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Abstract

The development of methods for estimating the parameters of hydrological models con-
sidering uncertainties has been of high interest in hydrological research over the last
years. Besides the very popular Markov Chain Monte Carlo (MCMC) methods which
estimate the uncertainty of model parameters in the settings of a Bayesian framework,5

the development of depth based sampling methods, also entitled robust parameter
estimation (ROPE), have attracted an increasing research interest. These methods
understand the estimation of model parameters as a geometric search of a set of ro-
bust performing parameter vectors by application of the concept of data depth. Recent
studies showed that the parameter vectors estimated by depth based sampling per-10

form more robust in validation. One major advantage of this kind of approach over
the MCMC methods is that the formulation of a likelihood function within a Bayesian
uncertainty framework gets obsolete and arbitrary purpose-oriented performance cri-
teria defined by the user can be integrated without any further complications. In this
paper we present an advanced ROPE method entitled the Advanced Robust Param-15

eter Estimation by Monte Carlo algorithm (AROPEMC). The AROPEMC algorithm is a
modified version of the original robust parameter estimation algorithm ROPEMC devel-
oped by Bárdossy and Singh (2008). AROPEMC performs by merging iterative Monte
Carlo simulations, identifying well performing parameter vectors, the sampling of ro-
bust parameter vectors according to the principle of data depth and the application of a20

well-founded stopping criterion applied in supervised machine learning. The principals
of the algorithm are illustrated by means of the Rosenbrock’s and Rastrigin’s function,
two well known performance benchmarks for optimisation algorithms. Two case studies
demonstrate the advantage of AROPEMC compared to state of the art global optimi-
sation algorithms. A distributed process-oriented hydrological model is calibrated and25

validated for flood forecasting in a small catchment characterised by extreme process
dynamics.
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1 Introduction

Conceptual hydrological models are designed to approximate the general physical
mechanism which govern the rainfall-runoff process within a specific catchment. Many
of the currently available models serve engineers in practice and hydrologists in re-
search. Most of these models require calibration because available input data is rarely5

sufficient to directly parameterise the models to the desired accuracy. The success of
a model application is thus strongly dependent on a good calibration.

Traditionally models are calibrated manually. This is very labour-intensive and the
success of the calibration is highly dependent on the experience and hydrological
knowledge of the modeller. Therefore, recently automatic methods for model cali-10

bration have evolved significantly (e.g. Duan et al., 1992; Gupta et al., 1998; Kobold
et al., 2003; Theiner and Wieczorek, 2006) and have found a common acceptance and
broad use in the hydrological community (e.g. Hogue et al., 2000; Cullmann, 2006;
Kunstmann et al., 2006; Marx, 2007). These approaches are based on solving a math-
ematical optimisation problem which is formulated by the help of a purpose-oriented15

objective function which evaluates the model performance. The result is traditionally a
single best performing parameter vector. However, regardless of the model and optimi-
sation algorithm used, many studies applying such methods have reported problems in
estimating unique best performing parameter vectors (Duan et al., 1992; Gupta et al.,
1998; Wagener et al., 2004). The probability to estimate the same model performance20

for different estimated parameter vectors was described by Beven and Binley (1992)
as the equifinality problem. In terms of the optimisation problem, the reason for this is
the existence of multiple local optima with both small and large regions of attraction,
discontinuities in the first derivatives, and curving ridges in the multidimensional param-
eter space. The difficulties to estimate single best performing parameter vectors are25

even stronger, when the focus is put on specific aspects of the catchment behaviour,
e.g. flood events (e.g. Cullmann, 2006; Cullmann and Wriedt, 2008; Fenicia et al.,
2007). In this context, hydrological models are not yet able to equally well describe the
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full range of processes that drive the runoff generation. This holds both for simple con-
cept models and detailed process models with physically based components. One of
the main reasons for this lack of “process fidelity” are the highly dynamic characteristics
of such events. Besides the discussed issues in model calibration, the uncertainties in
the used observations is often completely neglected.5

To overcome this problem a whole variety of Markov Chain Monte Carlo (MCMC)
methods have recently been developed in order to get a well-founded estimate of the
the uncertainty of model parameters in the settings of a Bayesian framework. The
approaches developed by Vrugt et al. (2003) and Kuczera et al. (2006) have recently
attracted much scientific interest and enjoyed rising popularity in the hydrological com-10

munity (e.g. Bos and de Vreng, 2006; Thyer et al., 2006; Frost et al., 2007; Grundmann,
2010). One major advantage of a Bayesian framework is the possibility to describe all
relevant sources of uncertainty in a closed form and consequently the estimation of
mathematically well founded results. However, also for those kind of approaches a
modeller has to make assumptions of all sources of uncertainty to be considered. Of-15

ten these assumptions are quite arbitrary because the information for a well founded
decision is not available. Subsequently these decisions have a non-neglect-able influ-
ence on the results. Thus, the uncertainty estimates might get a rather subjective touch
– a fact that contradicts the original intention of the application of a Bayesian frame-
work. Furthermore in many real-world applications modellers call for purpose-specific20

objectives in calibration, this is difficult to integrate in the likelihood function Bayesian
uncertainty framework. For example the formulation and implementation of a likelihood
function considering both peak flow difference and the Nash-Suttcliffe efficiency is not
straightforward.

A completely new kind of approach to address this problem was presented by25

Bárdossy and Singh (2008) who applied the concept of data depth in order to sam-
ple robust model parameter vectors. In a previous study (Bárdossy, 2007) it was
shown that the set of parameter vectors with good model performance (according to
Bárdossy and Singh, 2008, they are from now on called the good parameter vectors) is
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geometrically well structured for commonly used hydrological models. This result was
also found by other studies dealing with model calibration (e.g. Kuczera and Parent,
1998) and by preliminary studies with WaSiM in the Rietholzbach catchment (Pompe,
2009). However, the actual goal of a successful model calibration is not just a good
model performance in calibration, but the estimation of robust parameter vectors. A5

good definition of robustness of hydrological model parameters is given by Bárdossy
and Singh (2008). We call all parameter vectors robust if they:

1. lead to good model performance over the selected time period

2. lead to a hydrologically reasonable representation of the corresponding processes

3. are not sensitive: small changes of the parameters should not lead to very differ-10

ent results

4. are transferable: they perform well for other time periods and might also perform
well on other catchments (i.e. they can be regionalised)

Studies of computational geometry and multivariate statistics (e.g. Liu et al., 2006;
Bremner et al., 2008) showed that members geometrically deep within a set, are more15

robust in order to represent the whole set. These points can be estimated by the con-
cept of data depth, which has recently attracted a lot of research interest in multivariate
statistics and robust modelling (e.g. Cramer, 2003; Liu et al., 2006). The estimation
of a set of parameter vectors can be done in an evolutionary process, as presented
by Bárdossy and Singh (2008) in a very first sketch. The estimated results are very20

promising. Therefor we reviewed the presented methods, implemented improved meth-
ods to sample deep parameter vectors and well founded stopping criteria, and applied
a further developed version of the ROPE method, called AROPEMC in order to calibrate
a hydrological model. Compared to the study of Bárdossy and Singh (2008) we applied
the method to a distributed process-oriented model with a higher temporal resolution25

(hourly instead of daily time-step) in a catchment where the dominant processes have
high dynamics.
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2 Case study area and the hydrological model

The concept of this paper will be illustrated with examples from the Rietholzbach catch-
ment. Out of a time series from 1981–2008, 24 significant flood events were selected
for model calibration and validation. The hydrological model chosen is the model
WaSiM-ETH. A short description of the catchment, the used data and the model is5

provided in this section.

2.1 Study area

The real-world case studies presented within this paper were carried out on the Ri-
etholzbach catchment. This basin has been observed as a research catchment by
the ETH Zurich since 1975. The outlet drains a 3.18 km2 hilly pre-alpine water-10

shed with an average precipitation of 1600 mm per year, generating a mean annual
runoff of 1046 mm. As a sub-basin of the Thur catchment it is located in the north-
east of Switzerland. Its geographical location and basic land-use characteristics are
listed in Table 1. A significant number of studies have been conducted in this basin.
For further information refer to Gurtz et al. (1999); Zappa (2002) and the website15

http://www.iac.ethz.ch/research/rietholzbach.

2.2 Hydrological model

The used hydrological model is WaSiM-ETH/6.4 (in the further referred to as WaSiM).
It is a spatial distributed process-oriented rainfall-runoff model and was developed by
Schulla (1997) at the ETH Zurich. WaSiM has been used successfully for modeling20

the rainfall-runoff processes in several studies in catchments located within mid moun-
tain ranges (e.g. Grundmann, 2010) and especially also in the pre-alpine Rietholzbach
catchment (Gurtz et al., 1999, 2003a,b). Additionally WaSiM-ETH has been used for
extrapolation of extreme flood events by Cullmann (2006). For this study we used the
version with the Richards approach for the simulation of the unsaturated zone.25
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In the case studies presented discussed in this work, WaSiM will be calibrated for
the simulation of extreme discharges. Therefore the main focus of attention in this
short model presentation will be on the model part representing the unsaturated zone.
WaSiM transforms rainfall into runoff according to the scheme shown in Fig. 3. Here,
three exemplary soil water compartments receive infiltration which is computed by a5

modified approach according to Green and Ampt (1911). This module is also used to
determine the direct runoff Qd in the model. Qd is then routed via a flow-time grid and
finally projected cell-wise to the catchment outlet by means of a simple bucket type
function (Eq. 1). The recession coefficient of this function is the model parameter kd.

Qd(t) = Qd(t − 1) e
−∂t
kd (1)10

where Qd(t) is the direct runoff at timestep t with timestep length ∂t.
The soil water movement through the different soil layers is modeled by means of

the discrete form of the Richards-equation which can be written as:

∂Θ
∂t

=
∂q
∂z

= qin − qout (2)

where ∂Θ denotes the change in soil water content, ∂t defines the time step and ∂q15

is the change in specific flux. The fluxes qin and qout characterise the influx and efflux
from the specific neighboring soil layer respectively. The thickness of the soil layers is
defined by ∂z.

In the model each soil layer produces interflow (Qifl) according to Eq. (3), which is
cell-wise scaled with the scalar model parameter dr.20

Qifl = ks(Θl) ∂z · dr · tan β (3)

where ks denotes the hydraulic conductivity at the water content Θl in the considered
soil layer l , dr is a conceptual model parameter to be estimated and β characterises
the local slope in the grid cell.
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Corresponding to the direct runoff, the interflow is again projected to the catch-
ment outlet by means of a flow-time grid and a second bucket type function. Here
the model parameter ki represents the recession coefficient in analogy to Eq. (1). For
further details about WaSiM refer to Schulla (1997) and the official website of the model
http://www.wasim.ch. Table 2 gives the model parameters considered for calibration.5

These are the storage coefficients of direct runoff and interflow, kd and ki , and the
drainage density dr which is a scaling parameter of interflow generation. In previous
studies (Cullmann, 2006; Pompe, 2009; Grundmann, 2010) these three parameters
have been proven to be sensitive with respect to modelling flood events. Besides the
specified upper and lower boundaries of the model parameters, the additional con-10

straint ki ≥1.05kd was introduced in order to account for the basic consideration that
the direct runoff from a cell has a shorter travel time to the catchment outlet than the
generated interflow in the unsaturated zone.

