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Abstract

The development of methods for estimating the parameters of hydrological models con-
sidering uncertainties has been of high interest in hydrological research over the last
years. In particular methods which understand the estimation of hydrological model
parameters as a geometric search of a set of robust performing parameter vectors by5

application of the concept of data depth found growing research interest. Bárdossy
and Singh (2008) presented a first proposal and applied it for the calibration of a con-
ceptual rainfall-runoff model with daily time step. Krauße and Cullmann (2011) further
developed this method and applied it in a case study to calibrate a process oriented
hydrological model with hourly time step focussing on flood events in a fast responding10

catchment. The results of both studies showed the potential of the application of the
principle of data depth. However, also the weak point of the presented approach got
obvious. The algorithm identifies a set of model parameter vectors with high model
performance and subsequently generates a set of parameter vectors with high data
depth with respect to the first set. These both steps are repeated iteratively until a15

stopping criterion is met. In the first step the estimation of the good parameter vec-
tors is based on the Monte Carlo method. The major shortcoming of this method is
that it is strongly dependent on a high number of samples exponentially growing with
the dimensionality of the problem. In this paper we present another robust parameter
estimation strategy which applies an approved search strategy for high-dimensional20

parameter spaces, the particle swarm optimisation in order to identify a set of good
parameter vectors with given uncertainty bounds. The generation of deep parameters
is according to Krauße and Cullmann (2011). The method was compared to the Monte
Carlo based robust parameter estimation algorithm on the example of a case study in
Krauße and Cullmann (2011) to calibrate the process-oriented distributed hydrological25

model focussing for flood forecasting in a small catchment characterised by extreme
process dynamics. In a second case study the comparison is repeated on a problem
with higher dimensionality considering further parameters of the soil module.
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1 Introduction

Hydrological models are designed to approximate the general physical mechanism
which govern the rainfall-runoff process within a specific catchment. This is why these
models have found favour with many hydrologists and engineers in practice and re-
search. Most of the hydrologic models are driven by a vector of model parameters.5

Those parameter are supposed to be estimated in order to approximate the general
system behaviour which govern the rainfall-runoff process within a specific catchment.
In most cases the model parameters cannot be related to measurements in a direct
way, but are supposed to be estimated through indirect methods such as calibration.
In the process of calibration, the modeller adjusts the values of the model parameters10

such that the model is able to closely match the behavior of the real system it is in-
tended to represent. Hence the success of a model application is strongly dependent
on a good estimation of the model parameters.

In the past models were calibrated by hand. This is very labour-intensive and re-
quires an experienced modeller with profound hydrological knowledge. Thus recently15

automatic methods for model calibration have evolved significantly (e.g. Duan et al.,
1992; Gupta et al., 1998; Vrugt et al., 2003; Kuczera et al., 2006) and have found a
common acceptance and broad use in the hydrological community (e.g. Hogue et al.,
2000; Cullmann, 2006; Kunstmann et al., 2006; Marx, 2007; Grundmann, 2010). The
parameter estimation of hydrological models is affected by numerous uncertainties.20

Beven and Binley (1992) described the probability to estimate the same model per-
formance for different estimated parameter vectors as the equifinality problem. Re-
cently developed approaches address this problem by estimating the uncertainty of the
model parameter vectors considering uncertainties in the observations and the model
structure. The uncertainty is often expressed by providing a set of optimal parame-25

ter vectors. Besides the meanwhile established Markov Chain Monte Carlo (MCMC)
methods (e.g. Vrugt et al., 2003; Kuczera et al., 2006) the robust parameter estimation
approach (ROPE) has recently attracted rising scientific interest (see Bárdossy and
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Singh, 2008; Krauße and Cullmann, 2011). In this approach the parameter estima-
tion is based upon application of the principle of data depth in order to sample robust
model parameter vectors. Data depth is a statistical method used for multivariate data
analysis which assigns a numeric value to a point with respect to a set of points based
on its centrality. This approach provides center-outward orderings of points in Eu-5

clidean space of any dimension and provides the possibility of a new non-parametric
multivariate statistical analysis in which no distributional assumptions are needed. Re-
cent studies of computational geometry and multivariate statistics (e.g. Liu et al., 2006;
Bremner et al., 2008) showed that members geometrically deep within a set, are more
robust in order to represent the whole set. These points can be estimated by the con-10

cept of data depth, which has recently attracted a lot of research interest in multivariate
statistics and robust modelling (e.g. Cramer, 2003; Liu et al., 2006). The outcome of
recent studies (see Bárdossy and Singh, 2008; Krauße and Cullmann, 2011) showed
that this concept can also be very useful for the estimation of robust hydrological model
parameters. We call parameter vectors robust which15

1. lead to good model performance over the selected time period,

2. lead to a hydrologically reasonable representation of the corresponding
processes,

3. are not sensitive: small changes of the parameters should not lead to very
different results,20

4. are transferable: they perform well for other time periods and might also perform
well on other catchments (i.e. they can be regionalised).

In a simplified form the ROPE approach consists of two steps. In a first step a set of
model parameters with good model performance is identified. According to Bárdossy
and Singh (2008) these parameter vectors are from now on called the good parameter25

vectors. Thereafter a set of parameter vectors with high data depth with respect to the
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set of good parameter vectors is generated under the assumption that those parameter
vectors are more robust than the complete set of good parameter vectors.

The ROPE approaches proposed by Bárdossy and Singh (2008); Krauße and Cull-
mann (2011) identify a set of good parameter vectors by iterative application of the
Monte Carlo method and the sampling of deep parameter vectors. Hence those kind5

of approaches also suffer from the main disadvantage of the Monte Carlo method, i.e.
that it is slow. That means that many samples may be required to identify a set of
good parameter vectors with acceptable precision. That is in particular a problem for
computationally intensive process-oriented models where the number of samples is
strictly limited by the available computational capacity. However, the effectiveness of10

the depth based sampling of parameter vectors is highly dependent on the quality of
the identified set of good parameter vectors (see Krauße and Cullmann, 2011).

To overcome the shortcomings of the Monte Carlo method in terms of parameter es-
timation, many evolutionary search strategies for high-dimensional parameter spaces
have been developed. One approved method is the particle swarm optimisation (PSO)15

which bases upon the concept of swarm intelligence. PSO optimizes a problem by
having a population of candidate solutions, here dubbed particles, and moving these
particles around in the search-space according to simple mathematical formulae. The
movements of the particles are guided by the best found positions in the search-space
which are updated as better positions are found by the particles. We modified the20

particle swarm optimization in order to identify a set of good parameter vectors with
given tolerance. Afterwards the second step of the ROPE procedure, the depth based
parameter sampling can be applied. The new approach is entitled Robust Parameter
Estimation with Particle Swarm Optimisation (ROPEPSO).

This paper is organised as follows: after the introduction, the case study area and25

the hydrological model are introduced. Section 2.1 briefly discusses an approach first
presented by Grundmann (2010) which allows considering the uncertainty in soil hy-
draulic parameters for the calibration of hydrological models. Section 2.2 gives a brief
explanation of particle swarm algorithms and presents the new ROPEPSO approach
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merging the strength of PSO and depth based sampling. Afterwards the approach is
applied for the calibration of the hydrological model WaSiM-ETH focussing on flood
events. The results are compared with the results of the Monte Carlo based robust
parameter estimation approach AROPEMC, published in Krauße and Cullmann (2011).
In a further case study the performance of both algorithms on calibration problems5

with higher dimensionality is studied. In this study the number of model parameters
considered for calibration is increased by taking soil hydraulic parameters into account.

2 Materials and methods

In this section, we will introduce some essential concepts used in this paper and af-
terwards we present the developed single-objective robust parameter estimation ap-10

proach ROPEPSO, and describe the algorithmic steps. ROPEPSO evolves previous
robust parameter estimation algorithms by means of performance and efficiency.

2.1 Accounting for uncertain soil information on hydrological parameter
estimation

The soil hydraulic parameters determine the water retention and conductivity curves15

and thus govern the process of water movement in the unsaturated zone. For this
reason they also influence the generation of direct runoff and interflow in a hydrologi-
cal model. In many studies the soil hydraulic parameters are considered as physically
based parameters and are used as fixed values. Often those values are simply es-
timated by applying a pedotransfer function to physical soil properties, e.g. the distri-20

bution of the grain-size fractions, humus content and bulk density. Typically the soil
information is given in a classified form which provides a possible range of the physi-
cal soil properties referring to the used classification system. This information is often
visualized in a soil texture triangle. However, in most cases the pedotransfer function
is just applied to the mean value for the considered soil type. The uncertainty due to25
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classified soil information is typically not considered. However, neglecting this uncer-
tainty can influence the accuracy and uncertainty of the estimation of other conceptual
model parameters.

Grundmann (2010) studied this problem and presented a method to account for
those uncertainties. In principle the proposed approach is independent of the used5

soil classification system and the used pedotransfer function. The following procedure
is suggested:

1. Identify the lower and upper boundaries of the grain-size fractions for each pre-
dominant soil type in the catchment, according to the given soil information and
classification system.10

2. For each considered soil type, draw a set of possible samples of the grain-size
fractions by uniformed sampling (uniform distribution) over the identified range.

3. Apply a suitable pedotransfer function to each sample in order to estimate a set
of soil hydraulic parameters describing their prior distribution.

4. The estimated parameters can be scaled to a scaling parameter β using a similar15

media concept in order to reduce their dimensionality. A suitable approach is
presented in Warrick et al. (1977).

