand-ensemble of 800
members (see Sect. 3). Cloke and Pappenberger (2009) has already highlighted the
computational demand of such a system as one of the main points to overcome in the25

future, either by new technologies (stochastic chip technology) or by efficient use of
computing clusters.

As a compromise researchers have attempted to cluster MEPS for flood predictions
in various ways: by lagging ensembles and deriving representative members through
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hierarchical clustering over the domain of interest, and thus to produce a reduced en-
semble set at higher resolution (Marsigli et al., 2001), or by analyzing the relation be-
tween atmospheric circulation patterns and extreme discharges (Ebert et al., 2007)
or in a deterministic way (“best match” approach) by determining the location of the
forecast that most resembled the rainfall pattern in the catchment (Xuan et al., 2009).5

In this study the selection of members is based directly on the analysis of the weather
uncertainty propagation into hydrological domains. This approach was tested in 10
catchments located in France for a period of sixteen months (from March 2005 to July
2006). The simplification was focused on the conservation of resolution, reliability, con-
sistency and diversity of the HEPS with a small number of members. The evaluation of10

these characteristics of HEPS is based on the scores defined in Sect. 2. The Backward
greedy selection technique, well-known in Machine Learning, is presented in Sect. 4.

Another important feature of the HEPS at hand is the short duration of the series.
This has been highlighted by several authors as a negative point in the evaluation of
system performance in the case of extreme events (Renner et al., 2009; Cloke and15

Pappenberger, 2009). Similarly the technique displayed for the selection of members
should be trained and validated on different data sets to avoid the known problem
of overfitting (Alpaydin, 2010). This additional requirement highlights the need for
schemes to benefit from information such as bootstrapping or cross-validation. Indeed,
one variation of k-fold cross-validation with random choice of blocks of information is20

proposed in Sect. 5. In the same section, is presented the mean rank of members’ elim-
ination as a technique to combine the experiments results of the k-fold cross-validation
to obtain a solution that shows the integration of the behavior of HEPS at different pe-
riods of time. In Sect. 6, the results and discussion are presented, while conclusions
and a guideline for future work are drawn in Sect. 7.25
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2 Verification statistics for ensemble forecasts

In ensemble forecasting, the focus is taken off finding the single best estimate of the
streamflow (i.e. finding a “perfect” model), and aims at finding the best possible esti-
mate of the forecasts’ uncertainty. Therefore, instead of forecasting a single streamflow
value for each lead time, an ensemble forecasting system produces d member fore-5

casts. However, because of its probabilistic nature, the performance of an ensemble
forecasting system cannot be evaluated using criteria such as the mean absolute error,
MAE, or the root mean squared error, RMSE (Boucher et al., 2009).

To assess the quality of the ensemble forecast, several statistical measures should
be considered concurrently (Cloke and Pappenberger, 2009). In this paper several10

metrics are considered, including the Continuous ranked probability score (CRPS),
the ignorance score (IGNS), the reliability diagram, the rank histogram, the median
coefficients of variation, and the combination of all of these.

In some cases it is necessary to establish a priori a probabilistic distribution function
that fits systematically the prevision ensembles for each time step. In the hydrologi-15

cal community is accepted that an adjustment of the gamma distribution makes more
sense than a normal distribution given asymmetry in the distribution of precipitation
and discharge (Vrugt et al., 2008), however, the gamma function evaluation involves
more complex than the normal distribution which has explicit mathematical expres-
sions. Székely (2003) proposes Monte Carlo techniques for the adjustment of any20

distribution to the ensembles. For this study, some simulations were performed to eval-
uate differences between normal and gamma distributions in the case of CRPS and
IGNS, the results showed minor variations in contrast with a high computational cost
(1.7 h vs. 47 h of calculation). However, it is important to note that this similarity is eval-
uated inside the ensembles with previsions varying between 30 and 800 members, as25

detailed below; in small samples it is expected that the results represent the expected
asymmetry of information.
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2.1 Continuous ranked probability score

Assuming that the forecast ensembles (yt) are normally distributed with mean µt and
variance σ2

t at time t, the Continuous Ranked Probability Score (CRPS) at the time t
is defined by Eq. (1) (Gneiting and Raftery, 2007):

CRPS(F (yt),ot)=σt

[
1
√
π
−2φ

(
ot−µt

σt

)
−
(
ot−µt

σt

)(
2Φ

(
ot−µt

σt

)
−1

)]
, (1)5

where F (y)t represents the cumulative distribution function, ot denotes the observa-
tion; φ and Φ denote the normalized variables for probability density function and
cumulative distribution function, respectively. The goal is to minimize the mean CRPS.
In the rest of this article when a CRPS is represented for a scalar value, this evokes
the mean value of this score. This criterion combines two components: reliability and10

potential CRPS (Hersbach, 2000; Boucher et al., 2010), making it theoretically a multi-
purpose criterion.

2.2 Ignorance score

The ignorance score (IGNS) is related to the concepts of information quantity and
entropy developed in information theory (Williams, 1997). The IGNS, as a particular15

version of the relative entropy, is calculated from the evaluation of the logarithm of the
ensemble probability density function at the point corresponding to the observation ot

(Roulston and Smith, 2002).

IGNS(y,o)t =−log2
[
f (yt)ot

]
(2)

Note that if f (yt)ot = 0 then, according to Eq. (2), an infinite number of bits1 is as-20

signed to this score, so forecasters should replace zero forecast probabilities with small
probabilities based on the uncertainties in the f (y) forecast (Roulston and Smith, 2002).

1When logs are taken to the base two, a “bit” is the unit of information (Williams, 1997).
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Here, it was assumed that the ensemble forecasts are normally distributed and the in-
dividual infinite scores were replaced by the next worst non-infinite value. Usually the
mean IGNS represents this score.

2.3 Reliability diagram error

Given that m denotes the different M thresholds of probability to assess, the reliability5

of the system can be directly measured from the comparison of these M thresholds
with the conditional probability of observation as a function of the forecast (om). Since
observation of the event is dichotomous (r t = 1 if the event occurred and r t = 0 other-
wise) such conditional probability or relative frequency observed ōm is given by Eq. (3):

ōm =
1
N

N∑
t=1

r t, r t =
{

1 if ot ∈ Im
0 otherwise

(3)10

where N is the number of forecast-observation pairs used in verification. The goal is to
have well-calibrated forecast systems where the relative frequency is essentially equal
to the probability of the forecast, i.e. ōm ≈ Im (Wilks, 2005). The plot of the conditional
probability versus the probability of the forecast (Im) is called the reliability diagram
(RD). In this study, as discussed later in Sect. 4, it is necessary to establish a single15

target value, so the reliability is evaluated from the calculation of the mean square
error (MSE) between the probability forecast and the observed frequency (Eq. 4), as
has been suggested by Wilks (2005). These distances are all small for well-calibrated
forecasts.