2.3 Data

Due to its longterm observation as a research catchment and its limited size, the Ri-15

etholzbach catchment has a long record of hourly data sets and the perturbing impact
of data heterogeneity is relatively small in this catchment. The data we based our study
upon is a time series consisting 27 years of meteorological and discharge measure-
ments. Out of this time series we selected a set of 24 flood events with a peak flow of at
least 1 mm h−1. All events are in the time from May until October to avoid the problem20

of modeling snow accumulation and melting processes. An overview of all selected
24 flood events with their specific characteristics and pre-conditions is given in Table 3.

3 Objective criteria

Within this study commonly used objective functions are applied. There are global
criteria which try to assess the general quality of the fit of model and the catchment25
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behavior whereas local criteria just focus on a specific attribute, e.g. peak flow values
or snow melt periods. The efficiency criterion according to Nash and Sutcliffe (1970)
(NS) has been widely used to quantify the global performance of hydrological models.
The relative deviation in peak flow (rPD) is a simple local criterion to assess the model’s
skill to represent the catchment behavior for flood events. In order to obtain both a5

good estimate of the peak flow values and a minimum reasonable representation of
the catchment behavior we aggregated the global criterion NS and the local criterion
rPD in a performance criterion, we call flood skill (FloodSkill). An overview of all criteria
used as an objective within the case studies of this paper is given in Table 4.

4 Data depth10

Data depth is a statistical method used for multivariate data analysis which assigns a
numeric value to a point with respect to a set of points based on its centrality. This
approach provides center-outward orderings of points in Euclidean space of any di-
mension and provides the possibility of a new non-parametric multivariate statistical
analysis in which no distributional assumptions are needed. Tukey (1975) introduced15

this concept first in order to estimate the center of a multivariate dataset. A formal
definition of an arbitrary depth function D for the d -dimensional space Rd is given as
follows:

D : Rd ×
(
Rd × R

)
→ R (4)

To be called a depth function, D has to fulfill specific properties (Zuo and Serfling,20

2000). The concept of data depth is illustrated in Fig. 4 by a small 2-dimensional ex-
ample. For a random point set in R2 the data depth was computed for each point of the
set with respect to the point set itself. The used data depth function was the halfspace
depth. It is one of the best known among the data depth measures in nonparamet-
ric statistics, and in discrete and computational geometry. According to Tukey (1975)25
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and Donoho and Gasko (1992) the halfspace depth of an arbitrary point θ ∈Rd with
respect to a d -dimensional data set Z = {zi = (zi1, ··· , zid); i = 1, ··· , n} is defined as
the smallest number of data points in any closed halfspace with boundary through θ .
This is also called the Tukey or location depth, and it can be written as:

hdepth (θ |Z) := min
||u|| = 1

{i , u> zi ≥ u> θ} (5)5

where u ranges over all vectors in Rd with ||u||=1.

Very often the halfspace depth is normalized by division with the number of points in
the set Z :

hdepth∗(θ|Z) :=
hdepth (θ |Z)

# {Z}
(6)10

The first publication of Tukey (1975) was then followed by many generalizations and
other definitions of this concept (e.g. Oja, 1983; Donoho and Gasko, 1992; Rousseeuw
and Struyf, 1998; Rousseeuw and Hubert, 1999; Vencálek, 2008). A good overview of
a broad range of different definitions of the concept of data depth and its application for
multivariate data analysis is given by Hugg et al. (2006) and Liu et al. (2006). In the15

following the symbol D is used for an arbitrary depth function.
For a given data set Z , the set Dk of all points ∈Rd with depth at least k is called

the contour of depth k in statistics (s. Donoho and Gasko, 1992). The application of
that concept in the sampling of parameter vectors with a least depth with respect to a
set of good parameter vectors is the underlying approach of the algorithm presented20

in this work. We use the definition of data depth introduced by Tukey (1975) with an
implementation according to Rousseeuw and Struyf (1998). Furthermore it has proved
to be a very robust measure in order to identify the center of a multivariate dataset (e.g.
Rousseeuw and Struyf, 1998; Cramer, 2003; Serfling, 2006). For a study of further data
depth functions with the algorithm presented in this paper, refer to Krauße (2011).25
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5 Implementing advanced methods for robust parameter estimation:
the AROPEMC algorithm

Bárdossy and Singh (2008) developed the ROPE method with the goal to estimate a
set of robust parameter vectors in the feasible space by the application of the principle
of data depth in order to generate parameter vectors deep with respect to an identified5

set of good parameter vectors. The first presented ROPE algorithm (Bárdossy and
Singh, 2008) is given as follows1.

Algorithm 5.1 ROPEMC

1: Select d model parameters, to be considered for calibration and identify prior boundaries
[xlb, xub] for all selected parameters

2: n random parameter vectors forming the set Xn are generated in the d -dimensional rectan-
gle bounded by the defined boundaries.

3: repeat
4: The hydrological model is run for each parameter vector in Xn and the corresponding

model performances are calculated
5: The subset X ∗n of the best performing parameters is identified. This might be for example

the best 10% of Θn
6: m random parameter vectors forming the set Ym are generated, such that ∀θ ∈

Ym : D(θ |X ∗n)≥L where L≥1
7: The set Ym is relabeled as Xn and steps 3–6 are repeated until
8: until the performance corresponding to Xn and Ym does not differ more than what one

would expect from the observation errors
9: return Ymi

In principle the general proceeding of this algorithm, can be divided into three im-
portant parts. After the input and a pre-processing a set of good parameter vectors is
identified (lines 4 and 5). Afterwards a set of deep parameter vectors (w. r. t. the good10

1
Note that the notation was marginally changed from Bárdossy and Singh (2008) in order to have a consistent

syntax with other publications in the field of data depth.
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ones) is generated (line 6). These two operations are evolutionary repeated and after
each iteration a stopping criterion is checked (line 8). The general approach of the pre-
sented algorithm is well-founded and a case study with an application to the calibration
of the conceptual hydrological model HBV for a catchment in south-west Germany on
a daily time step resulted in parsimonious and reasonable results. However, in first5

studies we experienced some problems particularly with the application of the latter
two parts of the procedure, the generation of deep parameter vectors and the exact
definition of the stopping criterion. In the following we will give a brief overview of the
problems and explain how the new AROPEMC algorithm addresses these shortcom-
ings.10

One of the major premises of the application of the concept of data depth is the
assumption that the set of good parameter vectors is geometrically well-structured. In
concrete terms we rely on the assumption that the depth contours will be indicative of
the shape of the cloud of good parameter vectors, while generating deep parameters.
However, for most depth functions, this does not hold on point sets that are distributed15

in non-convex position (Hugg et al., 2006). Unfortunately the parameter space of most
hydrological models is dominated by distinct regions of attraction and non-convex multi-
dimensional ridges (e.g. Duan et al., 1992; Sorooshian et al., 1993; Grundmann, 2010).
To overcome this conflict we propose to substitute the generation of deep parameter
vectors with the strategy, entitled GenDeep, as given below in Algorithm 5.2.20

Additionally we implemented alternative sampling strategies for the sampling of can-
didate points for the sets of deep parameter vectors. A simple sampling strategy of
candidates is a uniform sampling within the bounding box for the considered set of
good parameter vectors. This strategy gets ineffective and computationally intensive
for higher dimensions. That is due to the fact that the volume ratio of the bounding25

box to the set of parameter vectors itself decreases with rising dimension. This issue
is illustrated by Fig. 5 where the ratio between the volume of the unit sphere and the
unit cube is plotted. Additionally the computational complexity of most depth functions
increases tremendously for higher dimensions. To address this problem we suggest
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Algorithm 5.2 GenDeep
1: Perform a cluster analysis on the set of good parameter vectors X ∗n , e.g. with the expectation

maximization (EM) algorithm according to Dempster et al. (1977), which identifies the most
probable number of clusters k in X ∗n and assigns all members of the set X ∗n to one (in case
of ambiguity also to more than one) of the clusters ci , where i ∈ {1, ..., k}.

2: Ym←∅
3: for all ci ∈ {c1, ..., ck} do

4: mi←m
(

#{Ci }
n

)
5: mi random parameter vectors forming the set Ymi

are generated, such that ∀θ ∈
Ymi

: {D(θ |ci )≥L where L>0}
6: Ym← Ym∪Ymi

7: end for
8: return Ymi

to approximate the considered set of good parameter vectors by a Gaussian mixture
model (GMM) whose parameters can be estimated by the EM algorithm which is called
anyway in order to do the cluster analysis in the presented strategy. For further details
of the proposed strategy for the generation of deep parameter vectors refer to Krauße
(2011).5

Another issue of the ROPEMC algorithm is the loosely defined stopping criterion:
“until the performance corresponding to Xn and Ym does not differ more than what one
would expect from the observation errors” (Bárdossy and Singh, 2008, p. 1280). The
problem is that there are countless possibilities in the prior estimation of the tolerance
in the model performance due to uncertainty in the observation data and it can hardly10

be determined exactly. A broad definition of this tolerance can lead to sets with in-
ferior model performance, whereas a tighter tolerance can easily result in overfitting.
This is a severe shortcoming because it undermines the actual goals of the algorithm.
Overfitting in the context of robust parameter estimation means that the model perfor-
mance on the calibration data still can be increased by further shrinking the estimated15
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set of the deep model parameter vectors, whereas the model performance on (reason-
ably similar) control data decreases by further shrinking. Figure 6 illustrates this fact
with the results of the calibration of WaSiM in the Rietholzbach catchment w. r. t. to
flood events. The FloodSkill criterion was used as objective and the flood events no. 4
and no. 14 were used as calibration and control data, respectively. It is evident that5

the model performance on the control data considerably decreases from iteration 3
whereas the model performance on the calibration data could be increased by further
iterations.

To address this problem we implemented two changes to the algorithm. First, we
slightly changed the evolutionary shrinking of the generated deep parameter vectors.10

To avoid the unintended exclusion of possibly robust parameter vectors close to the
boundary of the initial set of good model parameters, we suggest merging the set of
generated deep parameter vectors and the identified good parameter vectors as initial
set for the next iteration, as follows:

Xn ← Ym ∪ X ∗n (7)15

Furthermore we introduced a new stopping criterion in order to avoid overfitting. We
suggest the splitting of the data used for model calibration in a calibration and a control
set. Just the calibration set is used for the actual model calibration, whereas the control
set is just used to supervise the control process in order to avoid overfitting. In each
iteration of the algorithm the model performance is estimated both on the calibration20

and control set. The moment the performance does not improve anymore for the con-
trol set, the algorithm is stopped. This kind of approach is a state of the art method in
the supervised training of artificial neural networks in order to avoid overfitting (Tetko
et al., 1995). The new algorithm, entitled the Advanced Robust Parameter Estimation
by Monte Carlo (AROPEMC) is given in a brief form in pseudocode in Algorithm 5.3. A25

more detailed illustration of the approach is given in Fig. 7. The algorithm was imple-
mented in the MATLAB programming language. The implementation is open source
and available from the author.

2436

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/2423/2011/hessd-8-2423-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/2423/2011/hessd-8-2423-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 2423–2476, 2011

Identification of
model parameters by
data depth measures

T. Krauße and
J. Cullmann

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Algorithm 5.3 AROPEMC

1: Select d model parameters, to be considered for calibration and identify prior boundaries
[xlb, xub] for all selected parameters

2: n random parameter vectors forming the set Xn are generated in the d -dimensional rectan-
gle bounded by the defined boundaries.