The estimated distribution can be used to study the influence of the uncertain soil
information on the simulation results of hydrological models. Furthermore this informa-
tion can be used as a well-founded prior distribution for a subsequent model calibration20

considering the soil hydraulic parameters. In a further case study (Grundmann, 2010)
the estimated prior distribution was used to account for the uncertainty of the soil hy-
draulic parameters in the context of a Bayesian framework. For further reading and all
details of the proposed approach refer to Grundmann (2010).
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2.2 Merging the strengths of swarm intelligence and depth based parameter
sampling

Particle swarm optimisation

An approved search and optimisation strategy for high-dimensional parameter spaces
is the particle swarm optimisation (PSO) which was first presented by Kennedy and5

Eberhart (1995). It is a population based search algorithm which tries to solve an opti-
misation problem with arbitrary dimensionality by having a population (swarm) of can-
didate solutions, here called particles. The performance of each particle is computed
and afterwards these particles are moved around in the search-space. The movement
is guided by the best found positions of each of the particles and the currently found10

global best solution. Often those optimisation problems are formulated as the problem
of finding the minimum of a function. Algorithm 2.1 gives a simple version of a PSO
algorithm for the minimisation of a function f with upper and lower boundaries xlb and
xub respectively. A good introduction into the ideas of swarm intelligence and further
reading is given in Kennedy et al. (2001)15

The basis of our algorithm is a modified version of the PSO presented by Settles and
Soule (2005), which is actually a hybrid between a genetic algorithm (GA) and PSO.
The algorithm behaves as a normal PSO algorithm besides an additional parameter,
the breeding ratio. This parameter determines the proportion of the population which
are not moved according to PSO but will undergo breeding in the current generation.20

From the pool of possible breeding particles candidates are nominated by tournament
selection and recombined. In order to do this they introduced the Velocity Propelled
Averaged Crossover (VPAC) operator. The goal is to create two child particles whose
position is between the parent’s position, but accelerated away from the parent’s current
direction (negative velocity) in order to increase diversity in the population. Algorithm25

2.2 shows how the new child position vectors and velocities are calculated using VPAC.
The child particles retain their parent’s velocity vector. The previous best vector is set
to the new position vector, restarting the child’s memory. Towards the end of a typical
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Algorithm 2.1 Standard PSO algorithm
1: for all particles i do
2: initialise position xi ∈U[xlb,xub]
3: and velocity v i =0
4: end for
5: while stop criteria not met do
6: for all particles i do
7: set personal best x̂i as best position found so far from the particle
8: set global best ĝ as best position found so far from the whole swarm
9: end for

10: for all particles i do
11: update velocity using equation

v i (t+1)←ωv i (t)+φ1R1(ĝ(t)− x̂i (t))+φ2R2(x̂i (t)−xi (t))
12: update position using equation

xi (t+1)←xi (t)+v i (t+1)
13: end for
14: end while

PSO run, the population tends to be highly concentrated in a small portion of the search
space, effectively reducing the search space. With the addition of the VPAC crossover
operator, a portion of the population is always pushed away from the group, increasing
the diversity of the population and the effective search space. For further details refer
to Settles and Soule (2005).5

Data depth

The algorithm applies a new approach used for multivariate data analysis that provides
the possibility to analyze, quantify and visualize data sets. Most proposed metrics used
in data depth function are inherently geometric, with a numeric value assigned to each
data point that represents its centrality within the given data set. The concept of data10

depth is illustrated in Fig. 1 by a small 2-dimensional example. Bárdossy and Singh
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Algorithm 2.2 VPAC operator
1: pick random numbers φ1,φ2 ∼U(0,1)
2: update positions using equations

x1←
x1+x2

2 −φ1v 1

x2←
x1+x2

2 −φ2v 2
3: reset the particles memory p1←x1 and p2←x2
4: update the velocities: v 1← v 1 and v 2← v 2

(2008) proposed the application of the principle of data depth in order to estimate a set
of robust model parameter vectors. This idea is the basis of the developed ROPEPSO
algorithm presented in this paper.

The following concepts apply to the data depth methodology and distinguish it from
other statistical methods.5

– Non-parametric methodology: scientific measurements can be viewed as sam-
ple points drawn from some unknown probability distribution, where the analysis
of the measurements involves computation of quantitative characteristics of the
probability distribution (estimators), based on the data set. If the underlying distri-
bution is known (for example normal distribution, log-normal distribution, Cauchy,10

etc.), the characteristics of the data can be computed using methods from classi-
cal statistics. However, in most real life experiments the underlying distribution is
not known. The concept of data depth requires no assumption about the underly-
ing distribution and data is analyzed according to the relative position of the data
points.15

– Center-outward ordering of points: the data depth concept allows the creation of
a multivariate analog to the univariate statistical analysis tool of rank statistics.
Rank statistics is based on the ordering of one-dimensional observations, where
the order reflects extremeness, contiguity, variability or the effect of external con-
tamination. In higher dimensions the order of multivariate data is not well defined,20
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and several ordering methods were suggested. The data depth concept provides
a method of extending order statistics to any dimension by ordering the points
according to their depth values.

– Application to multivariate (high-dimensional) data sets: the concept of data depth
is defined with respect to points in Euclidean space in any dimension, thus en-5

abling the derivation of multivariate distributional characteristics of a data set.

– Robustness: in the statistical analysis of data sets, observations that deviate from
the main part of the data (outliers) can have an undesirable influence on the
analysis of the data. Many depth functions are robust against the possibility of
several outliers that may occur in the data and yield nevertheless reasonable10

results.

Tukey (1975) introduced this concept first with the definition of the halfspace depth.
According to Donoho and Gasko (1992) the halfspace depth of an arbitrary point θ ∈Rd

with respect to a d -dimensional data set Z = {zi = (zi1,··· ,zid); i =1,··· ,n} is defined as
the smallest number of data points in any closed halfspace with boundary through θ .
This is also called the Tukey or location depth, and it can be written as

hdepth(θ |Z) := min
||u||=1

#{i ,u>zi ≥u>θ} (1)

where u ranges over all vectors in Rd with ||u||=1.

Very often the halfspace depth is normalized by division with the number of points in
the set Z :

hdepth∗(θ |Z) :=
hdepth(θ |Z)

#{Z}
(2)

The first publication of Tukey (1975) was then followed by many generalizations and
other definitions of this concept, e.g. convex-hull peeling depth, simplicial depth, re-15

gression depth and L1 depth. A good overview of a broad range of different definitions
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of the concept of data depth and its application for multivariate data analysis is given
by Hugg et al. (2006) and Liu et al. (2006). A comprehensive study of different data
depth measures in robust parameter estimation is provided in Krauße (2011).

ROPEPSO

The so far presented robust parameter estimation algorithms based on depth based5

sampling (see Bárdossy and Singh, 2008; Krauße and Cullmann, 2011) rely on the
Monte Carlo method in order to identify a set of good parameter vectors with given tol-
erance. Hence the proposed method suffers from the shortcomings of the Monte Carlo
method a slow convergence and therefore a large number of samples are needed to
estimate a stable solution. This is a major disadvantage for the calibration of computa-10

tionally intensive process-oriented models. Thus in real-world application the maximum
number of model runs has to be limited to a computationally feasible maximum. We try
to overcome this problem by substituting the Monte Carlo based estimation of a set of
good model parameter vectors with a particle swarm based approach.

The proposed algorithm, called PSO-GAu is given in Algorithm 2.3. The general15

approach follows the breeding swarm algorithm PSO-GA, presented by Settles and
Soule (2005). It is a normal PSO algorithm which produces a certain ratio ψ of the
population in the next iteration by the genetic VPAC operator. ψ is called breeding
rate. Contrary to the normal PSO-GA algorithm the algorithm does not just account for
one global optimum, but for a set of good parameter vectors. Good parameter vectors20

are all points evaluated so far which have a model performance better than the global
optimum plus a tolerance tolf which is to be set by the user. For environmental model
calibration tolf should be set according to the accuracy of the used observations and
other sources of uncertainty to be considered.

The algorithm accounts for a set of good parameter vectors following an idea used25

in some multi-objective particle swarm algorithms: all so far found good parameter
vectors are stored in an archive X ∗. For the movement at the end of each iteration,
each particle in the population is assigned to one random member of the archive X ∗
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Algorithm 2.3 PSO-GAu

1: initialise archive of good solutions with X
∗←∅

2: for all particles i do
3: initialise position xi ∈ U[xlb,xub]
4: and velocity v i←0
5: end for
6: while stop criteria not met do
7: for all particles i do
8: set personal best x̂i as best position found so far from the particle
9: set global best ĝ as best position found so far from the whole swarm

10: end for
11: remove all solutions with a performance worse than f (ĝ)+tolf from the archive X

∗

12: add all current positions with a performance better than f (ĝ)+tolf to the archive
13: assign to each particle a random member of the archive x̂g ∈X

∗ as personal global best
14: discard the worst nψ =ψ ·#{particles} from the population
15: initialise genetic offspring oga←∅
16: for i =1 to

nψ
2 do

17: select a pair {x1,x2} from the population by tournament selection
18: apply the VPAC operator to generate new offspring

{x1o
,x2o
}← vpac({x1,x2})

19: oga←oga ∪ {x1o
,x2o
}

20: end for
21: for all particles i do
22: update velocity using equation

v i (t+1)=ωv i (t)+φ1R1(x̂g(t)− x̂i (t))+φ2R2(x̂i (t)−xi (t))
23: update position using equation

xi (t+1)=xi (t)+v i (t+1)
24: end for
25: merge new population with genetic offspring particles← particles ∪ oga
26: end while
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as personal global best. That ensures that the algorithm not just searches into the
direction of the so far found global optimum but searches the whole region within the
given tolerance.

Algorithm 2.4 ROPEPSO

1: Execute the particle swarm based PSO-GAu procedure to estimate a set of good model
parameter vectors X ∗ with a model performance within a given tolerance tolf

2: Apply the GenDeep algorithm to sample a set of parameter vectors Y with high data depth
w.r.t. X ∗

3: return Y

The presented PSO-GAu approach can be used to substitute the Monte Carlo based
approach in a robust parameter estimation algorithm. We propose a new algorithm,5

we call ROPEPSO which applies PSO-GAu to estimate a set of good parameter vectors
X ∗. Afterwards a set of deep parameter vectors with respect to X ∗ is sampled by the
GenDeep function provided in Krauße and Cullmann (2011). A pseudocode listing of
the developed ROPEPSO approach is given in Algorithm 2.4. The algorithm was imple-
mented in a robust parameter estimation framework which comprises other published10

approaches. The implementation was done in the MATLAB programming language. It
is open source and available from the author.