RDMSE(Y,o)=
1
M

M∑
m=1

(ōm− Im)2 (4)20
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2.4 Rank histogram (δδδ ratio)

Consider the evaluation of N ensemble forecasts, each of which consists of d ensemble
members, in relation to the N corresponding observed values for the predictand. For
each of these N sets, if the d members and the single observation all have been drawn
from the same distribution, then the rank of the observation within these d +1 values5

is equally likely to take on any of the values c= {1, 2, 3, ..., d +1}. For example, if the
observation is smaller than all d ensemble members, then its rank or class is c= 1.
If it is larger than all the ensemble members, then its rank is c= d +1 (in the case of
equality of observation with one or more of the ensemble members, the rank is chosen
randomly). For each of the N forecasting occasions, the rank of the observation (Sc)10

within this d+1 member distribution is tabulated. Collectively these N verification ranks
are plotted in the form of a histogram to produce the rank histogram (Wilks, 2005). The
flatness of the corresponding rank histogram is therefore a measure of the reliability of
the prediction system. Because of the finiteness of the number N of realizations of the
prediction process over which the validation is carried out, the rank histogram cannot15

be expected to be exactly flat. For a reliable system, Sc has expectation N/(d+1), while
the deviation of the histogram from flatness (∆) is measured by Eq. (5) (Talagrand et al.,
1997).

∆=
d+1∑
c=1

(Sc−href)
2 where href =

N
(d +1)

, (5)

A reliable system has expectation of ∆0 = dN/(N +1). The δ ratio, proposed by20

Talagrand et al. (1997) is used (δ =∆/∆0) as a measure of the reliability of an ensemble
prediction system for a scalar variable. A value of δ that is considerably larger than 1
is a proof of unreliability. A value that would be considerably less than 1 would indicate
that the successive realizations of the prediction process are not independent, and that
the verifying observation tends to fall preferentially in intervals in which it has fallen25
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less frequently in the previous realizations. Such a situation is of course very unlikely
(Wilks, 2005; Talagrand et al., 1997).

2.5 Median of coefficients of variation

The coefficient of variation (cv) is defined as the ratio of the standard deviation to
the mean. Although this measure is not established in the hydrological community as5

a probabilistic forecast evaluation criterion, its assessment leads to a measure of the
reliability of the central value (Kottegoda and Rosso, 2009): the ensemble dispersion.
Maximizing this metric thus favors dispersion. However, it is important to understand
that the successful implementation of this ratio depends largely on the degree of in-
dividual adjustment of the hydrological models, because the cv is unable to detect10

a significant bias of the central value. A scalar value is obtained from the calculation of
median cv (Eq. 6).

MDCV(Y)=medN
t=1 cv(yt) (6)

2.6 Combined criterion

Selecting only one criterion may give a partial view of the forecast performance and15

even be misleading. The combination of several metrics into one diagram has already
been evaluated (Taylor, 2001), but is inappropriate for this study because a scalar
objective value is required for the selection procedure. Thus, the integration of scores is
addressed in obtaining a single index, whose interpretation can sometimes be difficult
because good performance should be defined from a good performance in all respects20

and not great performance on some aspects and low performance on others. Another
element to consider is the weight associated with each component of the combined
criterion.

A criterion combining the CRPS, the IGNS, the reliability diagram, the rank histogram
and the coefficient of variation is proposed. The combined score (Eq. 7) exploits values25
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of the initial 800-member set (ie) as a normalization factor for the scores of the subset
of members (se).

CC=w1
CRPSse

CRPSie

+w2
z1− IGNSse

z1− IGNSie

+w3

RDMSEse

RDMSEie
+w4

δse

δie
+w5

z2−MDCVse

z2−MDCVie
(7)

It is also necessary to set thresholds to define the behavior of MDCV and IGNS in
terms of the minimization of all the factors together. Preliminary analysis showed that5

z1 =−2 and z2 = 1 covers all scenarios of the series at hand. The weight assigned to
the reliability (as a critical factor) corresponds to twice that of the other factors, which
have a unit weight.

3 HEPS configuration

The basic configuration of HEPS was established by Velázquez et al. (2010) in their10

work on the comparison of the performance of different types of HEPS, using uncer-
tainties from the meteorological input and from the hydrological model structure. The
scenarios are built on the basis of 16 different lumped rainfall-runoff model structures
and 9-day ECMWF ensemble and deterministic forecasts. The systems were imple-
mented over 28 French catchments, representing a large range of hydro-climatic condi-15

tions, and evaluated over a period of 17 months. The present study relies on a random
selection of 10 catchments (Fig. 1), whose characteristics are presented in Table 1.
The codification follows the Banque Hydro database (http://www.hydro.eaufrance.fr).
The rainfall observations originate from the SAFRAN Météo-France and the flow data
are for the Banque Hydro database. As already mentioned, the rainfall probabilistic20

forecast are from the ECMWF.
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3.1 ECMWF – global atmospheric model

The current ECWMF deterministic forecast provides a horizon of up to 240 h. Here,
the rainfall amounts were accumulated at 24 h time steps, starting at 0 h to match with
observed daily data, which resulted in nine daily lead times.

A detailed description of the ECWMF model can be found in Molteni et al. (1996) or5

Buizza (2005). The 50 perturbed forecasts of the ensemble system result from a per-
turbation technique, which is based on a mathematical method called singular vector
analysis (Buizza and Palmer, 1995). It attempts to locate the dynamically most unstable
regions of the atmosphere by calculating where small initial uncertainties would affect
a 48-h forecast most rapidly. From these, 50 alternative forecasts are produced. All10

the different initial states are a priori assumed to be equally likely, i.e. the unperturbed
forecast is not necessarily the most probable (Gouweleeuw et al., 2005).

3.2 Hydrological models

The sixteen hydrological models applied in this study are lumped reservoir-type models
and correspond to various conceptualizations of the rainfall-runoff transformation at the15

catchment scale (Table 2).
They are of low to moderate complexity: the number of parameters to calibrate

against observed data ranges from 3 to 13. They all include a soil moisture account-
ing procedure in their representation of the hydrological production function, but with
various formulations (linear or non linear, possibly with several soil layers, etc.).20

The routing module includes from 1 to 5 linear or non linear stores, as well as unit
hydrographs or pure time delays. Some of the models include a non-conservative func-
tion to adjust the water balance (correction factors of inputs or groundwater exchange
functions). All the models were applied in the same conditions by Velázquez et al.
(2010); some original model structures were modified to match this framework. They25

were run at a daily time step, using the same rainfall and potential evapotranspiration
inputs, and were calibrated with the same optimization procedure using a local search
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procedure (Edijatno et al., 1999), applied in combination with a pre-screening of the
parameter space (Mathevet, 2005).