3: repeat
4: if #iterations>1 then
5: Xn← Ym∪X

∗
n

6: end if
7: The hydrological model is run for each parameter vector in Xn and the corresponding

model performances on the calibration data are calculated
8: The subset X ∗n of the best performing parameters is identified. This might be for example

the best 10% of Θn
9: The hydrological model is run for each parameter vector in X ∗n and the corresponding

model performances on the control data are calculated
10: Ym←GenDeep(X ∗n)
11: until the performance corresponding to Xn and Ym does not differ more than what one

would expect from the observation errors or the performance on the control data gets worse

12: return Ym

6 Case studies

6.1 Case study I: estimating the minimum of the Rosenbrock and Rastrigin
function

The goal of the AROPEMC algorithm is not the estimate of the global optimum of a
problem. However, the estimated set of robust points should encompass a region close5

to the global optimum. We investigate the performance of the AROPEMC algorithm for
the estimation of the minimum of two simple test functions of the form f : Rn→R, often
used as a performance test problem for optimization algorithms: the Rosenbrock’s
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function and the Rastrigin’s function. The former is a non-convex function with a unique
minimum value of 0 attained at the point 1. Finding the minimum is a challenge since it
has a shallow minimum inside a deeply curved valley. The Rastrigin function is a typical
example of non-linear multimodal function. It was first proposed by Rastrigin as a 2-
dimensional function and has been generalised for multiple dimensions by Mühlenbein5

et al. (1991). This function is a fairly difficult problem due to its large search space
and its large number of local minima. The formal definition of both functions is given
in Eqs. (8) and (9) respectively. Figure 8 shows the plot for both functions for two
variables, to give the reader a better impression of the nature of the problem.

fa(x)=
N−1∑
i=1

[(
1 − x2

i

)2
+ 100

(
xi+1 − x2

i

)2]
(8)10

fb(x)=A n +
N∑
i=1

[
x2
i − A cos (2 π xi )

]
(9)

∀x∈Rn, A = 10

We applied the original ROPEMC algorithm and the AROPEMC algorithm for estimat-15

ing the minimum of both test functions for the dimension 2–4. As boundary for the
parameters x we chose [−10, 10]. In order to have a reference performance, we ap-
plied the genetic algorithm (GA) according to Conn et al. (1997) in the same feasible
space with a comparable number of maximum function evaluations and the same tol-
erance2. To get a fair mean best result for comparison, we ran the GA each iteratively20

until the value for the overall mean of the best estimates got stable. For each estimate
we computed its fitness value as the absolute of the difference between its function
value and the known global optimum.

2
For all problems and all algorithms we adjusted their settings to ensure at the most 10 000 function evaluations

and a tolerance in the performance of the estimated parameter sets of 0.1.
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Figure 9 illustrates the principle of operation of the algorithm by the scatter plots of
the estimated parameter vectors after several iteration steps for the the 2-dimensional
case. It is evident that new parameter vectors are sampled deep with respect to the
estimated set in the previous iteration. For the Rastrigin’s function several clusters can
be clearly identified which improves the performance of the sampled parameter vectors5

tremendously.
Table 5 presents the comparison of the fitness values for all used algorithms. It is

evident that the AROPEMC algorithm can achieve a reasonable performance and esti-
mate a set of model parameters in the region with the highest possible performance for
all test cases. In most of the cases the deepest estimated parameter vectors have a10

better performance than the mean of the estimated set. For the Rosenbrock’s function
both the ROPEMC and the AROPEMC algorithm perform comparable well for all dimen-
sions. The results for the Rastrigin’s function show an improvement of AROPEMC with
respect to ROPEMC algorithm for higher dimensions due to the cluster based sampling
with the DepGeen strategy. However, the results for the Rastrigin’s function also show15

that the proposed algorithm still suffers from the general shortcomings of a Monte-
Carlo type approach for high dimensional problems with a very large number of areas
of attraction. A too small sample size can result in an inaccurate clustering and con-
sequently undermine the improvements of this strategy. Note that this problem can
easily be compensated by a higher sample size on the cost of more computation time.20

As another possible solution for high-dimensional problems with multiple regions of at-
traction we propose the previous use of an approved evolutionary search strategy for
high-dimensional parameter spaces, e.g. the particle swarm concept.

6.2 Case study II: calibration of the hydrological model WaSiM with focus on
flood events25

In a second case study we studied the influence of observation errors on the calibration
results with AROPEMC in comparison with state of the art optimisation algorithms of the
process-oriented hydrological model WaSiM for flood events. For classical optimisation
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algorithms we used the interior-point method (IPM) according to Waltz et al. (2006)
which is a gradient based method and the GA already used in the previous case study.

We assume that the influence of observation errors in temperature measurements is
negligible for the simulation of flood events whereas the uncertainty of the measured
precipitation can be expressed by an ensemble. To keep the problem still computa-5

tionally feasible we do not consider the influence on the estimated parameter sets due
to the uncertainties in the observed precipitation and just use the ensemble mean for
the model calibration, but just focus on the influence on the observation errors of the
measured discharge. Following the assumptions of Bárdossy and Singh (2008) we
assume an accuracy of the measured discharge qobs(t) of 5%. Thus, the real but10

unknown discharge q(t) can be written as:

q(t) = qobs(t) (1 + ε(t)) (10)

with ε(t) being a random error. This random error is due to uncertainties of the rat-
ing curve, non-uniqueness of the stage discharge relationship, changes of the cross
section etc. (Bárdossy and Singh, 2008). As many other authors (e.g. Kuczera et al.,15

2006; Bárdossy and Singh, 2008) we assume that this error obeys a normal distribu-
tion with a standard deviation of the measurement accuracy: N (0, 0.05). For each
observed discharge time series we used this model and produced an ensemble with
100 members. With both the IPM and the GA for different each of the 24 flood events
with respect to every single ensemble member each and validated the set of 100 es-20

timated best parameter vectors. The same was done for the AROPEMC algorithm. In
order to reduce the computation time, we previously checked the stability of the esti-
mated robust parameter sets with AROPEMC for a subset of the discharge ensemble
members and subsequently just used the ensemble mean for calibration. The used
objective in all of the following case studies was the proposed FloodSkill criterion.25
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6.2.1 Model calibration with limited observation data

At first we calibrated WaSiM with limited observation data. Therefore the hydrological
model was calibrated for each of the 24 flood events and subsequently validated on all
24 flood events. Flood event 14 was used as control set, because WaSiM can portray
this event very well, so serious outliers in the measurements and massive occurrence5

of non considered runoff problems should not be a problem for this event. Furthermore
its peak flow value is close to the center with respect to all observed flood events con-
sidered in this study. For the calibration of event 14 itself we chose event 12 as control
event. Table 6 shows the calibration performance for the estimated parameter vectors
for each algorithm. It is evident that all calibration algorithms achieve a reasonable10

calibration performance. For most of the cases the AROPEMC algorithm and the IPM
are outperformed by the and GA. That is not disappointing, because the goal of the
AROPEMC algorithm is primarily not to achieve a better calibration performance but to
estimate a more robust and preferably better validation performance with respect to
the parameter vectors estimated by classical optimisation. For the events marked with15

“∗” overfitting was an issue and was limited by the control event. An example3 of the
effectiveness of the overfitting stopping criterion for the calibration with the flood event
4 is given in Fig. 6.

The results of the mean model performance over all validation events for the specific
flood events used for calibration is shown in Fig. 11. Detailed statistics of the overall20

validation performance averaged over all calibration events are given in Table 7. From
the plots in Fig. 11 it is obvious that regardless from the used parameter estimation
algorithm the validation performance for the single event calibration estimates are very
volatile and are strongly dependent on the used calibration event. Referring to the
FloodSkill criterion and the NS, the validation performance of the AROPEMC estimates25

averaged over the results of all 24 single event calibrations is slightly better than those

3
Consider that this example was already discussed within the presentation of the principles of the AROPEMC

algorithm in the previous section.
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estimated by GA and IPM. Surprisingly the parameter vectors estimated by the GA
have by far the worst validation performance. These results show that one flood event
is not sufficient to estimate a stable solution and therefore also cannot confirm the
supposed advantages of the approach.

A deeper investigation of the geometrical structure of the estimated sets of parameter5

vectors reveals possible explanations for this results and can also be an indicator for
the stability of the achieved solution. Consider again that the underlying assumption
of the sampling of parameter vectors by data depth is that the model performance
both on the calibration and validation data of parameter vectors deep within the set
of good ones is within the upper range of the set and has a smaller spread than the10

ones at the boundary. The scatter plots in Fig. 10 show the correlation of the validation
performance of parameter vectors estimated by AROPEMC with respect to their data
depth. Referring to the NS, parameter vectors with higher depth have a consistently
good model performance, whereas for the results calculated by the rPD criterion such
a relationship can not be shown at all. These results are strongly confirmed by the15

validation results calculated by the NS and the rPD (cf. Table 7). For the NS criterion the
validation results of the AROPEMC estimates are significantly better in mean than the
ones estimated by pure optimisation and have a smaller standard deviation. However,
referring to the rPD criterion the AROPEMC estimates perform even worse than the
ones estimated by IPM. The problems for the rPD criterion are due to the fact that for20

the calibration with one single flood event, the rPD is calculated by the comparison of
just two values. Random errors in the observed peak value and problems of the model
structure to simulate that value can result in a spiky and not well-defined structure
of the set of parameter vectors with good model performance. It is obvious that the
application of data depth to such kind of problems does not make sense. This might be25

avoided by both the use of more flood events for calibration and the the use of “smooth”
performance criteria which do not account for just a very small number of observations
measurements.
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6.2.2 Calibration with multiple flood events

After the analysis of the results for the calibration with one single flood event, we de-
cided to study the improvement of the validation results of AROPEMC in comparison
with IPM and GA using more observation data for calibration and control. In particular
we studied the geometrical shape and the stability of the estimated solutions. There-5

fore we divided the set of 24 flood events into three subsets, a set of calibration events,
a set of control events and a set of validation events as given in Table 8. The assign-
ment of the events to one of the three was rather arbitrary, but we tried to keep the
proportion of events with high and low peak flow values balanced within the subsets.
The same holds true for the type of its precipitation (convective vs. stratiform). Again10

we used the FloodSkill criterion as objective, in particular to be able to compare the
results with those of the calibration with single flood events.

Figure 12 illustrates how the sets of candidate parameter vectors evolve after each
iteration of the AROPEMC algorithm and form a geometrically well-structured cloud.
A scatter plot of the estimated parameter vectors of all three compared parameter15

estimation algorithms is given in Fig. 13. The sets of parameter vectors estimated by
IPM and GA form geometrically less-defined clouds. Furthermore the central region of
the set estimated by GA is roughly approximated by the set estimated by AROPEMC,
whereas the set estimated by the gradient based IPM algorithm has another form. We
validated all estimated results for all flood events in the validation set (see Table 8). For20

better comparison we also computed the model performance for the parameter vectors
estimated by the single event calibration in the previous case study on the validation set
in this case study. A boxplot of the overall validation results referring to the FloodSkill
criterion is given in Fig. 14. Detailed statistics for all referred performance criteria are
given in Table 9. It is evident that the use of more data for model calibration improves25

the model performance in validation tremendously for all three approaches. AROPEMC
outperforms IPM and GA for the used objective, the FloodSkill criterion and the NS.
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Furthermore for the calibration objective also the standard deviation of the validation
results is significantly smaller for the parameter vectors estimated by AROPEMC than
those estimated by IPM and GA which indicates that the transfer of these parameters is
more reasonable. Referring to the rPD the parameter vectors estimated by AROPEMC
have approximately the same validation performance as those estimated by IPM and5

GA. However, the best parameter vectors of the cloud in AROPEMC perform slightly
better than the best ones estimated by IPM and GA.