3 Case studies

3.1 Preliminary case study: comparison of ROPEPSO and AROPEMC on
synthetical calibration problems15

In a preliminary case study we compared the results to the Monte Carlo based ap-
proach for test problems, typically used for benchmarking of optimisation algorithms.
i.e. the Rosenbrock’s function (fa) and the Rastrigin’s function (fb). The function defini-
tions n the d -dimensional Euclidean space Rd are given in Eqs. (3 and 4).
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fa(x)=
N−1∑
i=1

[
(1−x2

i )2+100(xi+1−x2
i )2

]
(3)

fb(x)=An+
N∑
i=1

[
x2
i −Acos(2πxi )

]
(4)

∀x∈Rn, A=10
The global minima for fa in Rd is the vector 1d, for fb it is 0d. Those functions were
already used to illustrate the Monte Carlo based robust parameter estimation algorithm
AROPEMC, presented in Krauße and Cullmann (2011). We applied both the AROPEMC

and the ROPEPSO in order to minimise both test problems for R2,R2 and R4. The used5

tolerance tolf of the fitness values was 0.1. For both algorithms we set the maximum
number of function evaluations to 10 000.

The statistics of the estimated parameter samples and corresponding fitness values
are given in Table 1. It is evident that both algorithms estimate a similar set of param-
eter vectors that means that both sets have approximately the same statistics for the10

estimated set and the corresponding fitness values, as long as a stable solution can be
found by both algorithms. That holds true for low-dimensional, simpler problems, e.g.
fa in R2 and R3, fb in R2. For more complicated, higher-dimensional problems, e.g. fa
in R4, fb in R3 and R4, both algorithms estimate a set of parameter vectors with similar
deviation of the corresponding fitness values but different mean fitness. The statistics15

of the estimated parameter vectors can differ significantly. In those cases the parti-
cle swarm based ROPEPSO algorithm outperforms the Monte Carlo based AROPEMC
due to a more efficient search of the parameter space. Furthermore ROPEPSO needed
much less function evaluations than the particle swarm based approach, i.e. AROPEMC
took fully advantage of the maximum number of 10 000 function evaluations whereas20

ROPEPSO achieved a stable solution after approximately 4000 up to 6000 function
evaluations.
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3.2 Calibrating of the hydrological model WaSiM focussing on flood events

In two real world case studies the developed ROPEPSO approach is tested on the cali-
bration of the hydrological model WaSiM-ETH/6.4 (in the further referred to as WaSiM).
WaSiM is a spatial distributed process-oriented rainfall-runoff model and was devel-
oped by Schulla (1997) at the ETH Zurich. An overview of the model structure is given5

in Fig. 2. WaSiM has been used successfully for modeling the rainfall-runoff processes
in several studies in catchments located within mid mountain ranges (e.g. Grundmann,
2010) and especially also in the pre-alpine Rietholzbach catchment (Gurtz et al., 1999,
2003b,a; Krauße and Cullmann, 2011; Krauße, 2011). Furthermore WaSiM-ETH has
been used for extrapolation of extreme flood events by Cullmann (2006). For this study10

we used the version with the approach according to Richards for the simulation of the
unsaturated zone (Fig. 2). For further details of the model refer to Schulla (1997);
Schulla and Jasper (2007) and the official website of the model http://www.wasim.ch.

The model was calibrated focussing on flood events in the small prealpine Ri-
etholzbach catchment (3.18 km2). As a sub-basin of the Thur catchment it is located15

in the north-east of Switzerland. A 3-D-view of the catchment area is given in Fig. 3.
This basin has been observed as a research catchment by the ETH Zurich since 1975.
Continuous hourly measurements have taken place since 1981. For the case stud-
ies presented in this paper we used time series consisting 27 years of meteorological
(temperature, precipitation, global radiation, and wind speed) and discharge measure-20

ments. Out of this time series we selected a set of 24 flood events with a peak flow of at
least 1 mm h−1. We just selected events which were not affected by snow or snowmelt
in order to avoid the problem of snow modelling. For further details and a more com-
prehensive overview refer to Krauße and Cullmann (2011). A significant number of
studies have been conducted in this basin. For further information refer to Gurtz et al.25

(1999); Zappa (2002) and the website http://www.iac.ethz.ch/research/rietholzbach.
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Table 2 gives the model parameters considered for calibration. Those are the stor-
age coefficients of direct runoff and interflow, kd and ki , and the drainage density dr
which is a scaling parameter of interflow generation. In previous studies (Cullmann,
2006; Pompe, 2009; Grundmann, 2010) these three parameters have been proven to
be sensitive with respect to modelling flood events. Besides the specified upper and5

lower boundaries of the model parameters, the additional constraint ki ≥ 1.05 kd was
introduced in order to account for the basic consideration that the direct runoff from a
cell has a shorter travel time to the catchment outlet than the generated interflow in the
unsaturated zone.

The used objective is an aggregated criterion between the global efficiency criterion
according to Nash and Sutcliffe (1970) (NS) and the relative peakflow deviation (rPD).
We call this criterion FloodSkill, because it quantifies the model’s ability to provide both
a good estimate of the peak flow values and a minimum reasonable representation of
the catchment behavior. It is computed by

FloodSkill←0.5(−(NS−1))+0.5(rPD) (5)

The lower the FloodSkill the better is the model’s ability to represent the catchment’s10

behaviour focussing on flood events. A perfect fit corresponds to a FloodSkill of zero.

3.2.1 Case study I: comparison of ROPEPSO and AROPEMC considering just the
conceptual model parameters

In a first case study we compared the developed approach with the Monte Carlo based
robust parameter estimation AROPEMC (s. Krauße and Cullmann, 2011) on the basis15

of the second case study presented in Krauße and Cullmann (2011). The conceptual
model parameters of the model WaSiM were calibrated focussing on flood events. Out
of the mentioned set of 24 flood events, three events were used for calibration, three
for overfitting control and the remaining events were used for validation (see Table 4).
The used objective was the proposed FloodSkill criterion. For further details refer to20

Krauße and Cullmann (2011).
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Before deep parameters were generated we validated all good parameter vectors,
estimated by the PSO-GAu algorithm and studied the relationship between the data
depth and the model performance on the validation data. The correlation between the
optimization objective and the data depth is significantly negative (see Fig. 6) which is
a first hint that the estimated set is a stable solution and the application of depth based5

sampling makes sense in order to improve the calibration results. The scatterplot given
in Fig. 4 where each parameter vector of the estimated set is shaded according to
its validation performance shows that the parameter vectors with worse model per-
formance are particularly located at the boundary of the estimated set. However, this
conclusion does not hold true for the single performance criteria the FloodSkill consists10

of, i.e. NS and rPD. The optimal regions for this criteria are even located on opposite
sides of the estimated set (Fig. 5). This is a hint of a tradeoff between the two objective
criteria rPD and problems of the model to represent the global system behaviour of the
catchment and a good representation of the peak flow values. This may also be due
to the relatively coarse time step considering the small catchment size. In this case a15

multi-objective calibration might be useful, but this is in the scope of future research.
In a second step deep parameter vectors were sampled with respect to the estimated

set of good parameter vectors. The statistics of the estimated samples in comparison
with those estimated by AROPEMC are given in Table 3. Although both sets overlap
each other, it is evident that the mean value of the storage coefficients kd and ki of20

the ROPEPSO estimates are significantly lower than those estimated by AROPEMC.
However, the correlation between the two most sensitive model parameters focussing
on flood events, kd and dr is the approximately the same for both algorithms. The
standard deviation for the ROPEPSO estimates is higher for all considered model pa-
rameters. We assume that the iterative Monte Carlo based sampling was not able to25

sample from the outermost part of the set due to small sample size (2500 samples per
iteration) and a fixed boundary in the iteration steps (the 10% best parameter vectors
are selected).

2390



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The validation results of the ROPEPSO estimates are slightly better than those esti-
mated by AROPEMC and also outperforms all other compared algorithms compared in
the case study of Krauße and Cullmann (2011). Furthermore, regardless of the higher
standard deviation of the parameter values with respect to the AROPEMC estimates,
the standard deviation of the validation performance is smaller. These results indicate5

that the estimated solution is robust and transferable. The proposed algorithm also
converges faster with less parameter vectors to be evaluated. The ROPEPSO algorithm
evaluated 3.574 model parameter vectors during the calibration whereas the Monte
Carlo based AROPEMC needed 10 000 parameter evaluations. This advantage gets
more even more weight considering that one parameter evaluation 1 takes approxi-10

mately three minutes on a standard CPU.

3.2.2 Case study II: calibrating WaSiM for flood forecasting considering the
uncertainty of the soil hydraulic parameters

In a second case study we calibrated WaSiM again, however this time we additionally
considered the uncertainty in the soil hydraulic parameters in the model calibration. As15

already introduced in Sect. 2.1 the uncertainty due to coarse soil information and the
resulting uncertainty in the soil hydraulic parameters can have a tremendous influence
on the model uncertainty in the case of flood events. In a preliminary study with WaSiM
in the Rietholzbach catchment (see Seifert, 2010) we could prove this conclusion. From
the 5 predominant soil types in the basin (Table 4), we found the soil hydraulic parame-20

ters of SL and SiL and the soil parameter krec to be sensitive referring to the simulated
discharge for flood events. Hence we considered those parameters together with the
conceptual model parameters for model calibration.

According to the approach of Grundmann (2010) we estimated the prior uncertainty
in the soil hydraulic parameters of the soils SL and SiL and mapped the computed25

set of parameter vectors to two scaling parameters βLS and βSiL, one for each soil.