The hydrological models were calibrated with 29 years as mean length. The objec-
tive function was the RMSE. It is beyond the scope of this article to present these
models and the different settings in each one of them had to place. A detailed expla-5

nation of each model and the various adjustments can be found in (Perrin, 2000) with
the exception of models GR4J (Perrin et al., 2003), MORDOR (Garçon, 1999), MO-
HYSE (Fortin and Turcotte, 2006; Roy et al., 2010), SIMHYD (Chiew et al., 2002) and
Probability-distributed store (PDS) (Yadav et al., 2007).

3.3 HEPS results without selection of members10

Velázquez et al. (2010) highlighted mainly two types of HEPS: 1) The 16-member en-
semble: obtained by running all 16 hydrological models with the deterministic meteo-
rological forecast as input (control meteorological condition), and 2) The 800-member
ensemble: all 16 models are driven by the 50 forecast members from the MEPS and
all the outputs are considered as a single ensemble (perturbed meteorological condi-15

tions). Figure 2 provides an illustration of both HEPS, for the 10 selected catchments.
Scores for both HEPS are grouped in Table 3. It is quite obvious that the 800-

member HEPS provides a better performance than the 16-member HEPS; however,
the implementation of such a system is computationally demanding. Thus, the work
developed in this article seeks to evaluate the most representative members of the20

800 member HEPS without sacrificing the performance and reliability of the forecast.
With this goal, the selection of members is evaluated with a simple machine learning
technique called backward greedy selection, which is explained next.

2750

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/2739/2011/hessd-8-2739-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/2739/2011/hessd-8-2739-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 2739–2782, 2011

Simplifying a
hydrological

ensemble prediction
system – Part 1

D. Brochero et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4 Backward greedy selection technique

The evaluation of multiple models for simulation or prediction of an event, and to further
select those which together enhance or simplify a condition for adjustment, is known
as an overproduce and select precess. Machine Learning tasks similar to this (feature
selection or subset selection) can be performed with simple methods such as forward or5

backward greedy selection or with more sophisticated methods like genetic algorithms.
In feature selection, the simplest approach is based on a deterministic selection that
can run in both directions: from zero members and gradually increasing the number
of members (forward selection) or starting with all members and reducing the number
of members (backward selection). In the context of probabilistic forecast, the forward10

selection technique loses applicability since the consistency of the scores depends on
a minimum number (nmin) of members to evaluate.

At some point, the Backward Greedy Selection may lose its ability to generalize the
results, a problem known as overfitting. A procedure circumventing this problem divides
the available information into three subsets: training (χt), validation (χv) and test or pub-15

lication set (χp). The training subset is employed so as to look for a solution (hypothesis
evaluation), the generalization capability is evaluated on the validation subset, and the
test subset is used for calculating the expected error in examples never presented to
the training-validation process (Alpaydin, 2010).

The members’ elimination mechanism begins with all members (d ) and removes20

them one by one, at each step removing the one that decreases the error the most (or
increases it the least). The removal mechanism is as follows:

1. It begins with a subdivision of the dataset (χ ) in training (χt), validation (χv) and
test set (χp).

2. The reference set Gd , containing all the original d members, is presented.25

Gd = {y1, y2, y3, ...,yd }
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3. For iter=d −1, d −2, ..., nmin
The member yj that causes the least error in the training set χt is chosen.

yj =argminyi∈Giter+1E
(
Giter+1\{yi}|χt

)
The reference set is then updated by removing yj member in G.

Giter =Giter+1\yj5

4. At this point, the error E in the validation set χv, excluding the yj member, is
evaluated.

E t
v =E (Gt |χv)

5. The subset Gnmin of the selected members is achieved, then the whole selection
process is analyzed on the training and validation results.10

In the general framework for the selection of members, the minimum number of
members (nmin) must be such as to ensure the consistency of the calculations of
individual scores. Here the minimum is taken as 30 members.

Backward Greedy Selection is a local search procedure that does not guarantee
finding the optimal subset. For example, yx and yp by themselves may not be pertinent15

but together they may decrease the error substantially. But, because the algorithm
is greedy and adds attributes one by one, it may not be able to detect this. Here,
the Backward Greedy Selection is executed with a resampling technique based on
k-fold cross-validation. However, some considerations are made to take into account
the influence of temporal correlation in the proper formation and interpretation of the20

subsets used in the evaluation of the selection of members.
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5 Resampling and results combination method

Given the high degree of linear correlation exhibited in the first lags of the correlogram
of the series at hand (Table 4), the choice of the training and validation data should be
directed in order to temporarily avoiding near data to form the two subsets. For exam-
ple, suppose that the linear correlation between ot and ot+1 is equal to 0.8 and that the5

selection of members has been trained in ot and validated in ot+1. The validation could
consequently be highly contaminated by the effect of the correlation between data.
Correlation contamination is avoided by forming training and validation subsets from
groups of 10 consecutive data (blocks) rather than from individual data. It is important
to note that contrarily to standard hydrology applications, the order of the events is of10

no importance.
The proposed process of selecting data for training, validation, and test follows k-fold

cross-validation. Here, the dataset is divided into 5 equal-sized parts in order to create
5 experiments. In each experiment, a part is kept out for testing, while the remaining
four parts are randomly combined to form training and validation subsets. The detailed15

process develops in two steps:
Step 1: Data and test set configuration. The test set is set up from simple cut-offs

to “guarantee” statistical independence with the training-validation process. To build
the test set, the series is subdivided into five folds, each of which corresponds to the
test set of each experiment. For example, if N denotes the length of the series, the20

test set of the first experiment corresponds to the first fold (i =1 to bN/5c), similarly the
test set of the fifth experiment will be the last fold (i = d4N/5e to N). Thus, strong linear
correlation between training-validation and the test data is limited only to the values
situated near the cut-off line.

Step 2: Blocks’ selection of the training and validation sets. The remaining 4 parts25

are grouped into K blocks of consecutive pairs of observations-ensemble forecast, then
randomly choosing 75% of the blocks for the training set and the remaining 25% sets
for the validation set.
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However, the variability of each experiment (xp), given by the cross-validation tech-
nique, increases the probability of reaching different member selections. So, it is nec-
essary to determine an integration mechanism for a global solution for each catchment.
Here, the importance of each member yi within the ensemble is then assumed as be-
ing directly proportional to the iteration number at which it was eliminated during the5

selection process in each experiment (iter
yi
xp). The combined ranking is thus the mean

rank of elimination as defined in Eq. (8), For example, if the rank of elimination of
member yi is 50, 60, 200, 10 and 150 in the five experiments, then the mean rank of
elimination is equal to 94.