Additionally we checked whether the set of parameter vectors estimated by
AROPEMC form a stable solution, that means whether vectors with higher data depth
not just have less standard deviation in their corresponding model performance but10

also tend to have a better model performance on the validation data. Therefore we
calculated the correlation between the data depth of each parameter in the final set
with respect to the complete set and its model performance on the validation events.
The results are given in Table 10. Besides on event 16 the parameter vectors with
higher data depth tend to have a better model performance on each single validation15

event and on the overall set of validation events. The correlation is much stronger for
the NS than for the rPD. Thus, the estimated set seems to be more robust with respect
to the NS than to the rPD. This might be due to still too less calibration events or due
to problems of the model structure to represent the global system behaviour and the
peak flow values equally well. Possibly the good parameter sets with respect to the rPD20

criterion for the given calibration events still do not form a well-structured geometrical
set. Consider that the rPD for three calibration events is just computed by compari-
son with three observations. This might by tackled by more calibration data or by the
use of other approaches than iterative Monte-Carlo simulations for the identification of
parameter vectors with good model performance.25

Figure 15 shows the simulated discharge for four validation events computed by
the estimated parameter sets of all three compared parameter estimation algorithms.
The catchment characteristics are in general better represented by the model runs
with the estimates of AROPEMC than the estimates in mean and has a lower standard

2444

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/2423/2011/hessd-8-2423-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/2423/2011/hessd-8-2423-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 2423–2476, 2011

Identification of
model parameters by
data depth measures

T. Krauße and
J. Cullmann

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

deviation. However the results for flood event 4 also show the slight disadvantage of the
AROPEMC estimates compared to the GA estimates with respect to the rPD criterion.

Due to the high process dynamics and the small catchment size (uncertainties and
errors are not shrinked to the same degree by averaging of many values) the confi-
dence bounds of the model performance are higher than those presented by Bárdossy5

and Singh (2008). Nevertheless, the results of the multiple events calibration study
confirm the outcome of Bárdossy and Singh (2008): the application of the principle of
data depth can be very useful to estimate a set of robust parameter vectors considering
uncertainties. However, considering the results of the single event calibration it is also
evident that in cases where no geometrically well-structured parameter set of model10

parameter vectors with good model performance can be identified, the application of
the principle of data depth is not suitable. This problem might be avoided considering
the selection of appropriate performance criteria and the required amount of observa-
tion data to be used for calibration. Furthermore the previous application of approved
population based algorithms might be useful in order to identify sets of good parameter15

vectors with a more complicated geometrical structure, before deep parameter vectors
are selected.

7 Discussion and conclusions

– This paper presents a depth based parameter estimation method, which is well
suited for the robust calibration of hydrological models considering uncertainties.20

The Advanced Robust Parameter Estimation by Monte Carlo (AROPEMC), is a
modified version of the depth based parameter estimation procedure presented
by Bárdossy and Singh (2008). There are two differences between the AROPEMC
algorithm and the original ROPEMC algorithm. The further development enables
us sampling from different non-convex regions of attraction and at the same time25

preventing AROPEMC from overfitting calibration data. We compare the effec-
tiveness of the newly developed algorithm for estimating robust model parameter
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vectors with the original ROPEMC algorithm and the GA and IPM algorithms in
three case studies.

– The first case study reveals that the AROPEMC algorithm estimates a set of pa-
rameter vectors in the region with the highest possible performance for 2 bench-
mark functions. The new sampling strategy leads to a better performance of5

AROPEMC if compared to the original ROPEMC algorithm for problems with multi-
ple regions of attraction.

– The results of the second case study in this paper show that just the small ob-
servational uncertainty of the discharge leads to a high variability of the model
performance in validation. Parameter vectors with equal model performance on10

the calibration data can lead to very different results in validation. The proposed
method of an evolutionary sampling of model parameter vectors by the help of
data depth functions can help to identify sets of robust parameter vectors. Pa-
rameters with low data depth are near the boundary and are sensitive to small
changes and do transfer to other time periods less well as high depth ones.15

– Especially for processes with high dynamics (short time steps in the models), the
selection of appropriate performance criteria and the required amount of obser-
vation data have to be considered to estimate robust model parameter vectors.

– In this paper, model performance was expressed by just one aggregated objec-
tive function. The presented algorithm can be easily altered to a general multi-20

objective parameter estimation procedure.

We propose further research on the application of data depth functions for parameter
estimation. We suggest merging the concept of depth based sampling with the strength
of approved search strategies for high-dimensional parameter spaces, e.g. the particle
swarm concept in order to overcome the shortcomings of the Monte Carlo based ap-25

proach in order to generate sets of good parameter vectors. In this study we compared
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the data depth based approach with other state of the art optimisation algorithms cop-
ing with uncertainty in the output data. A comparison with other multi-objective model
uncertainty methods, e.g. MCMC or multi-objective optimisation algorithms might be
very useful and is in the scope of future research.
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Table 1. Overview of the most important basin characteristics.

area 3.18 km2

maximum altitude 938 m a.s.l.
altitude at basin outlet 681 m a.s.l.
mean altitude 796 m a.s.l.
mean slope 12.5◦

pasture land 67%
forest 25%
wetland 4%
bushes 2%
roads 2%
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Table 2. Overview of the used model parameters considered for calibration; the reference
parameter vector θwb was estimated in order to use WaSiM for water-balance simulations in
the Rietholzbach catchment.

parameter reference (θwb) upper and lower boundary description

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 0.01 40 storage coefficient of interflow
dr [−] 2.1 0.01 80 drainage density
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Table 3. Overview of the database of the 24 flood events used for calibration and validation
sorted by peak flow value.

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm h−1] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 6 Jul 1994 24:00 7.61 33.2 convective 75.0 65
2 23 Jun 1986 22:00 7.52 20.2 convective 39.7 75
3 6 Jul 1994 21:00 6.23 33.2 convective 75.0 65
4 8 Aug 2007 20:00 5.69 51.2 convective 64.1 90
5 7 Jun 2007 23:00 5.48 16.0 convective 36.1 79
6 6 Aug 1982 19:00 5.35 21.2 convective 28.3 87
7 25 Jul 1989 20:00 4.64 11.7 convective 13.7 80
8 30 May 1995 22:00 4.01 16.9 convective 39.4 84
9 15 Aug 1982 20:00 4.01 18.3 convective 43.6 80
10 6 Aug 2000 13:00 3.61 28.9 stratiform 48.8 83
11 17 Sep 2006 09:00 3.13 36.1 convective 101.8 71
12 24 Sep 2002 10:00 3.04 120.1 stratiform 125.2 87
13 9 Sep 2001 01:00 2.96 18.4 convective 49.4 78
14 9 Jun 1994 07:00 2.52 27.9 stratiform 40.7 86
15 11 May 1991 24:00 2.50 44.6 stratiform 75.3 80
16 1 Jul 1987 16:00 2.37 12.1 convective 30.7 78
17 2 Aug 2005 22:00 2.03 26.0 convective 54.2 74
18 25 May 1990 11:00 2.02 14.3 stratiform 54.9 75
19 11 Jun 1995 07:00 1.98 28.8 stratiform 36.8 88
20 31 May 2000 09:00 1.76 19.4 stratiform 57.7 78
21 9 Sep 2005 21:00 1.62 6.9 convective 37.1 67
22 28 Sep 1995 01:00 1.47 17.3 stratiform 38.2 81
23 13 May 2002 01:00 1.02 4.6 convective 21.4 81
24 14 Sep 1993 01:00 1.02 10.9 stratiform 26.8 84
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Table 4. Objective functions used in this study, where xi and yi (θ ) are the observed and
simulated discharge (by the parameter vector θ ) at time-step i respectively and n is the number
of observation points.

Criterion Formula

Nash-Suttcliffe efficiency (NS) 1−
1
n

∑n
i=1 (xi − yi (θ ))2

1
n

∑n
i=1 (xi − x̄)2

rel. peak flow deviation (rPD) |xmax − ymax(θ )|
xmax

FloodSkill 0.5 (−(NS − 1)) + 0.5 (rP D)
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Table 5. Comparison of the fitness values for the estimates computed by the three used algo-
rithms.

Function Dimension GA ROPEMC AROPEMC
mean 10% deepest mean 10% deepest

fa
2 6.86 e−3 5.04 e−2 2.41 e−2 4.03 e−2 3.33 e−2
3 1.78 e−1 6.00 e−2 7.61 e−2 1.12 e−2 9.42 e−3
4 5.34 e−1 4.64 e−2 2.63 e−2 4.71 e−2 1.07 e−2

fb
2 1.49 e−2 7.87 e−1 1.96 e−1 2.67 e−3 1.47 e−3
3 5.15 e−2 2.44 e+0 1.87 e+0 7.34 e−1 7.25 e−2
4 1.79 e−1 7.65 e+0 7.81 e+0 2.40 e+0 2.56 e+0
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Table 6. Mean calibration results (FloodSkill) for the three compared algorithms.

Calib Event AROPEMC IPM GA

1 0.28∗ 0.05 0.04
2 0.59 0.59 0.43
3 0.49 0.43 0.42
4 0.23∗ 0.14 0.14
5 0.55 0.51 0.41
6 0.51∗ 0.45 0.44
7 0.92∗ 0.84 0.72
8 0.26 0.22 0.14
9 0.28 0.35 0.25
10 0.10 0.49 0.34
11 0.36 0.14 0.10
12 0.41∗ 0.20 0.08
13 0.28 0.25 0.23
14 0.09 0.22 0.16
15 0.30 0.21 0.13
16 0.46 0.42 0.39
17 0.11 0.40 0.19
18 0.19 0.41 0.34
19 0.13∗ 0.09 0.10
20 0.38 0.25 0.19
21 0.12 0.06 0.06
22 0.33 0.22 0.13
23 0.15 0.37 0.31
24 0.24∗ 0.53 0.23

Overall 0.32 0.33 0.24
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Table 7. Mean overall validation results of the single event calibration for the three compared
algorithms.

FloodSkill NS rPD
µ σ worst best µ σ worst best µ σ worst best

AROPEMC 0.49 0.009 0.52 0.47 0.41 0.018 0.37 0.45 0.40 0.005 0.41 0.39
IPM 0.52 0.025 0.58 0.47 0.32 0.043 0.22 0.43 0.36 0.015 0.40 0.33
GA 0.68 0.037 0.78 0.60 0.03 0.063 −0.13 0.18 0.40 0.014 0.43 0.36
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Table 8. Sub-division of all flood events in a calibration, control and validation set.

Set Used flood events

Calibration {6, 11, 20}
Control {14, 18, 24}

Validation
{1, 2, 3, 4, 5, 7, 8, 9, 10, 12, ...
13, 15, 16, 17, 19, 21, 22, 23}
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Table 9. Mean overall validation performance for the parameter vectors estimated by the three
compared algorithms; the model performance was calculated on the validation set according
to Table 8 for both the calibration with single flood events (above) and for the multiple event
calibration (below).