1That means that 3 model runs have to be carried out, one for each calibration event.
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The prior uncertainty of the soil hydraulic parameters with best fits for Gaussian (N ),
logarithmic Gaussian (logN ), Gamma (Γ) and bimodal Gaussian (GM) distribution is
given in Fig. 7. Consider that the residual water content θr was constantly 0.01 for both
SL and SiL with a deviation of less than 10e-14 and thus is not shown in the plots.
The distribution of the saturated conductivities has the maximum density in the range5

of the lowest possible values and is characterised by a high skewness. The other MVG
parameters have distributions which can be approximated by a normal distribution. The
distribution of the corresponding scaling parameters is given in Fig. 8. It is evident that
the distribution of the scaling parameters is strongly influenced by the distribution of
the saturated conductivities. This is due to the relatively high spread of this parameter.10

The conceptual and the soil parameters form a six dimensional calibration problem
with the model parameters {kd,ki ,dr,βSL,βSiL,krec} to be estimated. Considering that
the error surface of WaSiM is very bumpy this is already a challenging calibration prob-
lem, especially for Monte Carlo based approach. Again we estimated the parameters
of WaSiM with both AROPEMC and ROPEPSO. Both calibration algorithms were limited15

to a maximum of 10 000 model parameter vector evaluations.
The distribution of the parameter vectors estimated by AROPEMC and ROPEPSO

is given in Figs. 9 and 10 respectively. It is evident that the particle swarm based
parameter estimates are distributed over a much smaller region than those estimated
by AROPEMC. That region forms a subset (in geometrical sense) of the large region20

estimated by AROPEMC. Thus ROPEPSO can more precisely identify a region of good
model parameter vectors within a defined measurement uncertainty. The distribution
of the soil hydraulic parameters corresponding to the scaling parameters βSL and βSiL
estimated by both algorithms are given in Figs. 11 and 12 respectively.

By means of comparison of observed and simulated discharge, the parameter esti-25

mation algorithms try to reject soil hydraulic parameter vectors that are not suitable to
represent the catchment’s behaviour and identify a distribution with the most suitable
model parameters. It is obvious that the spread of the distributions of the soil hy-
draulic parameters compared to their prior uncertainty gets smaller for both algorithms.
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Furthermore it stands out that the mean ks of the ROPEPSO estimates is smaller than
the prior expectancy whereas the mean ks of the AROPEMC values is higher than the
prior value. In terms of the model that means that ROPEPSO identifies parameter vec-
tors that try to simulate just the slow matrix flow in the unsaturated zone whereas faster
runoff processes in the unsaturated zone, e.g. preferential flow, are approximated by a5

fit of the conceptual model parameters controlling direct runoff. Probably that is also
the reason why the less sensitive conceptual parameter ki can by much better identi-
fied than in the previous case study. In contrast AROPEMC identifies parameter sets
which try to represent the faster components by a higher saturated conductivity in the
soil model. Preferential flow in macropores can become a dominant process within10

the Rietholzbach catchment (Germann, 1981). However, the Richards equation imple-
mented in WaSiM just describes the process of matrix flow in the unsaturated zone.
The process of preferential flow cannot be directly represented by this equation. Thus
this process can either be represented by in trend higher saturated conductivities used
in the soil model or by representing this process by the conceptual model parameters,15

in particular the parameters kd and krec. From a process-oriented point of view it might
be better to “blame” the preferential flow on the conceptual model parameters instead
of trying to describe a physically completely different process by a physically based
model, i.e. trying to fit the Richards equation to represent preferential flow and matrix
flow instead of just matrix flow.20

The calibration performance of both algorithms is given in Fig. 13. The results of
PSO-GAu (before deep samples were drawn) are given for an additional comparison.
The calibration performance results are better than the results for the calibration in the
previous case study just considering the conceptual model parameters. That result is
not surprising. The better fit in the calibration might just be due to a larger number of25

free model parameters and has to be confirmed on the validation data in order to be a
considered as improvement. A better model fit is always possible with more free model
parameters, but just makes sense if the estimated parameters can be transferred on
other time periods. Although the parameter vectors estimated by AROPEMC have a
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significantly larger deviation, the corresponding model performances on the calibration
data just slightly differ, i.e. ROPEPSO achieves a mean FloodSkill of 0.26 whereas the
mean FloodSkill for the AROPEMC results is 0.27. Besides the better performance with
respect to the population mean performance, the population estimated by ROPEPSO
also has less outliers with worse model performance on the calibration data. Further-5

more it is evident that the deep parameter vectors estimated by ROPEPSO do not have
a better model performance on the calibration data.

The validation results calibrated on the validation events given in Table 4 are given
in Fig. 14. Regardless of the used parameter estimation procedure, the achieved
model performance on the validation data is better than the calibration with the con-10

ceptual model parameters only. Furthermore these results show the advantages of the
ROPEPSO approach merging the strengths of the depth based parameter sampling and
the particle swarm optimisation. Referring to the results of PSO-GAu and ROPEPSO it
is obvious that the parameters with high data depth do not have just a marginal bet-
ter model performance on the validation data but also much less bad outliers, e.g. the15

worst overall FloodSkill for PSO-GAu is 0.41 whereas it is 0.38 for the ROPEPSO after
the depth based sampling. Consider for instance that a change of the FloodSkill value
of just 0.03 means an improvement of the Nash and Suttcliffe efficiency in mean of 0.06
considering constant ability of peak flow prediction. Nevertheless already the applica-
tion of the particle swarm based parameter estimation achieves good validation results.20

In comparison the AROPEMC estimates have a worse mean performance. That is due
to high positive skewness, i.e. the best achieved validation performances are as good
as those estimated by ROPEPSO but there are more and worse outliers on the negative
side of the distribution of the model performances. For example the worst parame-
ter vector estimated by AROPEMC has an overall FloodSkill of 0.47 in comparison to25

0.35 estimated by ROPEPSO. The higher spread is also expressed by the significantly
higher standard deviation referring to all compared performance criteria. The better
accuracy together with less uncertainty of the ROPEPSO estimates is also reflected by
a reduced model uncertainty. That means that not just the parameter uncertainty but
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also the complete model uncertainty can be tremendously reduced. Figure 15 shows
the hydrographs and the corresponding parameter and model uncertainties for both
algorithms. The model errors were computed by two normal distribution fitted on the
positive and negative discharge errors, transformed with the normal quantile transfor-
mation (NQT) (Krzysztofowicz, 1997) according to a method presented by Engeland5

et al. (2010).

4 Discussion and conclusions

– This paper presents a depth based parameter estimation method, which is well
suited for the robust calibration of hydrological models considering uncertainties.
We presented a particle swarm based robust parameter estimation algorithm al-10

gorithm, entitled Robust Parameter Estimation with Particle Swarm Optimisation
(ROPEPSO). The major difference between ROPEPSO and the algorithms pre-
sented by Bárdossy and Singh (2008) and Krauße and Cullmann (2011) is that
it substitutes the Monte Carlo based approach for the identification of good pa-
rameter vectors by a particle swarm based approach PSO-GAu. We compare15

the effectiveness of the newly developed algorithm for estimating robust model
parameter vectors with the Monte Carlo based variant in three case studies.

– A first preliminary case study with 2 synthetical test problems shows that both
algorithms estimate approximately the same set of good parameter vectors for
simpler problems in lower dimensions. However, due to the more efficient search20

of the particle swarm based approach, the results of the ROPEPSO algorithm out-
perform the Monte Carlo based approach.

– The results of the second case study in this paper compared AROPEMC and
ROPEPSO estimating three conceptual model parameters of the model WaSiM
using an example presented in Krauße and Cullmann (2011). ROPEPSO esti-25

mates a similar set of robust model parameter vectors which slightly outperforms
the estimates of the Monte Carlo based approach.
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– The case studies in this paper revealed that the used hydrological model WaSiM
is not able to represent the correct peak flow values and the basin’s system be-
haviour with respect to the discharge at the catchment outlet with the same pa-
rameter vectors. Again we showed that parameter vectors with equal model per-
formance on the calibration data can lead to very different results in validation.5

The proposed method of an evolutionary sampling of model parameter vectors
by the help of data depth functions can help to identify sets of robust parameter
vectors. In general parameters with low data depth are near the boundary and are
sensitive to small changes and do transfer to other time periods less well as high
depth ones. However the model performance of the sampled deep parameters is10

also dependent from the quality of the estimated good parameter vectors.

– In this paper, model performance was expressed by just one aggregated objec-
tive function. The presented algorithm can be easily altered to a general multi-
objective parameter estimation procedure.

The robust parameter estimation approach is a relatively new method which was ap-15

plied to a limited number of case studies. We strongly propose the comparison with
established uncertainty estimation methods, e.g. MCMC, GLUE or multi-objective cal-
ibration, in further research. Furthermore, due to the probably high tradeoff between
the model’s ability to represent both the peak flow values and the global system be-
haviour equally well, we propose the development and application of a multi-objective20

version of the presented approach.
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Table 1. Mean value, standard deviation and correlation coefficients between the gener-
ated samples in the preliminary case study for the parameters estimated by ROPEPSO and
AROPEMC and corresponding fitness values.