R(yi )=
1
5

5∑
xp=1

iter
yi
xp (8)10

Finally, the final selection (s) of the nm best members corresponds to the members
which have the highest mean rank of elimination (Eq. 9).

s= {Rp,yp}
nm
p=1,R i ≥Rj where 1≤ i ≤ j ≤d (9)

It should be noted that another possibility to integrating the results could have been
based on the frequency of selection of each member of the ensemble, and later to15

elect the members with the highest frequency, but as this integration leads to low per-
formance, these results are omitted from this article.

Finally, the mean rank selection was evaluated on the complete series, as a perfor-
mance relative indicator. The word relative stresses the fact that the process of com-
bining results involves a high degree of integration of the entire series in the training-20

validation step in the selection of members. This type of performance evaluation in
Machine Learning is known as an optimistic estimate since the algorithm, in this case
the selection of members, is tested with examples that could be part of the training
and validation sets. In this regard the rigorous evaluation of an algorithm or a model
must be based on instances not used in training or validation. A detailed discussion25

on the degree of optimism of an estimator (fairness of the solution) and the creation
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of training and validation sets statistically or structurally homogeneous is described in
detail by Diamantidis et al. (2000).

It is important also to highlight that in order to compare the performance of different
scores as objective functions in the selection of members, individual experimentation
and subsequent combination of results creates a fair basis for comparison between dif-5

ferent scores. In the companion paper (Brochero et al., 2011) more rigorous tests of the
degree of efficiency of selection of members are produced, including test evaluations
with data from other catchments never used in the learning process of the selection
algorithm.

6 Results and analysis10

Analysis of the median coefficient of variation (MDCV), as a measure of the diversity
of the HEPS, revealed the following characteristics:

– The variability is low at least for the first three days of predictions (MDCV<0.12),
many models showing no variability (i.e. the same response for all members).
As shown by Velázquez et al. (2010), part of this difficulty may be inherited from15

the meteorological ensembles, which are not reliable prior to about a 3-day lead
time. More importantly, it is believed that not including uncertainties associated
with the hydrological initial conditions at the onset of the forecasts also takes its
toll on reliability, at least for the first few time steps of the hydrological predictions,
i.e. until the mean characteristic response time scale of the studied catchments20

(3.2 days) is reached.

– As for the incremental variability, it depends on the forecast horizon. MDCV for 4-
to 9-day predictions reached between 0.2 and 0.6, respectively.

Consequently, the results presented in this paper are strictly based on the 9-day fore-
cast horizon. This decision is justified on the variability within the ensemble forecasts25

as well as on the fact that the selection of members as a method of simplifying HEPS
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should be unique regardless of the forecast horizon. The companion paper (Brochero
et al., 2011) assesses the transferability of the 9-day member selection to other fore-
cast horizons.

An example of the results obtained are shown in Fig. 3, which compares the 30-
member and the 800-member results for the M0421510 catchment, after an optimiza-5

tion based on the δ criterion. In general the 30-member scores are better or as good
as the reference set. The selected members make use of 13 of the 16 available lumped
models, which is an interesting combination of models and meteorological members,
especially taking into account the much poorer performance of the 16-member multi-
model approach driven by the deterministic prediction (Table 3).10

Specifically, Fig. 3a shows that the 30-member CRPS equals the reference value.
Also, taking into account that the CRPS generalizes the mean absolute error (MAE) for
a point forecast (Gneiting and Raftery, 2007), it is important to stress that the CRPS
values are always lower than the MAE values, when the deterministic counterpart was
taken as the mean of each daily ensemble, in agreement with results obtained by15

other authors (Boucher et al., 2009). Another remarkable feature of CRPS is its direct
relationship with the flow magnitude; the shapes of the CRPS and of the hydrograph
are similar. A direct strategy of optimization could then focus on the maximum values
from the cost function. The selection not only preserves the mean CRPS (0.16) but
also the structure of the CRPS series.20

Figure 3b shows that the 30-member 5% trimmed mean ignorance score (−1.01)
has also improved over the initial value (−0.99). Regarding the time structure of the
IGNS, it is observed that both the 30-member and 800-member values surpass 6 for
certain peak flows (as 6= log20.015).

With regard to the reliability diagram, Fig. 3c shows a considerable agreement im-25

provement (1.09e-3) over the initial value (1.74e-3). This gain in reliability may be
traced back to the optimization criterion used: the δ ratio, which is entirely based on the
integration of the whole range in terms of corresponding verifications (observations).
Similarly, Fig. 3d reveals that the rank histograms have a nearly uniform distribution,
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even if the first rank reflects a slight bias. Those imperfections demonstrate the difficulty
inherent in minimizing the δ ratio.

Figure 3e draws the occurrence of each lumped model from the 30-member ensem-
ble. A wide selection of models alone could justify the multi-model approach advocated
here. Results show that 13 models out of 16 were selected in this case, and that no5

models were selected more than 7 times. Knowing that these models are not of equal
quality with regards to RMSE performance, for instance, this suggests that the selec-
tion favored a diversity of errors.

At the end of the selection process, the median coefficients of variation (MDCV)
has slightly decreased, from 0.37 to 0.35. This confirms that optimization with the δ10

criterion seeks diversity of the ensemble forecasts in the correct way, not necessarily
maximizing the MDCV. This aspect can also be seen on Fig. 4, which shows that
the minimum and maximum predicted discharge are not necessarily part of the group
members selected (see Fig. 2g for the reference of the whole spectrum of responses of
the 800 members). Note that the lower and upper limits on the spectrum of response15

selection does not correspond to a particular member, but for each time step such limits
are evaluated within the chosen set.

Regarding the participation of members of the ECMWF MEPS in the 30-member
HEPS, the histogram in Fig. 4 shows that for this particular case 73% of the selected
members were drawn from the top half of the MEPS (entries 25 to 50); members 25,20

35, 44 and 46 were picked more than once. One should not interpret these findings
as a lack of equiprobability, notably because the selection is influenced by various
hydrological structures that may distort their probabilistic response. However, such
behavior tends to disappear for a larger number of members.

Results presented up to this point concerned δ ratio optimization for a specific catch-25

ment. Table 5 summarized results for more catchments and optimization criteria. The
30-member comparison is based on a normalized sum (NS) with unit weights (Eq. 7)
so that the normalized sum corresponding to the 800-member HEPS is equal to 5. In
this way, NS lower than 5 indicates an overall improved performance. Performance
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for all criteria are also given in Table 5 for completeness, and the best optimization
criterion for each catchment is identified in bold letters.

Overall, the combined criterion (CC) offers an effective and direct rule, finding bal-
ance between features offered by each of the criteria. However, it is important to point
out the two cases for which the δ criterion provides a slightly better optimum. This5

reflects the limitations of the Backward Greedy Selection technique2, because if the
objective function (CC) is equal to the criterion used to compare results obtained with
different objectives, the CC criterion should obviously always find the best solution
within the vision of a global optimization tool.