FloodSkill NS rPD
µ σ worst best µ σ worst best µ σ worst best

single event calibration

AROPEMC 0.49 0.010 0.51 0.46 0.41 0.018 0.37 0.45 0.40 0.006 0.41 0.39
IPM 0.51 0.021 0.56 0.47 0.32 0.043 0.22 0.43 0.36 0.015 0.40 0.33
GA 0.59 0.026 0.65 0.53 0.03 0.063 −0.13 0.18 0.40 0.014 0.43 0.36

multiple event calibration

AROPEMC 0.41 0.015 0.44 0.37 0.55 0.036 0.47 0.61 0.38 0.030 0.44 0.30
IPM 0.43 0.044 0.58 0.38 0.52 0.049 0.33 0.58 0.37 0.048 0.52 0.32
GA 0.42 0.024 0.46 0.38 0.53 0.033 0.43 0.61 0.38 0.030 0.46 0.32
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Table 10. Correlation between data depth and validation performance of all parameter vectors
estimated with AROPEMC for the multiple event calibration.

Event FloodSkill NS rPD

1 −0.16 0.18 −0.14
2 −0.05 0.10 −0.01
3 −0.25 0.32 −0.16
4 −0.13 0.16 −0.09
5 −0.19 0.30 −0.11
7 −0.09 0.12 −0.04
8 −0.12 0.17 −0.06
9 −0.17 0.29 −0.01
10 −0.22 0.27 −0.14
12 −0.27 0.29 −0.24
13 −0.23 0.27 −0.16
15 −0.29 0.35 −0.16
16 0.16 −0.15 0.16
17 −0.20 0.23 −0.06
19 −0.32 0.40 −0.11
21 −0.19 0.34 −0.10
22 −0.32 0.36 −0.05
23 −0.44 0.14 −0.33

Overall −0.25 0.33 −0.13
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Fig. 1. The Rietholzbach catchments with the main measurement site “Büel” on 7 May 2005 at
the beginning of the summer season. You see the typical pastures which cover two third of the
catchment area and some of the sporadic small patches of forest in the background.
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Fig. 2. The Rietholzbach catchment is located in the north-east of Switzerland.
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4 Krauße and Cullmann: Identification of model parameters using data depth measures

Table 2. Overview of the used model parameters considered for calibration; the reference parameter vector θwb was estimated in order to
use WaSiM for water-balance simulations in the Rietholzbach catchment

parameter reference (θwb) upper and lower boundary description

kd[h] 7 0.01 25 storage coefficient of direct runoff
ki[h] 20 0.01 40 storage coefficient of interflow
dr[−] 2.1 0.01 80 drainage density

1
Interflow

2
Interflow

3
Interflow

..
Interflow

Richards equa-
tion describes soil
water movement

Infiltration
(according to

Green & Ampt)

Precipitation

Direct runoff

Evapotranspiration

Groundwater

Capillary rise

Baseflow

kd

dr, ki

Fig. 3. Scheme of the WaSiM soil module with location of impact
of conceptual model parameters (bold)

emplary soil water compartments receive infiltration which
is computed by a modified approach according to Green and
Ampt (1911). This module is also used to determine the di-
rect runoffQd in the model. Qd is then routed via a flow-time
grid and finally projected cell-wise to the catchment outlet by
means of a simple bucket type function (Equation 1). The re-
cession coefficient of this function is the model parameter
kd.

Qd(t) =Qd(t−1)e
−∂t
kd (1)

where Qd(t) is the direct runoff at timestep t with
timestep length ∂t.

The soil water movement through the different soil layers
is modeled by means of the discrete form of the Richards-
equation which can be written as:

∂Θ

∂t
=
∂q

∂z
= qin−qout (2)

where ∂Θ denotes the change in soil water content, ∂t de-
fines the time step and ∂q is the change in specific flux. The
fluxes qin and qout characterise the influx and efflux from the
specific neighboring soil layer respectively. The thickness of
the soil layers is defined by ∂z.

In the model each soil layer produces interflow (Qifl) ac-
cording to (Equation 3), which is cell-wise scaled with the
scalar model parameter dr.

Qifl = ks(Θl)∂z ·dr ·tanβ (3)

where ks denotes the hydraulic conductivity at the water
content Θl in the considered soil layer l, dr is a conceptual
model parameter to be estimated and β characterises the local
slope in the grid cell.

Corresponding to the direct runoff, the interflow is again
projected to the catchment outlet by means of a flow-time
grid and a second bucket type function. Here the model
parameter ki represents the recession coefficient in anal-
ogy to equation 1. For further details about WaSiM re-
fer to Schulla (1997) and the official website of the model
http://www.wasim.ch. Table 2 gives the model parameters
considered for calibration. These are the storage coefficients
of direct runoff and interflow, kd and ki, and the drainage
density dr which is a scaling parameter of interflow gener-
ation. In previous studies (Cullmann, 2006; Pompe, 2009;
Grundmann, 2010) these three parameters have been proven
to be sensitive with respect to modelling flood events. Be-
sides the specified upper and lower boundaries of the model
parameters, the additional constraint ki≥ 1.05 kd was intro-
duced in order to account for the basic consideration that the
direct runoff from a cell has a shorter travel time to the catch-
ment outlet than the generated interflow in the unsaturated
zone.

2.3 Data

Due to its longterm observation as a research catchment and
its limited size, the Rietholzbach catchment has a long record
of hourly data sets and the perturbing impact of data hetero-
geneity is relatively small in this catchment. The data we
based our study upon is a time series consisting 27 years
of meteorological and discharge measurements. Out of this

Fig. 3. Scheme of the WaSiM soil module with location of impact of conceptual model param-
eters (bold).
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6 Krauße and Cullmann: Identification of model parameters using data depth measures

time series we selected a set of 24 flood events with a peak
flow of at least 1 mm/h. All events are in the time from
May until October to avoid the problem of modeling snow
accumulation and melting processes. An overview of all se-
lected 24 flood events with their specific characteristics and
pre-conditions is given in Table 3.

3 Objective criteria

Within this study commonly used objective functions are ap-
plied. There are global criteria which try to assess the gen-
eral quality of the fit of model and the catchment behavior
whereas local criteria just focus on a specific attribute, e.g
peak flow values or snow melt periods. The efficiency cri-
terion according to Nash and Sutcliffe (1970) (NS) has been
widely used to quantify the global performance of hydrolog-
ical models. The relative deviation in peak flow (rPD) is a
simple local criterion to assess the model’s skill to represent
the catchment behavior for flood events. In order to obtain
both a good estimate of the peak flow values and a minimum
reasonable representation of the catchment behavior we ag-
gregated the global criterion NS and the local criterion rPD
in a performance criterion, we call flood skill (FloodSkill).
An overview of all criteria used as an objective within the
case studies of this paper is given in Table 4.

Table 4. Objective functions used in this study, where xi and yi(θ)
are the observed and simulated discharge (by the parameter vector
θ) at time-step i respectively and n is the number of observation
points

Criterion Formula

Nash-Suttcliffe efficiency (NS) 1−
1
n

∑n
i=1 (xi−yi(θ))2

1
n

∑n
i=1 (xi−x̄)2

rel. peak flow deviation (rPD) |xmax−ymax(θ)|
xmax

FloodSkill 0.5(−(NS−1))+0.5(rPD)

4 Data depth

Data depth is a statistical method used for multivariate data
analysis which assigns a numeric value to a point with re-
spect to a set of points based on its centrality. This ap-
proach provides center-outward orderings of points in Eu-
clidean space of any dimension and provides the possibil-
ity of a new non-parametric multivariate statistical analysis
in which no distributional assumptions are needed. Tukey
(1975) introduced this concept first in order to estimate the
center of a multivariate dataset. A formal definition of an ar-
bitrary depth function D for the d-dimensional space Rd is
given as follows:

Fig. 4. 2-dimensional point set shaded according to assigned depth.
A darker point represents higher depth. The used depth function
was halfspace depth.

D : Rd×(Rd×R)→R (4)

To be called a depth function, D has to fulfill specific
properties (Zuo and Serfling, 2000). The concept of data
depth is illustrated in Figure 4 by a small 2-dimensional ex-
ample. For a random point set in R2 the data depth was
computed for each point of the set with respect to the point
set itself. The used data depth function was the halfspace
depth. It is one of the best known among the data depth
measures in nonparametric statistics, and in discrete and
computational geometry. According to Tukey (1975) and
Donoho and Gasko (1992) the halfspace depth of an arbi-
trary point θ∈Rd with respect to a d-dimensional data set
Z = {zi = (zi1,··· ,zid); i= 1,··· ,n} is defined as the small-
est number of data points in any closed halfspace with bound-
ary through θ. This is also called the Tukey or location depth,
and it can be written as:

hdepth(θ |Z) := min
||u||=1

#{i,u>zi≥u>θ} (5)

where u ranges over all vectors in Rd with ||u||= 1.

Very often the halfspace depth is normalized by division
with the number of points in the set Z:

hdepth∗(θ |Z) :=
hdepth(θ |Z)

#{Z}
(6)

The first publication of Tukey (1975) was then followed
by many generalizations and other definitions of this concept
(e.g. Oja, 1983; Donoho and Gasko, 1992; Rousseeuw and
Struyf, 1998; Rousseeuw and Hubert, 1999; Vencálek, 2008).
A good overview of a broad range of different definitions of
the concept of data depth and its application for multivariate
data analysis is given by Hugg et al. (2006) and Liu et al.
(2006). In the following the symbolD is used for an arbitrary
depth function.

For a given data set Z, the set Dk of all points ∈Rd with
depth at least k is called the contour of depth k in statistics
(s. Donoho and Gasko, 1992). The application of that con-
cept in the sampling of parameter vectors with a least depth

Fig. 4. 2-dimensional point set shaded according to assigned depth. A darker point represents
higher depth. The used depth function was halfspace depth.
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8 Krauße and Cullmann: Identification of model parameters using data depth measures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.25

0.5

0.75

1

n

Fig. 5. Volume ratio of the unit sphere to the unit cube in n dimen-
sions as a continuous function of n
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0.2

0.4

0.6
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1

overfitting starting here

Iteration

Fl
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dS
ki

ll

on calibration data on test data

Fig. 6. Overfitting for the calibration of the model WaSiM while
calibrated with the method according to Bárdossy and Singh (2008);
Flood event no. 4 was used for calibration and event no. 14 was
used as control set

a Gaussian mixture model (GMM) whose parameters can be
estimated by the EM algorithm which is called anyway in or-
der to do the cluster analysis in the presented strategy. For
further details of the proposed strategy for the generation of
deep parameter vectors refer to Krauße (2011).

Another issue of the ROPEMC algorithm is the loosely de-
fined stopping criterion: “until the performance correspond-
ing to Xn and Ym does not differ more than what one would
expect from the observation errors” (Bárdossy and Singh,
2008, p. 1280). The problem is that there are countless pos-
sibilities in the prior estimation of the tolerance in the model
performance due to uncertainty in the observation data and it
can hardly be determined exactly. A broad definition of this
tolerance can lead to sets with inferior model performance,
whereas a tighter tolerance can easily result in overfitting.
This is a severe shortcoming because it undermines the actual
goals of the algorithm. Overfitting in the context of robust

Algorithm 5.3 AROPEMC

1: Select d model parameters, to be considered for calibration and
identify prior boundaries [xlb,xub] for all selected parameters

2: n random parameter vectors forming the set Xn are generated
in the d-dimensional rectangle bounded by the defined bound-
aries.