Problem Algorithm Parameter Mean Std x1 x2 x3 x4 mean(f (x)) std(f (x))

2-D

fa
AROPEMC

x1 1.00 0.06 1.00 0.99 − −
0.050 0.041x2 1.02 0.13 ... 1.00 − −

ROPEPSO
x1 1.01 0.06 1.00 0.98 − −

0.049 0.039x2 1.02 0.12 ... 1.00 − −

fb
AROPEMC

x1 0.00 0.01 1.00 0.05 − −
0.038 0.029x2 0.00 0.01 ... 1.00 − −

ROPEPSO
x1 0.00 0.01 1.00 0.02 − −

0.041 0.030x2 0.00 0.01 ... 1.00 − −

3-D

fa

AROPEMC

x1 1.01 0.02 1.00 0.93 0.91 −
0.071 0.037x2 1.01 0.04 ... 1.00 0.98 −

x3 1.03 0.08 ... ... 1.00 −

ROPEPSO

x1 1.03 0.02 1.00 0.92 0.91 −
0.064 0.034x2 1.00 0.04 ... 1.00 0.98 −

x3 1.02 0.09 ... ... 1.00 −

fb

AROPEMC

x1 0.02 0.03 1.00 0.10 −0.10 −
0.211 0.054x2 0.01 0.03 ... 1.00 0.77 −

x3 0.01 0.03 ... ... 1.00 −

ROPEPSO

x1 0.00 0.01 1.00 −0.10 −0.03 −
0.032 0.025x2 0.00 0.01 ... 1.00 0.01 −

x3 0.00 0.01 ... ... 1.00 −

4D

fa

AROPEMC

x1 0.95 0.01 1.00 0.52 0.39 0.35

0.104 0.027
x2 0.90 0.01 ... 1.00 0.71 0.63
x3 0.80 0.02 ... ... 1.00 0.89
x4 0.65 0.03 ... ... ... 1.00

ROPEPSO

x1 1.01 0.01 1.00 0.86 0.85 0.84

0.075 0.025
x2 1.02 0.02 ... 1.00 0.95 0.93
x3 1.04 0.04 ... ... 1.00 0.98
x4 1.07 0.09 ... ... ... 1.00

fb

AROPEMC

x1 0.02 0.03 1.00 −0.08 −0.03 −0.07

5.169 0.074
x2 0.01 0.03 ... 1.00 0.70 0.03
x3 0.01 0.03 ... ... 1.00 −0.20
x4 1.03 0.08 ... ... ... 1.00

ROPEPSO

x1 0.00 0.01 1.00 −0.02 −0.11 −0.09

0.043 0.032
x2 0.00 0.01 ... 1.00 0.01 0.00
x3 0.00 0.01 ... ... 1.00 0.03
x4 0.00 0.01 ... ... ... 1.00
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Table 2. Overview of the used model parameters considered for calibration; the reference
parameter vector θwb was estimated in order to use WaSiM for water-balance simulations in
the Rietholzbach catchment.

parameter unit reference (θwb) upper and lower boundary description

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 0.01 40 storage coefficient of interflow
dr [−] 2.1 0.01 80 drainage density
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Table 3. Mean value (Mean), standard deviation (Std), coefficient of variation (CV), minimum,
maximum and correlation coefficients between the generated samples for the conceptual model
parameters estimated by ROPEPSO (above) and AROPEMC (below).

Parameter Mean Std CV Min Max kd ki dr

kd 2.30 0.41 0.18 1.47 3.54 1.00 0.05 −0.39
ki 4.60 1.24 0.27 2.22 8.06 ... 1.00 −0.30
dr 5.13 1.52 0.30 2.04 9.91 ... ... 1.00

Parameter Mean Std CV Min Max kd ki dr

kd 2.78 0.30 0.11 2.04 3.67 1.00 −0.20 −0.38
ki 6.54 1.36 0.21 3.12 12.65 ... 1.00 −0.64
dr 5.23 0.96 0.18 3.08 8.20 ... ... 1.00
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Table 4. Sub-division of all flood events in a calibration, control and validation set.

Set Used flood events

Calibration {6,11,20}
Control {14,18,24}

Validation
{1,2,3,4,5,7,8,9,10,12,...
13,15,16,17,19,21,22,23}
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Table 5. Mean overall validation performance for the parameter vectors estimated by ROPEPSO
and the three compared algorithms in Krauße and Cullmann (2011); the model performance
was calculated on the validation set according to Table 4.

FloodSkill NS rPD
µ σ worst best µ σ worst best µ σ worst best

ROPEPSO 0.40 0.013 0.44 0.37 0.55 0.036 0.44 0.61 0.35 0.021 0.41 0.30

AROPEMC 0.41 0.015 0.44 0.37 0.55 0.036 0.47 0.61 0.38 0.030 0.44 0.30
IPM 0.43 0.044 0.58 0.38 0.52 0.049 0.33 0.58 0.37 0.048 0.52 0.32
GA 0.42 0.024 0.46 0.38 0.53 0.033 0.43 0.61 0.38 0.030 0.46 0.32
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Table 6. Correlation between data depth and overall validation performance of all parameter
vectors estimated with AROPEMC and ROPEPSO for the multiple event calibration.

Algorithm FloodSkill

AROPEMC −0.25
ROPEPSO −0.44
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Table 7. Expectation values of the physical properties of the prevailing soil types in the Ri-
etholzbach catchment, classified according to USDA, and corresponding soil hydraulic param-
eters; the parameterisation of the soil hydraulic parameters is done for each soil according to
the approach provided in Grundmann (2010) by the help of the pedotransfer functions provided
in Wösten et al. (1999) and Brakensiek et al. (1984); the expectation values are the mean over
10 000 realisations.

L SL SiCL SiL LS
loam sandy loam silty clay loam silt loam loamy sand

catchment area [%] 15 20 3 51 11

clay [%] 20 10 33.5 13.5 7.5
silt [%] 39 25 56.5 69 15
sand [%] 41 65 10 17.5 77.5
humus content [%] 2.5

ks [m s−1] 1.81×10−6 1.45×10−5 8.61×10−8 2.85×10−7 4.26×10−5

α [1 m−1] 3.49 4.48 2.00 1.35 5.52
θr 0.01
θs 0.42 0.41 0.43 0.42 0.41
n 1.18 1.27 1.13 1.24 1.32

2407

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4 Krauße and Cullmann: Particle swarm optimisation and robust parameter estimation

Algorithm 2.2 VPAC operator
1: pick random numbers φ1,φ2∼U(0,1)
2: update positions using equations
x1← x1+x2

2 −φ1v1

x2← x1+x2

2 −φ2v2

3: reset the particles memory p1←x1 and p2←x2

4: update the velocities: v1←v1 and v2←v2

Fig. 1. 2-dimensional point set shaded according to assigned depth.
A darker point represents higher depth. The lines indicate convex
hulls enclosing the 25%, 50%, 75% and 100% deepest points. The
used depth function was halfspace depth.

didates are nominated by tournament selection and recom-
bined. In order to do this they introduced the Velocity Pro-
pelled Averaged Crossover (VPAC) operator. The goal is to
create two child particles whose position is between the par-
ent’s position, but accelerated away from the parent’s current
direction (negative velocity) in order to increase diversity in
the population. Algorithm 2.2 shows how the new child po-
sition vectors and velocities are calculated using VPAC. The
child particles retain their parent’s velocity vector. The pre-
vious best vector is set to the new position vector, restart-
ing the child’s memory. Towards the end of a typical PSO
run, the population tends to be highly concentrated in a small
portion of the search space, effectively reducing the search
space. With the addition of the VPAC crossover operator,
a portion of the population is always pushed away from the
group, increasing the diversity of the population and the ef-
fective search space. For further details refer to Settles and
Soule (2005).

Data depth

The algorithm applies a new approach used for multivariate
data analysis that provides the possibility to analyze, quan-
tify and visualize data sets. Most proposed metrics used in
data depth function are inherently geometric, with a numeric

value assigned to each data point that represents its central-
ity within the given data set. The concept of data depth is
illustrated in Figure 1 by a small 2-dimensional example.
Bárdossy and Singh (2008) proposed the application of the
principle of data depth in order to estimate a set of robust
model parameter vectors. This idea is the basis of the devel-
oped ROPEPSO algorithm presented in this paper.

The following concepts apply to the data depth methodol-
ogy and distinguish it from other statistical methods.

– Non-parametric methodology: Scientific measurements
can be viewed as sample points drawn from some un-
known probability distribution, where the analysis of
the measurements involves computation of quantitative
characteristics of the probability distribution (estima-
tors), based on the data set. If the underlying distri-
bution is known (for example normal distribution, log-
normal distribution, Cauchy, etc.), the characteristics of
the data can be computed using methods from classical
statistics. However, in most real life experiments the un-
derlying distribution is not known. The concept of data
depth requires no assumption about the underlying dis-
tribution and data is analyzed according to the relative
position of the data points.

– Center-outward ordering of points: The data depth con-
cept allows the creation of a multivariate analog to
the univariate statistical analysis tool of rank statis-
tics. Rank statistics is based on the ordering of one-
dimensional observations, where the order reflects ex-
tremeness, contiguity, variability or the effect of exter-
nal contamination. In higher dimensions the order of
multivariate data is not well defined, and several or-
dering methods were suggested. The data depth con-
cept provides a method of extending order statistics to
any dimension by ordering the points according to their
depth values.

– Application to multivariate (high-dimensional) data
sets: The concept of data depth is defined with respect
to points in Euclidean space in any dimension, thus en-
abling the derivation of multivariate distributional char-
acteristics of a data set.

– Robustness: In the statistical analysis of data sets, ob-
servations that deviate from the main part of the data
(outliers) can have an undesirable influence on the anal-
ysis of the data. Many depth functions are robust against
the possibility of several outliers that may occur in the
data and yield nevertheless reasonable results.

Tukey (1975) introduced this concept first with the def-
inition of the halfspace depth. According to Donoho
and Gasko (1992) the halfspace depth of an arbitrary
point θ∈Rd with respect to a d-dimensional data set

Fig. 1. 2-dimensional point set shaded according to assigned depth. A darker point represents
higher depth. The lines indicate convex hulls enclosing the 25%, 50%, 75% and 100% deepest
points. The used depth function was halfspace depth.
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8 Krauße and Cullmann: Particle swarm optimisation and robust parameter estimation

Table 2. Overview of the used model parameters considered for calibration; the reference parameter vector θwb was estimated in order to
use WaSiM for water-balance simulations in the Rietholzbach catchment

parameter unit reference (θwb) upper and lower boundary description

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 0.01 40 storage coefficient of interflow
dr [-] 2.1 0.01 80 drainage density

1
Interflow

2
Interflow

3
Interflow

..
Interflow

ks, Θr, Θs,
α, n, krec

Richards equation
describes soil
water movement

Infiltration
(according to

Green & Ampt)

Precipitation

Direct runoff

Evapotranspiration

Groundwater

Capillary rise

Baseflow

kd

dr, ki

Fig. 2. Scheme of the WaSiM soil module with location of impact
of soil hydraulic and conceptual model parameters (bold)

Fig. 3. A 3D-view of the catchment with the potential rivers flow-
paths.

model’s ability to provide both a good estimate of the peak
flow values and a minimum reasonable representation of the
catchment behavior. It is computed by

FloodSkill← 0.5(−(NS−1))+0.5(rPD) (5)

The lower the FloodSkill the better is the model’s abil-
ity to represent the catchment’s behaviour focussing on flood
events. A perfect fit corresponds to a FloodSkill of zero.