The δ ratio criterion, based on a rank histogram which is the most common approach10

for evaluating whether a collection of ensemble forecasts for a scalar predictand satis-
fies the consistency condition (Wilks, 2005), comes to a close second. It led to the best
performance for two catchments and to the second best performance for seven other
catchments. This is particularly interesting considering the simplicity of this approach
with respect to the combined approach. In addition, the δ criterion favored the highest15

average participation of hydrological models.
The CRPS and IGNS led to a poorer selection, to the point that they were not con-

sidered further after experimenting with the first four catchments allowing an economy
in computational time3. The CRPS showed low variability, so it is not very sensitive to
changes in the selection of members. The IGNS demonstrated a negative relationship20

with reliability, leading to poor performance in terms of reliability diagram (RD) and δ
ratio. Both criteria led to the selection of a lower number of different hydrological mod-
els. They are also correlated, optimizing one criterion often favoring the improvement
of the other one.

2A greedy search procedure is an heuristic based on the results of local explorations, with
no guarantee of finding a global optimal value.

3The Backward selection method may be costly because to decrease the dimensions from
d to k, it is necessary to train and test the system d + (d −1)+ (d −2)+ ···+ (d −k) times, which
has a complexity of O(d2).
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Specifically the behavior of the optimization of each score could be also described
from the following relationships observed in Table 5:

– Optimization based on CRPS is detrimental to the reliability, especially in terms
of the RD and the δ ratio. For example, it had the effect of increasing RD by
a factor of 10, for catchment Q2593310. The CRPS also decreases diversity of the5

members (MDCV), except for catchment B31150020 where that value remained
stable.

– The combined criterion (CC) leads to stable CRPS values. The most remarkable
gains come in terms of RD, as provided in the weights definition of the Eq. (7).
With reference to δ ratio, evaluations reveal the difficulty in maintaining the stabil-10

ity of this criterion, but the differences between the selection and the reference set
are not pronounced. As for the MDCV, the diversity is in most cases maintained
or improved. The IGNS performance is often slightly decreased. In conclusion,
the CC promotes overall good performance, increasing the reliability of the sys-
tem (decrease of the RD score) and ensuring the stability or slight declines in the15

other scores.

– Selection based on the RD score is detrimental to the CRPS. As for reliability,
there are some cases for which the error increases. This condition is surprising
given that the combined criterion always achieved reductions of this error, but
it could not last under the assumption of a greater weight of this score in the20

combination because the relationship is completely constant, which highlights the
interaction between the scores as a mechanism implicit in the reduction of error
reliability (RD). The δ ratio is never improved, while diversity (MDCV) is lost ex-
cept in three cases (B3150020, Q2593310 and U2542010) where interestingly
the MDCV increased (theoretically consistent effect). Finally, the IGNS shows25

a negative trend to the minimization of the RD.

– By definition, the δ ratio focuses exclusively on the reliability and the consistency
of the ensemble. In fact, it leads to better reliability performance in terms of RD,

2759

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/2739/2011/hessd-8-2739-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/2739/2011/hessd-8-2739-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 2739–2782, 2011

Simplifying a
hydrological

ensemble prediction
system – Part 1

D. Brochero et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

than when the selection is optimized with RD itself. The δ ratio also preserves the
resolution of the forecast, as shown by the CRPS and IGNS results. All of this is
accompanied by a slight loss in performance in terms of δ ratio, which can be ex-
plained by the direct relationship of this score with the number of members. How-
ever, this dependency rather than becoming an obstacle in the selection stands5

as a logical consequence of the system, since statistically a better performance
is expected from a system that combines a larger number of models (Alpaydin,
2010). Finally, with respect to MDCV, it is shown once again that diversity, hy-
pothetically represented by MDCV, fluctuates between values that indicate the
extent to which such diversity needs to be maintained in the ensemble.10

– When the selection process focuses on the maximization of MDCV, the relation-
ship with CRPS, the IGNS and δ ratio is always negative. However, there are four
cases in which the reliability is improved by increasing the diversity index, from
which it follows that while reliability improves the resolution drops.

In summary, the interaction of different scores, as seen from the 30-member selec-15

tion, shows that the optimization focused on scores that define mainly the resolution
of the ensemble (CRPS, IGNS) has a negative impact on the reliability, consistency
and ensemble diversity. It also reveals that if the selection is based only on a reliability
view, the ensemble loses resolution and consistency. Maximization of the MDCV is in
general detrimental to the other criteria, but sometimes improves reliability, a condition20

that can easily be understood from a theoretical point of view. The δ ratio improves
reliability while maintaining resolution. The combined approach stands out as the most
balanced criterion.

The above analysis focused exclusively on 30-member selections. However, a global
vision demands the analysis of the evolution of the scores as the number of members25

is reduced. Such an analysis is specific to each catchment, so as an example, Fig. 5
shows evolution diagrams of the various scores as a function of the number of mem-
bers, for catchment A7930610.
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A gain index was used (Eq. 10) to evaluate the scores obtained in the selected en-
semble (se) in reference to the initial ensemble forecasts of 800 members (ie). A posi-
tive index indicates superior performance of the selected set. The absolute value in the
denominator is needed to assess the performance of IGNS, which can take positive
and negative values. The normalized sum of scores with unit weights (Eq. 7) is again5

used for assessing the joint evolution of all scores.

Gain(%)=100×
Scoreie−Scorese

|Scoreie|
(10)

Figure 5a,e clearly shows that an optimization based on resolution of the system
(CRPS or IGNS) is detrimental to the reliability. However, this effect is less pronounced
in the IGNS optimization when the number of members is kept above 100. Figure 5 also10

highlights the correspondence of CRPS and IGNS throughout the selection process,
when the optimization is focused on one or the other.

RD optimization (Fig. 5b) is surprisingly unfavorable to the δ ratio (negative gain
index), which is related to the indifference of the RD with respect to the location of the
observation within the ensemble, while this location analysis creates a solid indicator15

of the system consistency. Likewise, it is remarkable that the normalized sum for RD
is equal to 4.96 when the number of members is equal to 100. This is strictly because
loss in consistency (negative gain index in the δ ratio of 50%) and resolution (IGNS
equivalent to losses of 10%) is balanced by a positive gain of about 50% in RD.

The δ ratio (Fig. 5c) displays a gradual overall improvement of individual scores20

to a selection of about 70 members, when the various scores show a tendency to
decrease in performance. At this point it is important to note that the normalized sum
(NS) reached 4.53.