3: repeat
4: if #iterations> 1 then
5: Xn←Ym∪X∗n
6: end if
7: The hydrological model is run for each parameter vector in

Xn and the corresponding model performances on the cali-
bration data are calculated

8: The subset X∗n of the best performing parameters is identi-
fied. This might be for example the best 10% of Θn

9: The hydrological model is run for each parameter vector in
X∗n and the corresponding model performances on the con-
trol data are calculated

10: Ym←GenDeep(X∗n)
11: until the performance corresponding to Xn and Ym does not

differ more than what one would expect from the observation
errors or the performance on the control data gets worse

12: return Ym

parameter estimation means that the model performance on
the calibration data still can be increased by further shrink-
ing the estimated set of the deep model parameter vectors,
whereas the model performance on (reasonably similar) con-
trol data decreases by further shrinking. Figure 6 illustrates
this fact with the results of the calibration of WaSiM in the
Rietholzbach catchment w.r.t. to flood events. The Flood-
Skill criterion was used as objective and the flood events no.4
and no.14 were used as calibration and control data, respec-
tively. It is evident that the model performance on the con-
trol data considerably decreases from iteration 3 whereas the
model performance on the calibration data could be increased
by further iterations.

To address this problem we implemented two changes to
the algorithm. First, we slightly changed the evolutionary
shrinking of the generated deep parameter vectors. To avoid
the unintended exclusion of possibly robust parameter vec-
tors close to the boundary of the initial set of good model
parameters, we suggest merging the set of generated deep
parameter vectors and the identified good parameter vectors
as initial set for the next iteration, as follows:

Xn←Ym∪X∗n (7)

Furthermore we introduced a new stopping criterion in or-
der to avoid overfitting. We suggest the splitting of the data
used for model calibration in a calibration and a control set.
Just the calibration set is used for the actual model calibra-
tion, whereas the control set is just used to supervise the con-
trol process in order to avoid overfitting. In each iteration
of the algorithm the model performance is estimated both
on the calibration and control set. The moment the perfor-

Fig. 5. Volume ratio of the unit sphere to the unit cube in n dimensions as a continuous function
of n.

2466

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/2423/2011/hessd-8-2423-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/2423/2011/hessd-8-2423-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 2423–2476, 2011

Identification of
model parameters by
data depth measures

T. Krauße and
J. Cullmann

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

8 Krauße and Cullmann: Identification of model parameters using data depth measures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.25

0.5

0.75

1

n

Fig. 5. Volume ratio of the unit sphere to the unit cube in n dimen-
sions as a continuous function of n

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

overfitting starting here

Iteration

Fl
oo

dS
ki

ll
on calibration data on test data

Fig. 6. Overfitting for the calibration of the model WaSiM while
calibrated with the method according to Bárdossy and Singh (2008);
Flood event no. 4 was used for calibration and event no. 14 was
used as control set

a Gaussian mixture model (GMM) whose parameters can be
estimated by the EM algorithm which is called anyway in or-
der to do the cluster analysis in the presented strategy. For
further details of the proposed strategy for the generation of
deep parameter vectors refer to Krauße (2011).

Another issue of the ROPEMC algorithm is the loosely de-
fined stopping criterion: “until the performance correspond-
ing to Xn and Ym does not differ more than what one would
expect from the observation errors” (Bárdossy and Singh,
2008, p. 1280). The problem is that there are countless pos-
sibilities in the prior estimation of the tolerance in the model
performance due to uncertainty in the observation data and it
can hardly be determined exactly. A broad definition of this
tolerance can lead to sets with inferior model performance,
whereas a tighter tolerance can easily result in overfitting.
This is a severe shortcoming because it undermines the actual
goals of the algorithm. Overfitting in the context of robust

Algorithm 5.3 AROPEMC

1: Select d model parameters, to be considered for calibration and
identify prior boundaries [xlb,xub] for all selected parameters

2: n random parameter vectors forming the set Xn are generated
in the d-dimensional rectangle bounded by the defined bound-
aries.

3: repeat
4: if #iterations> 1 then
5: Xn←Ym∪X∗n
6: end if
7: The hydrological model is run for each parameter vector in

Xn and the corresponding model performances on the cali-
bration data are calculated

8: The subset X∗n of the best performing parameters is identi-
fied. This might be for example the best 10% of Θn

9: The hydrological model is run for each parameter vector in
X∗n and the corresponding model performances on the con-
trol data are calculated

10: Ym←GenDeep(X∗n)
11: until the performance corresponding to Xn and Ym does not

differ more than what one would expect from the observation
errors or the performance on the control data gets worse

12: return Ym

parameter estimation means that the model performance on
the calibration data still can be increased by further shrink-
ing the estimated set of the deep model parameter vectors,
whereas the model performance on (reasonably similar) con-
trol data decreases by further shrinking. Figure 6 illustrates
this fact with the results of the calibration of WaSiM in the
Rietholzbach catchment w.r.t. to flood events. The Flood-
Skill criterion was used as objective and the flood events no.4
and no.14 were used as calibration and control data, respec-
tively. It is evident that the model performance on the con-
trol data considerably decreases from iteration 3 whereas the
model performance on the calibration data could be increased
by further iterations.

To address this problem we implemented two changes to
the algorithm. First, we slightly changed the evolutionary
shrinking of the generated deep parameter vectors. To avoid
the unintended exclusion of possibly robust parameter vec-
tors close to the boundary of the initial set of good model
parameters, we suggest merging the set of generated deep
parameter vectors and the identified good parameter vectors
as initial set for the next iteration, as follows:

Xn←Ym∪X∗n (7)

Furthermore we introduced a new stopping criterion in or-
der to avoid overfitting. We suggest the splitting of the data
used for model calibration in a calibration and a control set.
Just the calibration set is used for the actual model calibra-
tion, whereas the control set is just used to supervise the con-
trol process in order to avoid overfitting. In each iteration
of the algorithm the model performance is estimated both
on the calibration and control set. The moment the perfor-

Fig. 6. Overfitting for the calibration of the model WaSiM while calibrated with the method
according to Bárdossy and Singh (2008); Flood event no. 4 was used for calibration and event
no. 14 was used as control set.
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START

Input: d=dimension, n=population size, m=final size
constraints=CHRd, priors={p1(θ),...,pn(θ)}
maxIter=maximum no. of iterations

if possible, split the used observation data {η,x} into a calibration
and control set

Sample n parameter vectors in the feasible space, Θ, according to
the given priors and constraints:

Xn := sample(Θ,{p1(θ),...,pd(θ)},CHRd);

The model η is run for the calibration and control set; the corresponding model
performances are calculated by a purpose-specific objective function U :

∀θ∈Xn do :

ŷ := η(ξ,θ);
perf(θ) :=U(x,ŷ);

endfor

A subset X∗n ⊂Xn of the good performing parameter vectors in Xn is identi-
fied, e.g. such that X∗n comprises the best performing 10% of all parameters
vectors in Xn:

X∗n :=identify(Xn,perf)

Identify good

Generate a set of deep
parameters Ym w.r.t.
X∗n

GenDeep
strategy

Generate robust

Stopping
criterion
satisfied?

Xn :=X∗n∪Ym;

(1) no. of iterations ≥
maxIter?

(2) Improvement on
calibration data
gets smaller than
tolerance?

(3) Improvement on
control data de-
creases w.r.t previous
iteration?

Output: Ym=set of robust parameter vectors
perf=calibration performance

STOP

No

Yes

Fig. 7. Flowchart of the Advanced Robust Parameter Estimation by Monte Carlo Simulation (AROPEMC) algorithm

Fig. 7. Flowchart of the Advanced Robust Parameter Estimation by Monte Carlo Simulation
(AROPEMC) algorithm.
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Fig. 8. Contour plot of the Rosenbrock (upper) and Rastrigin (lower) function for the 2-dimensional case; the known global optima are
marked by a red cross

mance does not improve anymore for the control set, the al-
gorithm is stopped. This kind of approach is a state of the
art method in the supervised training of artificial neural net-
works in order to avoid overfitting (Tetko et al., 1995). The
new algorithm, entitled the Advanced Robust Parameter Esti-
mation by Monte Carlo (AROPEMC) is given in a brief form
in pseudocode in Algorithm 5.3. A more detailed illustra-
tion of the approach is given in Figure 7. The algorithm was
implemented in the MATLAB programming language. The
implementation is open source and available from the author.

6 Case studies

6.1 Case study I: Estimating the minimum of the Rosen-
brock and Rastrigin function

The goal of the AROPEMC algorithm is not the estimate
of the global optimum of a problem. However, the esti-
mated set of robust points should encompass a region close
to the global optimum. We investigate the performance of the
AROPEMC algorithm for the estimation of the minimum of
two simple test functions of the form f : Rn→R, often used
as a performance test problem for optimization algorithms:
the Rosenbrock’s function and the Rastrigin’s function. The
former is a non-convex function with a unique minimum
value of 0 attained at the point 1. Finding the minimum is
a challenge since it has a shallow minimum inside a deeply
curved valley. The Rastrigin function is a typical example of
non-linear multimodal function. It was first proposed by Ras-
trigin as a 2-dimensional function and has been generalised
for multiple dimensions by Mühlenbein et al. (1991). This
function is a fairly difficult problem due to its large search
space and its large number of local minima. The formal def-
inition of both functions is given in Equations 8 and 9 re-
spectively. Figure 8 shows the plot for both functions for two

variables, to give the reader a better impression of the nature
of the problem.

fa(x) =

N−1∑
i=1

[
(1−x2

i )2 +100(xi+1−x2
i )2

]
(8)

fb(x) =An+

N∑
i=1

[
x2

i −Acos(2πxi)
]

(9)

∀x∈Rn, A= 10

We applied the original ROPEMC algorithm and the
AROPEMC algorithm for estimating the minimum of both
test functions for the dimension 2-4. As boundary for the pa-
rameters x we chose [−10,10]. In order to have a reference
performance, we applied the genetic algorithm (GA) accord-
ing to Conn et al. (1997) in the same feasible space with a
comparable number of maximum function evaluations and
the same tolerance2. To get a fair mean best result for com-
parison, we ran the GA each iteratively until the value for
the overall mean of the best estimates got stable. For each
estimate we computed its fitness value as the absolute of the
difference between its function value and the known global
optimum.

Figure 9 illustrates the principle of operation of the algo-
rithm by the scatter plots of the estimated parameter vectors
after several iteration steps for the the 2-dimensional case. It
is evident that new parameter vectors are sampled deep with
respect to the estimated set in the previous iteration. For the
Rastrigin’s function several clusters can be clearly identified
which improves the performance of the sampled parameter
vectors tremendously.

2For all problems and all algorithms we adjusted their settings
to ensure at the most 10.000 function evaluations and a tolerance in
the performance of the estimated parameter sets of 0.1

Fig. 8. Contour plot of the Rosenbrock (upper) and Rastrigin (lower) function for the 2-
dimensional case; the known global optima are marked by a red cross.
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Table 5. Comparison of the fitness values for the estimates computed by the three used algorithms.