Case study I: Comparison of ROPEPSO and AROPEMC
considering just the conceptual model parameters

In a first case study we compared the developed approach
with the Monte Carlo based robust parameter estimation
AROPEMC (s. Krauße and Cullmann, 2011) on the basis of
the second case study presented in Krauße and Cullmann
(2011). The conceptual model parameters of the model
WaSiM were calibrated focussing on flood events. Out of
the mentioned set of 24 flood events, three events were used
for calibration, three for overfitting control and the remain-
ing events were used for validation (see Table 4). The used
objective was the proposed FloodSkill criterion. For further
details refer to Krauße and Cullmann (2011).

Before deep parameters were generated we validated all
good parameter vectors, estimated by the PSO-GAu algo-
rithm and studied the relationship between the data depth and
the model performance on the validation data. The correla-
tion between the optimization objective and the data depth is
significantly negative (see Figure 6) which is a first hint that
the estimated set is a stable solution and the application of
depth based sampling makes sense in order to improve the
calibration results. The scatterplot given in Figure 4 where
each parameter vector of the estimated set is shaded accord-
ing to its validation performance shows that the parameter
vectors with worse model performance are particularly lo-
cated at the boundary of the estimated set. However, this
conclusion does not hold true for the single performance cri-
teria the FloodSkill consists of, i.e. NS and rPD. The optimal
regions for this criteria are even located on opposite sides
of the estimated set (Figure 5). This is a hint of a tradeoff
between the two objective criteria rPD and problems of the
model to represent the global system behaviour of the catch-
ment and a good representation of the peak flow values. This
may also be due to the relatively coarse time step consider-
ing the small catchment size. In this case a multi-objective

Fig. 2. Scheme of the WaSiM soil module with location of impact of soil hydraulic and concep-
tual model parameters (bold).
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8 Krauße and Cullmann: Particle swarm optimisation and robust parameter estimation

Table 2. Overview of the used model parameters considered for calibration; the reference parameter vector θwb was estimated in order to
use WaSiM for water-balance simulations in the Rietholzbach catchment

parameter unit reference (θwb) upper and lower boundary description

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 0.01 40 storage coefficient of interflow
dr [-] 2.1 0.01 80 drainage density

1
Interflow

2
Interflow

3
Interflow

..
Interflow

ks, Θr, Θs,
α, n, krec

Richards equation
describes soil
water movement

Infiltration
(according to

Green & Ampt)

Precipitation

Direct runoff

Evapotranspiration

Groundwater

Capillary rise

Baseflow

kd

dr, ki

Fig. 2. Scheme of the WaSiM soil module with location of impact
of soil hydraulic and conceptual model parameters (bold)

Fig. 3. A 3D-view of the catchment with the potential rivers flow-
paths.

model’s ability to provide both a good estimate of the peak
flow values and a minimum reasonable representation of the
catchment behavior. It is computed by

FloodSkill← 0.5(−(NS−1))+0.5(rPD) (5)

The lower the FloodSkill the better is the model’s abil-
ity to represent the catchment’s behaviour focussing on flood
events. A perfect fit corresponds to a FloodSkill of zero.

Case study I: Comparison of ROPEPSO and AROPEMC
considering just the conceptual model parameters

In a first case study we compared the developed approach
with the Monte Carlo based robust parameter estimation
AROPEMC (s. Krauße and Cullmann, 2011) on the basis of
the second case study presented in Krauße and Cullmann
(2011). The conceptual model parameters of the model
WaSiM were calibrated focussing on flood events. Out of
the mentioned set of 24 flood events, three events were used
for calibration, three for overfitting control and the remain-
ing events were used for validation (see Table 4). The used
objective was the proposed FloodSkill criterion. For further
details refer to Krauße and Cullmann (2011).

Before deep parameters were generated we validated all
good parameter vectors, estimated by the PSO-GAu algo-
rithm and studied the relationship between the data depth and
the model performance on the validation data. The correla-
tion between the optimization objective and the data depth is
significantly negative (see Figure 6) which is a first hint that
the estimated set is a stable solution and the application of
depth based sampling makes sense in order to improve the
calibration results. The scatterplot given in Figure 4 where
each parameter vector of the estimated set is shaded accord-
ing to its validation performance shows that the parameter
vectors with worse model performance are particularly lo-
cated at the boundary of the estimated set. However, this
conclusion does not hold true for the single performance cri-
teria the FloodSkill consists of, i.e. NS and rPD. The optimal
regions for this criteria are even located on opposite sides
of the estimated set (Figure 5). This is a hint of a tradeoff
between the two objective criteria rPD and problems of the
model to represent the global system behaviour of the catch-
ment and a good representation of the peak flow values. This
may also be due to the relatively coarse time step consider-
ing the small catchment size. In this case a multi-objective

Fig. 3. A 3-D-view of the catchment with the potential rivers flowpaths.
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Krauße and Cullmann: Particle swarm optimisation and robust parameter estimation 9

Table 3. Mean value (Mean), standard deviation (Std), coefficient of variation (CV), minimum, maximum and correlation coefficients
between the generated samples for the conceptual model parameters estimated by ROPEPSO (above) and AROPEMC (below)

Parameter Mean Std CV Min Max kd ki dr

kd 2.30 0.41 0.18 1.47 3.54 1.00 0.05 −0.39
ki 4.60 1.24 0.27 2.22 8.06 ... 1.00 −0.30
dr 5.13 1.52 0.30 2.04 9.91 ... ... 1.00

Parameter Mean Std CV Min Max kd ki dr

kd 2.78 0.30 0.11 2.04 3.67 1.00 −0.20 −0.38
ki 6.54 1.36 0.21 3.12 12.65 ... 1.00 −0.64
dr 5.23 0.96 0.18 3.08 8.20 ... ... 1.00
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Fig. 4. Scatter plot of the good parameter vectors shaded according to their validation performance. Red points have a good validation
performance, blue points are worse (see colorbar). The size of the shades is proportional to the data depth of each point with respect to the
whole cloud.

Table 4. Sub-division of all flood events in a calibration, control
and validation set

Set Used flood events

Calibration {6,11,20}
Control {14,18,24}

Validation
{1,2,3,4,5,7,8,9,10,12,...
13,15,16,17,19,21,22,23}

calibration might be useful, but this is in the scope of future
research.

In a second step deep parameter vectors were sampled
with respect to the estimated set of good parameter vec-
tors. The statistics of the estimated samples in compari-
son with those estimated by AROPEMC are given in Table
3. Although both sets overlap each other, it is evident that
the mean value of the storage coefficients kd and ki of the
ROPEPSO estimates are significantly lower than those es-

timated by AROPEMC. However, the correlation between
the two most sensitive model parameters focussing on flood
events, kd and dr is the approximately the same for both al-
gorithms. The standard deviation for the ROPEPSO estimates
is higher for all considered model parameters. We assume
that the iterative Monte Carlo based sampling was not able
to sample from the outermost part of the set due to small
sample size (2.500 samples per iteration) and a fixed bound-
ary in the iteration steps (the 10% best parameter vectors are
selected).

The validation results of the ROPEPSO estimates are
slightly better than those estimated by AROPEMC and also
outperforms all other compared algorithms compared in the
case study of Krauße and Cullmann (2011). Furthermore,
regardless of the higher standard deviation of the parameter
values with respect to the AROPEMC estimates, the standard
deviation of the validation performance is smaller. These re-
sults indicate that the estimated solution is robust and trans-
ferable. The proposed algorithm also converges faster with
less parameter vectors to be evaluated. The ROPEPSO al-

Fig. 4. Scatter plot of the good parameter vectors shaded according to their validation perfor-
mance. Red points have a good validation performance, blue points are worse (see colorbar).
The size of the shades is proportional to the data depth of each point with respect to the whole
cloud.
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10 Krauße and Cullmann: Particle swarm optimisation and robust parameter estimation
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Fig. 5. Scatter plot of the good parameter vectors shaded according to their validation performance for the criteria NS and rPD. Red points
have a good validation performance, blue points are worse (see colorbar). The size of the shades is proportional to the data depth of each
point with respect to the whole cloud.

Table 5. Mean overall validation performance for the parameter vectors estimated by ROPEPSO and the three compared algorithms in Krauße
and Cullmann (2011); the model performance was calculated on the validation set according to Table 4

FloodSkill NS rPD
µ σ worst best µ σ worst best µ σ worst best

ROPEPSO 0.40 0.013 0.44 0.37 0.55 0.036 0.44 0.61 0.35 0.021 0.41 0.30

AROPEMC 0.41 0.015 0.44 0.37 0.55 0.036 0.47 0.61 0.38 0.030 0.44 0.30
IPM 0.43 0.044 0.58 0.38 0.52 0.049 0.33 0.58 0.37 0.048 0.52 0.32
GA 0.42 0.024 0.46 0.38 0.53 0.033 0.43 0.61 0.38 0.030 0.46 0.32

gorithm evaluated 3.574 model parameter vectors during
the calibration whereas the Monte Carlo based AROPEMC
needed 10.000 parameter evaluations. This advantage gets
more even more weight considering that one parameter eval-
uation 1 takes approximately three minutes on a standard
CPU.