Figure 5d shows that criteria focusing on the resolution and the consistency have
a negative relationship with the maximization of the diversity (MDCV), overall gains25

(NS) are achieved only when the number of members is greater than 400.
The combined criterion (Fig. 5f) improves collective performance of all scores in the

selection, with an optimal number of members of again 70 for this catchment, coinciding
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with the interaction shown in the minimization of the δ ratio (Fig. 5c). Scores tend to
lose quality afterward.

Taking into account the detailed analysis for the 30-member selections and the global
analysis performed for each of the catchments, the combined criterion leads to the best
Backward Greedy selection. However, the issue of the optimal number of members5

remains somehow blurred. So, Fig. 6 revisits that question in terms of a gain index de-
fined in Eq. (11). The gain index is constructed around the 800-member NS value (5),
thus a negative value indicates that the selection reduces the quality of the reference
score combination.

Gain(%)=100×
(

5
NS

−1
)

(11)10

Figure 6 emphasizes that the 30-member selection always displays a positive gain
index, however 100 members would be a more optimal choice for most catchments.
However, one should keep in mind that the optimal number of members should be
based on an individual analysis of the different scores.

Table 6 groups the 100-member scores following optimization with the combined15

score and the δ ratio, the two best one. These values confirm the superiority of the
combined score, leading to the smallest NS for all catchments, mainly because of the
great influence on minimizing reliability. This also maximizes MDCV to such an extent
that it allows a proper balance between reliability, resolution, and consistency. It is also
remarkable that for 8 catchments out of 10, the δ ratio is minimized even more than20

when the optimization is focused on the δ ratio itself. Optimization based on the δ ratio
also improved scores over the initial 800-member values (NS<5) for 9 catchments out
of 10. This single criterion is thus also very appealing, especially because it makes
use of all 16 models in its selection.

Additionally, the δ ratio can be highlighted as a simple optimization criterion, which25

for 100% of the catchments, makes use of the participation of all hydrological models in
the formation of the solution, which is not the case for the combined score optimization.
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7 Conclusions

Results presented here support the idea that selecting HEPS members is viable. It is
in general even possible to expect a better balance of scores in the subset of selected
members than in the original much larger ensemble, based on standard scores such
as the CRPS, the IGNS, the reliability diagram, and the δ ratio. The diversity, sought in5

the multi-model approach with MEPS, may also be maintained in the final selection.
The simplification of the HEPS can be addressed from two points of view: as a func-

tion of the maximum simplification of the number of members or as a function of the
maximization of the balance of the scores. Simplification of the number of members
involves the definition of a limit ensuring statistical consistency of the scores assessed.10

A trade-off exists between the number of members and the level of improvement in
scores. For example, in this study, the balance of scores is achieved with about 100
members which maximized the qualities of the system: reliability, consistency, resolu-
tion, and diversity. This corresponds to a 87.5% compression level. The ultimate level
of compression is in fact a compromise between the gain index and the complexity of15

the system. The ultimate decision should be established according to the requirements
and the operational capacity of the probabilistic forecast system.

The evaluation of five individual scores as criteria for optimizing the selection process
revealed the complexity of the relationship between them. In many situations, improv-
ing one score is achieved at the expense of another score. Therefore, the design of20

a combined criterion (CC) led to an important methodological improvement that inte-
grates many characteristics of each score. The δ ratio is the best single optimization
criterion, not very distant to the achievements of the CC criterion.

The CRPS is often the primary score used for evaluating HEPS performance. How-
ever, results here indicate that it is not a good choice for member selection. In fact,25

it was often possible to preserve or minimize the CRPS using others objective crite-
ria. Likewise, the centralization of the selection process in the IGNS heavily penal-
ized the reliability and the consistency of the system. With respect to the MDCV, the
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uncontrolled maximization of this parameter, which describes diversity, leads to a de-
terioration of the other sought qualities of the system. There exists a threshold beyond
which the system abruptly loses reliability, resolution, and consistency. On the other
hand, experiments showed that both the δ ratio and the CC criterion improve the bal-
ance of the scores.5

The resampling methodology presented in this study is adapted to restrictions im-
posed by the short-length of the series (500 observations). However, it is believed that
it is widely applicable to any length of condition series.

Finally, the encouraging results of this study will lead to an interest in testing other
global search (non-greedy) tools such as Genetic Algorithms.10

Appendix A

Notations

t Time-step
N Number of pairs observations-forecasts
d Total number of members in the forecast ensembles
M Total number of m intervals to analyze the reliability diagram
c Identification of the rank or class to analyze the uniformity in

the rank histogram
ot Observed flow at the time t
y
t Ensemble flow forecast at the time t

y t
i i th flow forecast member in y

t

Y Ensemble flow forecast from t=1 to N
o Observations vector from t=1 to N
F Cumulative distribution function
f Probability density function
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ōm Conditional probability of the event as a function of the interval
Im assigned to the forecast m→ P (ot |Im)

r t Binary indicator, 1 if the event occurs for the tth forecast-event
pair, 0 if it does not

Sc Absolute frequency or occurrences in each rank c in the rank
histogram

medN
t=1 Median value evaluated from t=1 to N

µt Mean ensemble flow forecasts at the time t
σ2
t Variance ensemble flow forecasts at the time t

χt Training set
χv Validation set
χp Test or publication set

{xt}Nt=1 Set of x with index t ranging from 1 to N
argminθg(x|θ) The argument θ for which g has its minimum value
E (θ|χ ) Error function with parameters θ on the sample χ
wcp Weights of the components of the combined criterion (CC)

iter
yi
xp Iteration number at which was eliminated the yi member

during the selection process in the xp experiment

R(yi ) Mean rank of elimination of the yi member
s Final selection of the nm best members in the individual

selection process
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Table 1. Main characteristics of the studied catchments based on a 36 year length of the series
(1970–2006). P: diary precipitation, ET: diary potential evapotranspiration, Q: diary observed
flow.

Catchment Area Altitude Pmean Pmax ETmean ETmax Qmean Qmax
codes (km2) (m) (mm)

A7930610 9837 155 2.77 56.99 1.80 4.07 1.20 18.22
B2130010 2290 227 2.57 55.11 1.80 4.05 0.89 17.02
B3150020 3904 162 2.57 56.63 1.80 4.04 1.08 12.79
H3621010 3900 48 1.97 51.29 1.96 4.26 0.45 6.56
J8502310 2465 4 2.35 49.34 1.90 3.94 0.81 15.18
K7312610 1712 85 2.13 45.00 2.01 4.30 0.67 15.14
M0421510 1890 56 2.04 39.42 1.90 4.11 0.61 7.13
O3401010 2170 349 3.18 182.83 1.81 4.01 1.88 81.62
Q2593310 2500 17 2.52 53.63 2.25 4.52 0.73 12.72
U2542010 4970 201 3.63 59.04 1.76 3.97 1.88 22.08
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Table 2. Hydrological models. The number of parameters used in each model are shown in
brackets.