Function Dimension GA ROPEMC AROPEMC

mean 10% deepest mean 10% deepest

fa

2 6.86e−3 5.04e−2 2.41e−2 4.03e−2 3.33e−2
3 1.78e−1 6.00e−2 7.61e−2 1.12e−2 9.42e−3
4 5.34e−1 4.64e−2 2.63e−2 4.71e−2 1.07e−2

fb

2 1.49e−2 7.87e−1 1.96e−1 2.67e−3 1.47e−3
3 5.15e−2 2.44e+0 1.87e+0 7.34e−1 7.25e−2
4 1.79e−1 7.65e+0 7.81e+0 2.40e+0 2.56e+0
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Fig. 9. Scatter plot of the results of the AROPEMC algorithm
of the Rosenbrock (left) and Rastrigin (right) function for the 2-
dimensional case after the first, second, fourth and final iteration
from top to bottom

Table 5 presents the comparison of the fitness values for all
used algorithms. It is evident that the AROPEMC algorithm
can achieve a reasonable performance and estimate a set of
model parameters in the region with the highest possible per-
formance for all test cases. In most of the cases the deepest
estimated parameter vectors have a better performance than

the mean of the estimated set. For the Rosenbrock’s func-
tion both the ROPEMC and the AROPEMC algorithm perform
comparable well for all dimensions. The results for the Ras-
trigin’s function show an improvement of AROPEMC with
respect to ROPEMC algorithm for higher dimensions due to
the cluster based sampling with the DepGeen strategy. How-
ever, the results for the Rastrigin’s function also show that the
proposed algorithm still suffers from the general shortcom-
ings of a Monte-Carlo type approach for high dimensional
problems with a very large number of areas of attraction. A
too small sample size can result in an inaccurate clustering
and consequently undermine the improvements of this strat-
egy. Note that this problem can easily be compensated by
a higher sample size on the cost of more computation time.
As another possible solution for high-dimensional problems
with multiple regions of attraction we propose the previous
use of an approved evolutionary search strategy for high-
dimensional parameter spaces, e.g the particle swarm con-
cept.

6.2 Case study II: Calibration of the hydrological model
WaSiM with focus on flood events

In a second case study we studied the influence of obser-
vation errors on the calibration results with AROPEMC in
comparison with state of the art optimisation algorithms of
the process-oriented hydrological model WaSiM for flood
events. For classical optimisation algorithms we used the
interior-point method (IPM) according to Waltz et al. (2006)
which is a gradient based method and the GA already used
in the previous case study.

We assume that the influence of observation errors in tem-
perature measurements is negligible for the simulation of
flood events whereas the uncertainty of the measured precipi-
tation can be expressed by an ensemble. To keep the problem
still computationally feasible we do not consider the influ-
ence on the estimated parameter sets due to the uncertainties
in the observed precipitation and just use the ensemble mean
for the model calibration, but just focus on the influence on
the observation errors of the measured discharge. Following
the assumptions of Bárdossy and Singh (2008) we assume an

Fig. 9. Scatter plot of the results of the AROPEMC algorithm of the Rosenbrock (left) and
Rastrigin (right) function for the 2-dimensional case after the first, second, fourth and final
iteration from top to bottom.
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accuracy of the measured discharge qobs(t) of 5%. Thus, the
real but unknown discharge q(t) can be written as:

q(t) = qobs(t)(1+ε(t)) (10)

with ε(t) being a random error. This random error is due
to uncertainties of the rating curve, non-uniqueness of the
stage discharge relationship, changes of the cross section etc.
(Bárdossy and Singh, 2008). As many other authors (e.g.
Kuczera et al., 2006; Bárdossy and Singh, 2008) we assume
that this error obeys a normal distribution with a standard de-
viation of the measurement accuracy: N (0,0.05). For each
observed discharge time series we used this model and pro-
duced an ensemble with 100 members. With both the IPM
and the GA for different each of the 24 flood events with re-
spect to every single ensemble member each and validated
the set of 100 estimated best parameter vectors. The same
was done for the AROPEMC algorithm. In order to reduce
the computation time, we previously checked the stability
of the estimated robust parameter sets with AROPEMC for a
subset of the discharge ensemble members and subsequently
just used the ensemble mean for calibration. The used ob-
jective in all of the following case studies was the proposed
FloodSkill criterion.

6.2.1 Model calibration with limited observation data

At first we calibrated WaSiM with limited observation data.
Therefore the hydrological model was calibrated for each
of the 24 flood events and subsequently validated on all 24
flood events. Flood event 14 was used as control set, because
WaSiM can portray this event very well, so serious outliers
in the measurements and massive occurrence of non consid-
ered runoff problems should not be a problem for this event.
Furthermore its peak flow value is close to the center with
respect to all observed flood events considered in this study.
For the calibration of event 14 itself we chose event 12 as
control event. Table 6 shows the calibration performance for
the estimated parameter vectors for each algorithm. It is evi-
dent that all calibration algorithms achieve a reasonable cal-
ibration performance. For most of the cases the AROPEMC
algorithm and the IPM are outperformed by the and GA. That
is not disappointing, because the goal of the AROPEMC algo-
rithm is primarily not to achieve a better calibration perfor-
mance but to estimate a more robust and preferably better
validation performance with respect to the parameter vectors
estimated by classical optimisation. For the events marked
with “∗” overfitting was an issue and was limited by the con-
trol event. An example3 of the effectiveness of the overfitting
stopping criterion for the calibration with the flood event 4 is
given in Figure 6.

3Consider that this example was already discussed within the
presentation of the principles of the AROPEMC algorithm in the pre-
vious section

Table 6. Mean calibration results (FloodSkill) for the three com-
pared algorithms

Calib Event AROPEMC IPM GA

1 0.28∗ 0.05 0.04
2 0.59 0.59 0.43
3 0.49 0.43 0.42
4 0.23∗ 0.14 0.14
5 0.55 0.51 0.41
6 0.51∗ 0.45 0.44
7 0.92∗ 0.84 0.72
8 0.26 0.22 0.14
9 0.28 0.35 0.25

10 0.10 0.49 0.34
11 0.36 0.14 0.10
12 0.41∗ 0.20 0.08
13 0.28 0.25 0.23
14 0.09 0.22 0.16
15 0.30 0.21 0.13
16 0.46 0.42 0.39
17 0.11 0.40 0.19
18 0.19 0.41 0.34
19 0.13∗ 0.09 0.10
20 0.38 0.25 0.19
21 0.12 0.06 0.06
22 0.33 0.22 0.13
23 0.15 0.37 0.31
24 0.24∗ 0.53 0.23

Overall 0.32 0.33 0.24
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Fig. 10. Relationship between data depth and validation perfor-
mance (NS and rPD) for the parameter vectors estimated for flood
events 6 (a) and 14 (b)
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accuracy of the measured discharge qobs(t) of 5%. Thus, the
real but unknown discharge q(t) can be written as:

q(t) = qobs(t)(1+ε(t)) (10)

with ε(t) being a random error. This random error is due
to uncertainties of the rating curve, non-uniqueness of the
stage discharge relationship, changes of the cross section etc.
(Bárdossy and Singh, 2008). As many other authors (e.g.
Kuczera et al., 2006; Bárdossy and Singh, 2008) we assume
that this error obeys a normal distribution with a standard de-
viation of the measurement accuracy: N (0,0.05). For each
observed discharge time series we used this model and pro-
duced an ensemble with 100 members. With both the IPM
and the GA for different each of the 24 flood events with re-
spect to every single ensemble member each and validated
the set of 100 estimated best parameter vectors. The same
was done for the AROPEMC algorithm. In order to reduce
the computation time, we previously checked the stability
of the estimated robust parameter sets with AROPEMC for a
subset of the discharge ensemble members and subsequently
just used the ensemble mean for calibration. The used ob-
jective in all of the following case studies was the proposed
FloodSkill criterion.

6.2.1 Model calibration with limited observation data

At first we calibrated WaSiM with limited observation data.
Therefore the hydrological model was calibrated for each
of the 24 flood events and subsequently validated on all 24
flood events. Flood event 14 was used as control set, because
WaSiM can portray this event very well, so serious outliers
in the measurements and massive occurrence of non consid-
ered runoff problems should not be a problem for this event.
Furthermore its peak flow value is close to the center with
respect to all observed flood events considered in this study.
For the calibration of event 14 itself we chose event 12 as
control event. Table 6 shows the calibration performance for
the estimated parameter vectors for each algorithm. It is evi-
dent that all calibration algorithms achieve a reasonable cal-
ibration performance. For most of the cases the AROPEMC
algorithm and the IPM are outperformed by the and GA. That
is not disappointing, because the goal of the AROPEMC algo-
rithm is primarily not to achieve a better calibration perfor-
mance but to estimate a more robust and preferably better
validation performance with respect to the parameter vectors
estimated by classical optimisation. For the events marked
with “∗” overfitting was an issue and was limited by the con-
trol event. An example3 of the effectiveness of the overfitting
stopping criterion for the calibration with the flood event 4 is
given in Figure 6.

3Consider that this example was already discussed within the
presentation of the principles of the AROPEMC algorithm in the pre-
vious section

Table 6. Mean calibration results (FloodSkill) for the three com-
pared algorithms

Calib Event AROPEMC IPM GA

1 0.28∗ 0.05 0.04
2 0.59 0.59 0.43
3 0.49 0.43 0.42
4 0.23∗ 0.14 0.14
5 0.55 0.51 0.41
6 0.51∗ 0.45 0.44
7 0.92∗ 0.84 0.72
8 0.26 0.22 0.14
9 0.28 0.35 0.25

10 0.10 0.49 0.34
11 0.36 0.14 0.10
12 0.41∗ 0.20 0.08
13 0.28 0.25 0.23
14 0.09 0.22 0.16
15 0.30 0.21 0.13
16 0.46 0.42 0.39
17 0.11 0.40 0.19
18 0.19 0.41 0.34
19 0.13∗ 0.09 0.10
20 0.38 0.25 0.19
21 0.12 0.06 0.06
22 0.33 0.22 0.13
23 0.15 0.37 0.31
24 0.24∗ 0.53 0.23

Overall 0.32 0.33 0.24
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Fig. 10. Relationship between data depth and validation perfor-
mance (NS and rPD) for the parameter vectors estimated for flood
events 6 (a) and 14 (b)

Fig. 10. Relationship between data depth and validation performance (NS and rPD) for the
parameter vectors estimated for flood events 6 (a) and 14 (b).
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Table 7. Mean overall validation results of the single event calibration for the three compared algorithms

FloodSkill NS rPD
µ σ worst best µ σ worst best µ σ worst best

AROPEMC 0.49 0.009 0.52 0.47 0.41 0.018 0.37 0.45 0.40 0.005 0.41 0.39
IPM 0.52 0.025 0.58 0.47 0.32 0.043 0.22 0.43 0.36 0.015 0.40 0.33
GA 0.68 0.037 0.78 0.60 0.03 0.063 −0.13 0.18 0.40 0.014 0.43 0.36

The results of the mean model performance over all vali-
dation events for the specific flood events used for calibration
is shown in Figure 11. Detailed statistics of the overall val-
idation performance averaged over all calibration events are
given in Table 7. From the plots in Figure 11 it is obvious
that regardless from the used parameter estimation algorithm
the validation performance for the single event calibration
estimates are very volatile and are strongly dependent on the
used calibration event. Referring to the FloodSkill criterion
and the NS, the validation performance of the AROPEMC es-
timates averaged over the results of all 24 single event cal-
ibrations is slightly better than those estimated by GA and
IPM. Surprisingly the parameter vectors estimated by the GA
have by far the worst validation performance. These results
show that one flood event is not sufficient to estimate a sta-

ble solution and therefore also cannot confirm the supposed
advantages of the approach.