Case study II: Calibrating WaSiM for flood forecasting
considering the uncertainty of the soil hydraulic parame-
ters

In a second case study we calibrated WaSiM again, however
this time we additionally considered the uncertainty in the

1That means that 3 model runs have to be carried out, one for
each calibration event

soil hydraulic parameters in the model calibration. As al-
ready introduced in Section 2.1 the uncertainty due to coarse
soil information and the resulting uncertainty in the soil hy-
draulic parameters can have a tremendous influence on the
model uncertainty in the case of flood events. In a prelimi-
nary study with WaSiM in the Rietholzbach catchment (see
Seifert, 2010) we could prove this conclusion. From the 5
predominant soil types in the basin (Table 3.2), we found the
soil hydraulic parameters of SL and SiL and the soil param-
eter krec to be sensitive referring to the simulated discharge
for flood events. Hence we considered those parameters to-
gether with the conceptual model parameters for model cali-
bration.

According to the approach of Grundmann (2010) we esti-
mated the prior uncertainty in the soil hydraulic parameters

Fig. 5. Scatter plot of the good parameter vectors shaded according to their validation perfor-
mance for the criteria NS and rPD. Red points have a good validation performance, blue points
are worse (see colorbar). The size of the shades is proportional to the data depth of each point
with respect to the whole cloud.
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Krauße and Cullmann: Particle swarm optimisation and robust parameter estimation 11

Table 6. Expectation values of the physical properties of the prevailing soil types in the Rietholzbach catchment, classified according to
USDA, and corresponding soil hydraulic parameters; the parameterisation of the soil hydraulic parameters is done for each soil according to
the approach provided in Grundmann (2010) by the help of the pedotransfer functions provided in Wösten et al. (1999) and Brakensiek et al.
(1984); the expectation values are the mean over 10.000 realisations

L SL SiCL SiL LS
loam sandy loam silty clay loam silt loam loamy sand

catchment area [%] 15 20 3 51 11

clay [%] 20 10 33.5 13.5 7.5
silt [%] 39 25 56.5 69 15
sand [%] 41 65 10 17.5 77.5
humus content [%] 2.5

ks [m/s] 1.81 ·10−6 1.45 ·10−5 8.61 ·10−8 2.85 ·10−7 4.26 ·10−5

α [1/m] 3.49 4.48 2.00 1.35 5.52
θr 0.01
θs 0.42 0.41 0.43 0.42 0.41
n 1.18 1.27 1.13 1.24 1.32
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AROPEMC −0.25
ROPEPSO −0.44

Fig. 6. Correlation between data depth and overall validation per-
formance of all parameter vectors estimated with AROPEMC and
ROPEPSO for the multiple event calibration

of the soils SL and SiL and mapped the computed set of pa-
rameter vectors to two scaling parameters βLS and βSiL, one
for each soil. The prior uncertainty of the soil hydraulic pa-
rameters with best fits for Gaussian (N ), logarithmic Gaus-
sian (logN ), Gamma (Γ) and bimodal Gaussian (GM ) distri-
bution is given in Figure 7. Consider that the residual water
content θr was constantly 0.01 for both SL and SiL with a
deviation of less than 10e−14 and thus is not shown in the
plots. The distribution of the saturated conductivities has the
maximum density in the range of the lowest possible values
and is characterised by a high skewness. The other MVG

parameters have distributions which can be approximated by
a normal distribution. The distribution of the corresponding
scaling parameters is given in Figure 8. It is evident that the
distribution of the scaling parameters is strongly influenced
by the distribution of the saturated conductivities. This is due
to the relatively high spread of this parameter.

The conceptual and the soil parameters form a six di-
mensional calibration problem with the model parameters
{kd,ki,dr,βSL,βSiL,krec} to be estimated. Considering that
the error surface of WaSiM is very bumpy this is already a
challenging calibration problem, especially for Monte Carlo
based approach. Again we estimated the parameters of
WaSiM with both AROPEMC and ROPEPSO. Both calibra-
tion algorithms were limited to a maximum of 10.000 model
parameter vector evaluations.

The distribution of the parameter vectors estimated by
AROPEMC and ROPEPSO is given in Figure 9 and 10 re-
spectively. It is evident that the particle swarm based pa-
rameter estimates are distributed over a much smaller region
than those estimated by AROPEMC. That region forms a sub-
set (in geometrical sense) of the large region estimated by
AROPEMC. Thus ROPEPSO can more precisely identify a re-
gion of good model parameter vectors within a defined mea-
surement uncertainty. The distribution of the soil hydraulic
parameters corresponding to the scaling parameters βSL and
βSiL estimated by both algorithms are given in Figure 11 and
12 respectively.

By means of comparison of observed and simulated dis-
charge, the parameter estimation algorithms try to reject soil
hydraulic parameter vectors that are not suitable to represent
the catchment’s behaviour and identify a distribution with the
most suitable model parameters. It is obvious that the spread
of the distributions of the soil hydraulic parameters compared
to their prior uncertainty gets smaller for both algorithms.

Fig. 6. Correlation between data depth and overall validation performance of all parameter
vectors estimated with AROPEMC and ROPEPSO for the multiple event calibration.
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Fig. 7. Prior distribution of the soil hydraulic parameters for the
soils SL (a) and SiL (b)
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Fig. 8. Prior distribution of the scaling paramters βSL and βSiL

Furthermore it stands out that the mean ks of the ROPEPSO
estimates is smaller than the prior expectancy whereas the

mean ks of the AROPEMC values is higher than the prior
value. In terms of the model that means that ROPEPSO iden-
tifies parameter vectors that try to simulate just the slow ma-
trix flow in the unsaturated zone whereas faster runoff pro-
cesses in the unsaturated zone, e.g. preferential flow, are
approximated by a fit of the conceptual model parameters
controlling direct runoff. Probably that is also the reason
why the less sensitive conceptual parameter ki can by much
better identified than in the previous case study. In contrast
AROPEMC identifies parameter sets which try to represent
the faster components by a higher saturated conductivity in
the soil model. Preferential flow in macropores can become
a dominant process within the Rietholzbach catchment (Ger-
mann, 1981). However, the Richards equation implemented
in WaSiM just describes the process of matrix flow in the
unsaturated zone. The process of preferential flow cannot
be directly represented by this equation. Thus this process
can either be represented by in trend higher saturated con-
ductivities used in the soil model or by representing this pro-
cess by the conceptual model parameters, in particular the
parameters kd and krec. From a process-oriented point of
view it might be better to “blame” the preferential flow on the
conceptual model parameters instead of trying to describe a
physically completely different process by a physically based
model, i.e. trying to fit the Richards equation to represent
preferential flow and matrix flow instead of just matrix flow.

The calibration performance of both algorithms is given in
Figure 13. The results of PSO-GAu (before deep samples
were drawn) are given for an additional comparison. The
calibration performance results are better than the results for
the calibration in the previous case study just considering the
conceptual model parameters. That result is not surprising.
The better fit in the calibration might just be due to a larger
number of free model parameters and has to be confirmed
on the validation data in order to be a considered as im-
provement. A better model fit is always possible with more
free model parameters, but just makes sense if the estimated
parameters can be transferred on other time periods. Al-
though the parameter vectors estimated by AROPEMC have a
significantly larger deviation, the corresponding model per-
formances on the calibration data just slightly differ, i.e.
ROPEPSO achieves a mean FloodSkill of 0.26 whereas the
mean FloodSkill for the AROPEMC results is 0.27. Besides
the better performance with respect to the population mean
performance, the population estimated by ROPEPSO also has
less outliers with worse model performance on the calibra-
tion data. Furthermore it is evident that the deep parameter
vectors estimated by ROPEPSO do not have a better model
performance on the calibration data.

The validation results calibrated on the validation events
given in Table 4 are given in Figure 14. Regardless of the
used parameter estimation procedure, the achieved model
performance on the validation data is better than the calibra-
tion with the conceptual model parameters only. Furthermore
these results show the advantages of the ROPEPSO approach

Fig. 7. Prior distribution of the soil hydraulic parameters for the soils SL (a) and SiL (b).
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Fig. 7. Prior distribution of the soil hydraulic parameters for the
soils SL (a) and SiL (b)
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Furthermore it stands out that the mean ks of the ROPEPSO
estimates is smaller than the prior expectancy whereas the

mean ks of the AROPEMC values is higher than the prior
value. In terms of the model that means that ROPEPSO iden-
tifies parameter vectors that try to simulate just the slow ma-
trix flow in the unsaturated zone whereas faster runoff pro-
cesses in the unsaturated zone, e.g. preferential flow, are
approximated by a fit of the conceptual model parameters
controlling direct runoff. Probably that is also the reason
why the less sensitive conceptual parameter ki can by much
better identified than in the previous case study. In contrast
AROPEMC identifies parameter sets which try to represent
the faster components by a higher saturated conductivity in
the soil model. Preferential flow in macropores can become
a dominant process within the Rietholzbach catchment (Ger-
mann, 1981). However, the Richards equation implemented
in WaSiM just describes the process of matrix flow in the
unsaturated zone. The process of preferential flow cannot
be directly represented by this equation. Thus this process
can either be represented by in trend higher saturated con-
ductivities used in the soil model or by representing this pro-
cess by the conceptual model parameters, in particular the
parameters kd and krec. From a process-oriented point of
view it might be better to “blame” the preferential flow on the
conceptual model parameters instead of trying to describe a
physically completely different process by a physically based
model, i.e. trying to fit the Richards equation to represent
preferential flow and matrix flow instead of just matrix flow.

The calibration performance of both algorithms is given in
Figure 13. The results of PSO-GAu (before deep samples
were drawn) are given for an additional comparison. The
calibration performance results are better than the results for
the calibration in the previous case study just considering the
conceptual model parameters. That result is not surprising.
The better fit in the calibration might just be due to a larger
number of free model parameters and has to be confirmed
on the validation data in order to be a considered as im-
provement. A better model fit is always possible with more
free model parameters, but just makes sense if the estimated
parameters can be transferred on other time periods. Al-
though the parameter vectors estimated by AROPEMC have a
significantly larger deviation, the corresponding model per-
formances on the calibration data just slightly differ, i.e.
ROPEPSO achieves a mean FloodSkill of 0.26 whereas the
mean FloodSkill for the AROPEMC results is 0.27. Besides
the better performance with respect to the population mean
performance, the population estimated by ROPEPSO also has
less outliers with worse model performance on the calibra-
tion data. Furthermore it is evident that the deep parameter
vectors estimated by ROPEPSO do not have a better model
performance on the calibration data.