Hydrological Base model Origin Main objective
models (parameters)

HM01 CEQUEAU (9) France Flood forecasting
HM02 GR3J (3) France Application in ungauged basins
HM03 HBV (9) Sweden Flood forecasting, Nordic countries
HM04 IHACRES (6) Australia Regionalization, water quality
HM05 MORDOR (6) France Monitoring of water resources
HM06 SAC-SMA (13) USA Flood forecasting
HM07 SMAR (9) Ireland Flood forecasting, regionalization
HM08 TOPMODEL (8) UK Many applications, SIG coupling
HM09 CREC (8) France Flood forecasting
HM10 GR4J (4) France Application in ungauged basins
HM11 SIMHYD (8) Australia Flood forecasting
HM12 MOHYSE (7) Canada Identification of the components of the

process
HM13 PDM (8) UK, Brazil Flood forecasting
HM14 PDS (5) USA, UK Ensemble predictions in ungauged

basins
HM15 TANK (10) Japan Flood forecasting
HM16 WAGENINGEN (8) Netherlands Identification of the components of the

process
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Table 3. Performance for the deterministic (16 members) and probabilistic (800 members)
HEPS for a 9-day forecast time horizon.

Catchment HEPS Scores MDCV
codes CRPS IGNS RD(e-3) δ function

A7930610
16 0.338 4.51 93.95 42.5 0.18

800 0.263 0.44 5.06 3.3 0.41

B2130010
16 0.282 1.05 39.29 23.3 0.32

800 0.230 −0.29 2.43 2.2 0.57

B3150020
16 0.164 0.77 39.21 21.3 0.13

800 0.135 −0.88 4.51 2.7 0.22

H3621010
16 0.181 0.84 34.89 17.4 0.19

800 0.161 −0.99 3.50 1.5 0.37

J8502310
16 0.184 0.69 34.49 15.8 0.20

800 0.163 −0.98 2.16 1.6 0.37

K7312610
16 0.184 0.53 33.98 15.8 0.19

800 0.165 −0.93 3.09 1.9 0.35

M0421510
16 0.177 0.49 27.24 13.7 0.19

800 0.160 −0.99 1.74 1.5 0.37

O3401010
16 0.198 0.77 36.39 16.8 0.19

800 0.169 −0.86 3.46 1.5 0.36

Q2593310
16 0.186 0.66 32.89 14.9 0.21

800 0.163 −0.98 2.15 1.5 0.37

U2542010
16 0.390 3.29 39.73 21.0 0.19

800 0.289 −0.36 3.39 2.6 0.35
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Table 4. First 10 lags of the correlogram (linear autocorrelation diagram).

Lag
Catchment codes

A7930610 B2130010 B3150020 H3621010 J8502310 K7312610 M0421510 O3401010 Q2593310 U2542010

1 0.922 0.929 0.975 0.974 0.974 0.974 0.973 0.974 0.973 0.956
2 0.787 0.810 0.927 0.918 0.917 0.917 0.916 0.917 0.917 0.882
3 0.675 0.698 0.873 0.856 0.856 0.856 0.854 0.855 0.855 0.820
4 0.604 0.623 0.824 0.802 0.803 0.802 0.801 0.801 0.801 0.774
5 0.563 0.579 0.783 0.759 0.759 0.759 0.757 0.758 0.758 0.740
6 0.523 0.539 0.746 0.716 0.717 0.716 0.714 0.714 0.715 0.715
7 0.475 0.491 0.707 0.670 0.671 0.671 0.669 0.668 0.669 0.698
8 0.432 0.437 0.670 0.624 0.624 0.624 0.622 0.622 0.623 0.684
9 0.402 0.396 0.638 0.582 0.582 0.582 0.581 0.579 0.581 0.662

10 0.386 0.372 0.619 0.554 0.554 0.554 0.553 0.550 0.552 0.625
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Table 5. Selection of 30 members based on different scores. NS represents the normalized
sum with unit weights (Eq. 7). NHM indicates the number of hydrological models participating
in the solution. Bold indicates the best results according to the NS measure.

Catchment codes Optimization criterion CRPS RD(e-3) δ MDCV IGNS NS NHM

CRPS 0.239 6.96 4.26 0.34 0.41 5.70 8
CC 0.257 1.82 3.44 0.40 0.38 4.39 10
RD 0.263 2.80 4.60 0.40 0.49 5.02 7

A7930610 δ 0.269 5.17 3.68 0.40 0.48 5.21 13
MDCV 0.282 11.14 5.05 0.46 0.65 6.83 7
IGNS 0.244 9.61 4.83 0.31 0.38 6.46 6
Ref. values (800 members) 0.263 5.06 3.26 0.41 0.44 5.00 16

CRPS 0.208 4.00 4.54 0.49 −0.48 6.67 8
CC 0.234 1.33 2.60 0.63 −0.16 4.70 13
RD 0.230 2.46 3.92 0.53 −0.33 5.86 8

B2130010 δ 0.229 2.06 3.02 0.56 −0.27 5.24 14
MDCV 0.243 5.24 3.69 0.61 −0.26 6.83 8
IGNS 0.224 23.25 8.03 0.39 −0.33 16.72 7
Ref. values (800 members) 0.230 2.43 2.24 0.57 −0.29 5.00 16

CRPS 0.117 5.93 4.57 0.22 −0.97 5.91 7
CC 0.133 0.92 2.02 0.23 −0.85 4.01 10
RD 0.152 3.53 5.19 0.24 −0.62 6.16 8

B3150020 δ 0.130 2.95 3.28 0.23 −0.86 4.92 12
MDCV 0.139 12.12 7.28 0.24 −0.70 8.73 7
IGNS 0.122 17.44 7.07 0.17 −0.97 9.45 8
Ref. values (800 members) 0.135 4.51 2.66 0.22 −0.88 5.00 16

CRPS 0.142 21.88 5.93 0.25 −0.96 17.17 6
CC 0.158 0.67 1.78 0.37 −0.97 4.47 9
RD 0.171 1.68 3.06 0.38 −0.84 5.97 5

Q2593310 δ 0.161 0.57 1.59 0.37 −0.98 4.36 13
MDCV 0.175 3.93 3.45 0.45 −0.74 7.34 5
IGNS 0.152 32.01 12.47 0.18 −0.41 26.93 6
Ref. values (800 members) 0.163 2.15 1.46 0.37 −0.98 5.00 16

CC 0.156 1.10 1.69 0.36 −0.97 4.46 11
RD 0.163 2.89 2.46 0.34 −1.00 5.49 7

H3621010 δ 0.160 2.44 1.87 0.36 −1.02 4.94 13
MDCV 0.170 2.51 3.83 0.44 −0.79 6.36 6
Ref. values (800 members) 0.161 3.50 1.49 0.37 −0.99 5.00 16
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Table 5. Continued.