A deeper investigation of the geometrical structure of the
estimated sets of parameter vectors reveals possible expla-
nations for this results and can also be an indicator for the
stability of the achieved solution. Consider again that the un-
derlying assumption of the sampling of parameter vectors by
data depth is that the model performance both on the calibra-
tion and validation data of parameter vectors deep within the
set of good ones is within the upper range of the set and has
a smaller spread than the ones at the boundary. The scatter
plots in Figure 10 show the correlation of the validation per-
formance of parameter vectors estimated by AROPEMC with
respect to their data depth. Referring to the NS, parameter
vectors with higher depth have a consistently good model

Fig. 11. Statistics of the mean FloodSkill on the validation data for the estimates of the calibra-
tion with single flood events each.
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Fig. 12. Evolution of the candidate model parameter vectors before each iteration in the AROPEMC algorithm for the multiple event calibra-
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Fig. 13. Scatter plot of the final estimated parameter vectors of the three compared parameter estimation algorithms

performance, whereas for the results calculated by the rPD
criterion such a relationship can not be shown at all. These
results are strongly confirmed by the validation results calcu-
lated by the NS and the rPD (cf. Table 7). For the NS cri-
terion the validation results of the AROPEMC estimates are
significantly better in mean than the ones estimated by pure
optimisation and have a smaller standard deviation. How-
ever, referring to the rPD criterion the AROPEMC estimates
perform even worse than the ones estimated by IPM. The
problems for the rPD criterion are due to the fact that for the
calibration with one single flood event, the rPD is calculated
by the comparison of just two values. Random errors in the
observed peak value and problems of the model structure to
simulate that value can result in a spiky and not well-defined
structure of the set of parameter vectors with good model
performance. It is obvious that the application of data depth
to such kind of problems does not make sense. This might
be avoided by both the use of more flood events for calibra-
tion and the the use of “smooth” performance criteria which
do not account for just a very small number of observations
measurements.

6.2.2 Calibration with multiple flood events

After the analysis of the results for the calibration with one
single flood event, we decided to study the improvement of
the validation results of AROPEMC in comparison with IPM
and GA using more observation data for calibration and con-
trol. In particular we studied the geometrical shape and the
stability of the estimated solutions. Therefore we divided the
set of 24 flood events into three subsets, a set of calibration
events, a set of control events and a set of validation events
as given in Table 8. The assignment of the events to one of
the three was rather arbitrary, but we tried to keep the propor-
tion of events with high and low peak flow values balanced
within the subsets. The same holds true for the type of its
precipitation (convective vs. stratiform). Again we used the
FloodSkill criterion as objective, in particular to be able to
compare the results with those of the calibration with single
flood events.

Figure 12 illustrates how the sets of candidate parame-
ter vectors evolve after each iteration of the AROPEMC al-
gorithm and form a geometrically well-structured cloud. A
scatter plot of the estimated parameter vectors of all three

Fig. 12. Evolution of the candidate model parameter vectors before each iteration in the
AROPEMC algorithm for the multiple event calibration.
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performance, whereas for the results calculated by the rPD
criterion such a relationship can not be shown at all. These
results are strongly confirmed by the validation results calcu-
lated by the NS and the rPD (cf. Table 7). For the NS cri-
terion the validation results of the AROPEMC estimates are
significantly better in mean than the ones estimated by pure
optimisation and have a smaller standard deviation. How-
ever, referring to the rPD criterion the AROPEMC estimates
perform even worse than the ones estimated by IPM. The
problems for the rPD criterion are due to the fact that for the
calibration with one single flood event, the rPD is calculated
by the comparison of just two values. Random errors in the
observed peak value and problems of the model structure to
simulate that value can result in a spiky and not well-defined
structure of the set of parameter vectors with good model
performance. It is obvious that the application of data depth
to such kind of problems does not make sense. This might
be avoided by both the use of more flood events for calibra-
tion and the the use of “smooth” performance criteria which
do not account for just a very small number of observations
measurements.

6.2.2 Calibration with multiple flood events

After the analysis of the results for the calibration with one
single flood event, we decided to study the improvement of
the validation results of AROPEMC in comparison with IPM
and GA using more observation data for calibration and con-
trol. In particular we studied the geometrical shape and the
stability of the estimated solutions. Therefore we divided the
set of 24 flood events into three subsets, a set of calibration
events, a set of control events and a set of validation events
as given in Table 8. The assignment of the events to one of
the three was rather arbitrary, but we tried to keep the propor-
tion of events with high and low peak flow values balanced
within the subsets. The same holds true for the type of its
precipitation (convective vs. stratiform). Again we used the
FloodSkill criterion as objective, in particular to be able to
compare the results with those of the calibration with single
flood events.

Figure 12 illustrates how the sets of candidate parame-
ter vectors evolve after each iteration of the AROPEMC al-
gorithm and form a geometrically well-structured cloud. A
scatter plot of the estimated parameter vectors of all three

Fig. 13. Scatter plot of the final estimated parameter vectors of the three compared parameter
estimation algorithms.
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Fig. 14. Statistics of the mean FloodSkill on the validation data for the estimates of the calibration with single flood events each

Table 8. Sub-division of all flood events in a calibration, control
and validation set

Set Used flood events

Calibration {6,11,20}
Control {14,18,24}

Validation
{1,2,3,4,5,7,8,9,10,12,...
13,15,16,17,19,21,22,23}

compared parameter estimation algorithms is given in Fig-
ure 13. The sets of parameter vectors estimated by IPM and
GA form geometrically less-defined clouds. Furthermore the
central region of the set estimated by GA is roughly approx-
imated by the set estimated by AROPEMC, whereas the set
estimated by the gradient based IPM algorithm has another
form. We validated all estimated results for all flood events
in the validation set (see Table 8). For better comparison we
also computed the model performance for the parameter vec-
tors estimated by the single event calibration in the previous
case study on the validation set in this case study. A boxplot
of the overall validation results referring to the FloodSkill
criterion is given in Figure 14. Detailed statistics for all re-
ferred performance criteria are given in Table 9. It is evident
that the use of more data for model calibration improves the
model performance in validation tremendously for all three
approaches. AROPEMC outperforms IPM and GA for the
used objective, the FloodSkill criterion and the NS. Further-
more for the calibration objective also the standard devia-
tion of the validation results is significantly smaller for the
parameter vectors estimated by AROPEMC than those esti-
mated by IPM and GA which indicates that the transfer of
these parameters is more reasonable. Referring to the rPD
the parameter vectors estimated by AROPEMC have approx-
imately the same validation performance as those estimated
by IPM and GA. However, the best parameter vectors of the
cloud in AROPEMC perform slightly better than the best ones
estimated by IPM and GA.

Additionally we checked whether the set of parameter vec-
tors estimated by AROPEMC form a stable solution, that
means whether vectors with higher data depth not just have
less standard deviation in their corresponding model perfor-
mance but also tend to have a better model performance on
the validation data. Therefore we calculated the correlation
between the data depth of each parameter in the final set with
respect to the complete set and its model performance on the
validation events. The results are given in Table 10. Besides
on event 16 the parameter vectors with higher data depth tend
to have a better model performance on each single validation
event and on the overall set of validation events. The corre-
lation is much stronger for the NS than for the rPD. Thus,
the estimated set seems to be more robust with respect to
the NS than to the rPD. This might be due to still too less
calibration events or due to problems of the model structure
to represent the global system behaviour and the peak flow
values equally well. Possibly the good parameter sets with
respect to the rPD criterion for the given calibration events
still do not form a well-structured geometrical set. Consider
that the rPD for three calibration events is just computed by
comparison with three observations. This might by tackled
by more calibration data or by the use of other approaches
than iterative Monte-Carlo simulations for the identification
of parameter vectors with good model performance.

Figure 15 shows the simulated discharge for four valida-
tion events computed by the estimated parameter sets of all
three compared parameter estimation algorithms. The catch-
ment characteristics are in general better represented by the
model runs with the estimates of AROPEMC than the esti-
mates in mean and has a lower standard deviation. However
the results for flood event 4 also show the slight disadvantage
of the AROPEMC estimates compared to the GA estimates
with respect to the rPD criterion.

Due to the high process dynamics and the small catchment
size (uncertainties and errors are not shrinked to the same
degree by averaging of many values) the confidence bounds
of the model performance are higher than those presented
by Bárdossy and Singh (2008). Nevertheless, the results of

Fig. 14. Statistics of the mean FloodSkill on the validation data for the estimates of the calibra-
tion with single flood events each.
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Fig. 15. Simulated hydrographs for the flood events 4 (a), 8 (b), 9 (c) and 19 (d) computed by the parameter vectors estimated of all three
compared algorithms; the mean value is plotted as thick solid line and the confidence interval of the parameter uncertainty (Q.95−Q.05)
plotted as thin dash-dot line

– The results of the second case study in this paper show
that just the small observational uncertainty of the dis-
charge leads to a high variability of the model per-
formance in validation. Parameter vectors with equal
model performance on the calibration data can lead
to very different results in validation. The proposed
method of an evolutionary sampling of model param-
eter vectors by the help of data depth functions can help
to identify sets of robust parameter vectors. Parame-
ters with low data depth are near the boundary and are
sensitive to small changes and do transfer to other time
periods less well as high depth ones.

– Especially for processes with high dynamics (short time
steps in the models), the selection of appropriate perfor-
mance criteria and the required amount of observation

data have to be considered to estimate robust model pa-
rameter vectors.

– In this paper, model performance was expressed by just
one aggregated objective function. The presented algo-
rithm can be easily altered to a general multi-objective
parameter estimation procedure.

We propose further research on the application of data
depth functions for parameter estimation. We suggest merg-
ing the concept of depth based sampling with the strength
of approved search strategies for high-dimensional parameter
spaces, e.g the particle swarm concept in order to overcome
the shortcomings of the Monte Carlo based approach in order
to generate sets of good parameter vectors. In this study we
compared the data depth based approach with other state of
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Fig. 15. Simulated hydrographs for the flood events 4 (a), 8 (b), 9 (c) and 19 (d) computed by the parameter vectors estimated of all three
compared algorithms; the mean value is plotted as thick solid line and the confidence interval of the parameter uncertainty (Q.95−Q.05)
plotted as thin dash-dot line

– The results of the second case study in this paper show
that just the small observational uncertainty of the dis-
charge leads to a high variability of the model per-
formance in validation. Parameter vectors with equal
model performance on the calibration data can lead
to very different results in validation. The proposed
method of an evolutionary sampling of model param-
eter vectors by the help of data depth functions can help
to identify sets of robust parameter vectors. Parame-
ters with low data depth are near the boundary and are
sensitive to small changes and do transfer to other time
periods less well as high depth ones.

– Especially for processes with high dynamics (short time
steps in the models), the selection of appropriate perfor-
mance criteria and the required amount of observation

data have to be considered to estimate robust model pa-
rameter vectors.

– In this paper, model performance was expressed by just
one aggregated objective function. The presented algo-
rithm can be easily altered to a general multi-objective
parameter estimation procedure.

We propose further research on the application of data
depth functions for parameter estimation. We suggest merg-
ing the concept of depth based sampling with the strength
of approved search strategies for high-dimensional parameter
spaces, e.g the particle swarm concept in order to overcome
the shortcomings of the Monte Carlo based approach in order
to generate sets of good parameter vectors. In this study we
compared the data depth based approach with other state of

Fig. 15. Simulated hydrographs for the flood events 4 (a), 8 (b), 9 (c) and 19 (d) computed by
the parameter vectors estimated of all three compared algorithms; the mean value is plotted as
thick solid line and the confidence interval of the parameter uncertainty (Q.95−Q.05) plotted as
thin dash-dot line.
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