The validation results calibrated on the validation events
given in Table 4 are given in Figure 14. Regardless of the
used parameter estimation procedure, the achieved model
performance on the validation data is better than the calibra-
tion with the conceptual model parameters only. Furthermore
these results show the advantages of the ROPEPSO approach

Fig. 8. Prior distribution of the scaling paramters βSL and βSiL.
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Fig. 9. Distribution of the model parameter vectors estimated by AROPEMC

0.23

0.35
0.061

0.32
-0.057

0.29

-0.065-0.13-0.085-0.03

-0.14-0.26-0.13-0.19

0.13

k
r
e
c

β
S
iL

β
S
L

d
r

k
i

krecβSiLβSLdrki

k
d

kd

0 0.5 10 0.5 10 0.7 1.45 20 3540 50 601 4 7

0 1 20 0.5 10 0.7 1.45 20 3540 50 601 4 7

0 1 20 1 20 0.7 1.45 20 3540 50 601 4 7

0 1 20 1 20 1 25 20 3540 50 601 4 7

0 1 20 1 20 1 20 1 240 50 601 4 7

0 1 20 1 20 1 20 1 20 1 21 4 7

0

7.5

15

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

−1

0

1

0

5

10

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

−1

0

1

−1

0

1

0

5

10

0

0.7

1.4

0

0.7

1.4

0

0.7

1.4

−1

0

1

−1

0

1

−1

0

1

0

0.25

0.5

5

20

35

5

20

35

−1

0

1

−1

0

1

−1

0

1

−1

0

1

0

0.25

0.5

40

50

60

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

0

2.5

5

Fig. 10. Distribution of the model parameter vectors estimated by ROPEPSO

Fig. 9. Distribution of the model parameter vectors estimated by AROPEMC.
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Fig. 10. Distribution of the model parameter vectors estimated by ROPEPSO.
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ks θs α n

Mean 7.231e-05 0.400 6.66 1.36
Std 4.224e-05 0.018 2.49 0.03
CV 0.58 0.05 0.37 0.03
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Fig. 11. Distribution of the soil hydraulic parameters estimated by
AROPEMC for the soils SL (a) and SiL (b)

merging the strengths of the depth based parameter sampling
and the particle swarm optimisation. Referring to the results
of PSO-GAu and ROPEPSO it is obvious that the parame-
ters with high data depth do not have just a marginal better
model performance on the validation data but also much less
bad outliers, e.g. the worst overall FloodSkill for PSO-GAu
is 0.41 whereas it is 0.38 for the ROPEPSO after the depth
based sampling. Consider for instance that a change of the
FloodSkill value of just 0.03 means an improvement of the
Nash and Suttcliffe efficiency in mean of 0.06 considering
constant ability of peak flow prediction. Nevertheless al-
ready the application of the particle swarm based parameter
estimation achieves good validation results. In comparison
the AROPEMC estimates have a worse mean performance.
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Fig. 12. Distribution of the soil hydraulic parameters estimated by
ROPEPSO for the soils SL (a) and SiL (b)

That is due to high positive skewness, i.e. the best achieved
validation performances are as good as those estimated by
ROPEPSO but there are more and worse outliers on the nega-
tive side of the distribution of the model performances. For
example the worst parameter vector estimated by AROPEMC
has an overall FloodSkill of 0.47 in comparison to 0.35 es-
timated by ROPEPSO. The higher spread is also expressed
by the significantly higher standard deviation referring to all
compared performance criteria. The better accuracy together
with less uncertainty of the ROPEPSO estimates is also re-
flected by a reduced model uncertainty. That means that not
just the parameter uncertainty but also the complete model
uncertainty can be tremendously reduced. Figure 15 shows
the hydrographs and the corresponding parameter and model

Fig. 11. Distribution of the soil hydraulic parameters estimated by AROPEMC for the soils SL
(a) and SiL (b).
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Fig. 11. Distribution of the soil hydraulic parameters estimated by
AROPEMC for the soils SL (a) and SiL (b)

merging the strengths of the depth based parameter sampling
and the particle swarm optimisation. Referring to the results
of PSO-GAu and ROPEPSO it is obvious that the parame-
ters with high data depth do not have just a marginal better
model performance on the validation data but also much less
bad outliers, e.g. the worst overall FloodSkill for PSO-GAu
is 0.41 whereas it is 0.38 for the ROPEPSO after the depth
based sampling. Consider for instance that a change of the
FloodSkill value of just 0.03 means an improvement of the
Nash and Suttcliffe efficiency in mean of 0.06 considering
constant ability of peak flow prediction. Nevertheless al-
ready the application of the particle swarm based parameter
estimation achieves good validation results. In comparison
the AROPEMC estimates have a worse mean performance.
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Fig. 12. Distribution of the soil hydraulic parameters estimated by
ROPEPSO for the soils SL (a) and SiL (b)

That is due to high positive skewness, i.e. the best achieved
validation performances are as good as those estimated by
ROPEPSO but there are more and worse outliers on the nega-
tive side of the distribution of the model performances. For
example the worst parameter vector estimated by AROPEMC
has an overall FloodSkill of 0.47 in comparison to 0.35 es-
timated by ROPEPSO. The higher spread is also expressed
by the significantly higher standard deviation referring to all
compared performance criteria. The better accuracy together
with less uncertainty of the ROPEPSO estimates is also re-
flected by a reduced model uncertainty. That means that not
just the parameter uncertainty but also the complete model
uncertainty can be tremendously reduced. Figure 15 shows
the hydrographs and the corresponding parameter and model

Fig. 12. Distribution of the soil hydraulic parameters estimated by ROPEPSO for the soils SL (a)
and SiL (b). 2419
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Fig. 13. Calibration performance for the parameter vectors estimated by PSO-GAu, ROPEPSO and AROPEMC

uncertainties for both algorithms. The model errors were
computed by two normal distribution fitted on the positive
and negative discharge errors, transformed with the normal
quantile transformation (NQT) (Krzysztofowicz, 1997) ac-
cording to a method presented by Engeland et al. (2010).

4 Discussion and conclusions

– This paper presents a depth based parameter estimation
method, which is well suited for the robust calibration of
hydrological models considering uncertainties. We pre-
sented a particle swarm based robust parameter estima-
tion algorithm algorithm, entitled Robust Parameter Es-
timation with Particle Swarm Optimisation (ROPEPSO).
The major difference between ROPEPSO and the algo-
rithms presented by Bárdossy and Singh (2008) and
Krauße and Cullmann (2011) is that it substitutes the
Monte Carlo based approach for the identification of
good parameter vectors by a particle swarm based ap-
proach PSO-GAu. We compare the effectiveness of the
newly developed algorithm for estimating robust model
parameter vectors with the Monte Carlo based variant
in three case studies.

– A first preliminary case study with 2 synthetical test
problems shows that both algorithms estimate approx-
imately the same set of good parameter vectors for sim-
pler problems in lower dimensions. However, due to
the more efficient search of the particle swarm based
approach, the results of the ROPEPSO algorithm outper-
form the Monte Carlo based approach.

– The results of the second case study in this paper com-
pared AROPEMC and ROPEPSO estimating three con-
ceptual model parameters of the model WaSiM using
an example presented in Krauße and Cullmann (2011).
ROPEPSO estimates a similar set of robust model param-
eter vectors which slightly outperforms the estimates of
the Monte Carlo based approach.

– The case studies in this paper revealed that the used hy-
drological model WaSiM is not able to represent the cor-
rect peak flow values and the basin’s system behaviour
with respect to the discharge at the catchment outlet
with the same parameter vectors. Again we showed that
parameter vectors with equal model performance on the
calibration data can lead to very different results in val-
idation. The proposed method of an evolutionary sam-

Fig. 13. Calibration performance for the parameter vectors estimated by PSO-GAu, ROPEPSO
and AROPEMC.
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Fig. 14. Validation performance for the parameter vectors estimated by PSO-GAu, ROPEPSO and AROPEMC

pling of model parameter vectors by the help of data
depth functions can help to identify sets of robust pa-
rameter vectors. In general parameters with low data
depth are near the boundary and are sensitive to small
changes and do transfer to other time periods less well
as high depth ones. However the model performance of
the sampled deep parameters is also dependent from the
quality of the estimated good parameter vectors.

– In this paper, model performance was expressed by just
one aggregated objective function. The presented algo-
rithm can be easily altered to a general multi-objective
parameter estimation procedure.

The robust parameter estimation approach is a relatively
new method which was applied to a limited number of case
studies. We strongly propose the comparison with estab-
lished uncertainty estimation methods, e.g. MCMC, GLUE
or multi-objective calibration, in further research. Further-
more, due to the probably high tradeoff between the model’s
ability to represent both the peak flow values and the global
system behaviour equally well, we propose the development
and application of a multi-objective version of the presented
approach.
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Fig. 15. Hydrograph prediction uncertainty associated with the uncertainty in the model (lighter shading) and parameter estimates (darker
shading) for the flood events 4 (a), 12 (b) and 19 (c), estimated by AROPEMC (left column) and ROPEPSO (right column). The dots correspond
to the observed streamflow data. The shaded areas of uncertainty correspond to the 95% confidence intervals.

Fig. 15. Hydrograph prediction uncertainty associated with the uncertainty in the model (lighter
shading) and parameter estimates (darker shading) for the flood events 4 (a), 12 (b) and 19 (c),
estimated by AROPEMC (left column) and ROPEPSO (right column). The dots correspond to the
observed streamflow data. The shaded areas of uncertainty correspond to the 95% confidence
intervals.
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