Catchment codes Optimization criterion CRPS RD(e-3) δ MDCV IGNS NS NHM

CC 0.160 0.49 2.32 0.39 −0.98 4.60 12
RD 0.166 2.33 3.11 0.35 −0.91 6.20 7

J8502310 δ 0.163 1.34 1.63 0.36 −0.99 4.60 13
MDCV 0.175 1.64 2.48 0.44 −0.74 5.47 6
Ref. values (800 members) 0.163 2.16 1.63 0.37 −0.98 5.00 16

CC 0.158 1.26 2.44 0.36 −0.96 4.57 9
RD 0.167 3.36 3.72 0.35 −0.89 6.10 7

K7312610 δ 0.163 2.10 3.34 0.33 −0.95 5.46 13
MDCV 0.173 2.51 4.22 0.43 −0.68 6.19 6
Ref. values (800 members) 0.165 3.09 1.86 0.35 −0.93 5.00 16

CC 0.159 0.71 1.85 0.36 −0.99 4.54 12
RD 0.164 2.10 2.93 0.36 −0.92 6.25 6

M0421510 δ 0.158 1.09 1.26 0.35 −1.01 4.41 13
MDCV 0.170 2.63 3.33 0.44 −0.75 6.96 5
Ref. values (800 members) 0.160 1.74 1.51 0.37 −0.99 5.00 16

CC 0.166 0.94 1.31 0.36 −0.87 4.06 13
RD 0.172 2.48 4.22 0.36 −0.67 6.57 5

O3401010 δ 0.168 1.94 1.80 0.37 −0.85 4.69 12
MDCV 0.189 5.70 4.85 0.44 −0.51 7.93 4
Ref. values (800 members) 0.169 3.46 1.54 0.36 −0.86 5.00 16

CC 0.292 1.16 2.86 0.37 −0.34 4.43 12
RD 0.297 2.88 4.98 0.37 −0.25 5.83 6

U2542010 δ 0.291 1.79 2.86 0.34 −0.32 4.68 15
MDCV 0.301 3.03 3.72 0.43 −0.10 5.41 5
Ref. values (800 members) 0.289 3.39 2.62 0.35 −0.36 5.00 16
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Table 6. Selection of 100 members based on the combined (CC) and δ criteria. NS represents
the normalized sum (Eq. 7) with unit weights. NHM indicates the number of hydrological models
participating in the solution.

Catchment codes Optimization criterion CRPS RD δ MDCV IGNS NS NHM

A7930610
CC 0.257 1.76 3.01 0.43 0.33 4.17 13
δ 0.265 3.54 2.96 0.41 0.43 4.61 16
Ref. values (800 members) 0.263 5.06 3.26 0.41 0.44 5.00 16

B2130010
CC 0.232 1.03 2.29 0.63 −0.19 4.37 14
δ 0.227 1.16 2.40 0.59 −0.28 4.50 16
Ref. values (800 members) 0.230 2.43 2.24 0.57 −0.29 5.00 16

B3150020
CC 0.134 0.99 2.44 0.25 −0.83 4.16 14
δ 0.135 2.31 2.48 0.23 −0.85 4.48 16
Ref. values (800 members) 0.135 4.51 2.66 0.22 −0.88 5.00 16

Q2593310
CC 0.160 0.36 1.30 0.40 −0.98 3.98 16
δ 0.159 0.63 1.43 0.36 −1.05 4.18 16
Ref. values (800 members) 0.163 2.15 1.46 0.37 −0.98 5.00 16

H3621010
CC 0.158 0.58 1.63 0.38 −1.03 4.18 14
δ 0.158 2.45 1.80 0.36 −1.04 4.83 16
Ref. values (800 members) 0.161 3.50 1.49 0.37 −0.99 5.00 16

J8502310
CC 0.161 0.38 1.49 0.39 −0.98 4.05 15
δ 0.161 1.31 1.66 0.38 −1.00 4.63 16
Ref. values (800 members) 0.163 2.16 1.63 0.37 −0.98 5.00 16

K7312610
CC 0.162 0.59 1.65 0.39 −0.91 4.04 14
δ 0.164 2.60 2.22 0.34 −0.95 5.01 16
Ref. values (800 members) 0.165 3.09 1.86 0.35 −0.93 5.00 16

M0421510
CC 0.157 0.29 1.65 0.37 −1.00 4.23 15
δ 0.158 0.79 1.25 0.36 −1.03 4.24 16
Ref. values (800 members) 0.160 1.74 1.51 0.37 −0.99 5.00 16

O3401010
CC 0.167 0.74 1.40 0.38 −0.87 4.07 16
δ 0.166 2.18 2.10 0.37 −0.89 4.89 16
Ref. values (800 members) 0.169 3.46 1.54 0.36 −0.86 5.00 16

U2542010
CC 0.289 0.89 2.22 0.39 −0.38 4.07 14
δ 0.287 1.44 2.45 0.36 −0.42 4.34 16
Ref. values (800 members) 0.289 3.39 2.62 0.35 −0.36 5.00 16
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0 100 km

N

Fig. 1. Selected catchments for the first phase. Each catchment is identified with the first three
digits of each code used in Table 1.
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Fig. 2. HEPS results. The 16 member HEPS corresponds to the deterministic meteorological
condition and the 800 member HEPS corresponds to the probabilistic meteorological condition.
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Fig. 3. Comparison between the initial ensemble (800 members) and the ensemble selected
(30 members). (a) Figure above: observed flow; figure below: CRPS. Note the correspondence
between higher observed flows and higher CRPS. (b) Figure above: observed flow; figure
below: IGNS. Note that there is no full correspondence between the higher IGNS and higher
observed flow. (c) Reliability diagram error (MSE based on vertical distances between the
points). (d) Rank histogram for the 30 selected members. The horizontal dashed gray lines
indicate the frequency (N/d +1) attained by a uniform distribution. (e) Occurrences of the
employed models in the final solution of 30 members.
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Fig. 4. The 30 members response spectrum in the selection in the catchment M0421510. The
Black line indicates the observed flow; gray lines represent the minimum and maximum limits
in the prediction of the selection. The histogram (top) indicates the occurrence of members of
the ECMWF in the selection.
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Fig. 5. Evolution of the gain index for each score under different optimization schemes in the
basin A7930610. A logarithmic scale is used on the x-axis. The chosen optimization criterion in
the selection is shown at the top of each subfigure. The lower part of each subfigure indicates
the values of the normalized sum (NS) of all scores with unit weights (Eq. 7) for the number of
members shown on the x-axis.
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Fig. 6. Evolution of the normalized sum (NS) in terms of gain index. Logarithmic scale on
the x-axis. Normalized sum equal to 5 represents the performance of the initial 800 members
ensemble.
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