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Abstract

Satellite-based active microwave sensors not only provide synoptic overviews of
flooded areas, but also offer an effective way to estimate spatially distributed river wa-
ter levels. If rapidly produced and processed, these data can be used for updating
hydraulic models in near real-time. The usefulness of such approaches with real event5

data sets provided by currently existing sensors has yet to be demonstrated. In this
case study, a Particle Filter-based assimilation scheme is used to integrate ERS-2 SAR
and ENVISAT ASAR-derived water level data into a one-dimensional (1-D) hydraulic
model of the Alzette River. Two variants of the Particle Filter assimilation scheme are
proposed with a global and local particle weighting procedure. The first option finds10

the best water stage line across all cross sections, while the second option finds the
best solution at individual cross sections. The variant that is to be preferred depends
on the level of confidence that is attributed to the observations or to the model. The
results show that the Particle Filter-based assimilation of remote sensing-derived wa-
ter elevation data provides a significant reduction to the model forecast uncertainty.15

Moreover, it is shown that the periodical updating of hydraulic models through the pro-
posed assimilation scheme leads to an improvement of model predictions over several
time steps. However, the performance of the assimilation depends on the skill of the
hydraulic model and the quality of the observation data.

1 Introduction20

Synthetic Aperture Radar (SAR) is regarded as the most promising technology to mon-
itor floods from space. Since the launch of the ENVISAT mission in 2002 and more
recently the successful launches of the high–resolution COSMO Skymed, TerraSAR-X
and Radarsat-2 missions in 2007, considerable progress has been made with respect
to SAR-based flood delineation algorithms (e.g. Zwenzner and Voigt, 2009; Martinis25

et al., 2009; Mason et al., 2010; Matgen et al., 2010, 2011). These methods were
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specifically developed for rapid, repeatable and reliable flood mapping. Remote sens-
ing data have become more frequent and rapidly available and accuracies of SAR-
derived flood detection have improved due to higher spatial resolutions and enhanced
image processing algorithms. There is a growing pressure on the scientific community
to find new ways to use the increased volume and accuracy of remote sensing data in5

order to improve near real-time flood monitoring and prediction applications.
The retrieval of water level data by merging remote sensing-derived inundated areas

with a digital elevation model (“indirect measuring technique”) can be viewed as a way
to add value to remote sensing data for hydrological applications (e.g. Hostache et
al., 2009; Raclot, 2006; Schumann et al., 2007). Direct measuring techniques such10

as those from the proposed swath altimetry ‘Surface Water and Ocean Topography’
(SWOT) mission (Alsdorf et al., 2007) represent a potential enhancement of the indirect
measuring techniques as they enable the systematic acquisition of elevation data of
inland water surfaces with a reliable observation uncertainty of 50 cm. Both techniques
enable the monitoring of changes in water volume in ways that are not possible using15

hydrometric station data.
However, space-borne sensors provide instantaneous snap-shots of an area of the

Earth’s surface, there is a need to combine remote sensing data sets with hydrologic-
hydraulic prediction models to generate time-lapses of flooded surfaces. Sequential
data assimilation methods can be used to integrate time-continuous model state fore-20

casts (e.g. soil moisture, surface water storage) with remote sensing observations as
they become available. The quantification of uncertainty for all observations is a pre-
requisite to any meaningful data assimilation study. To date, only a few studies have
investigated the uncertainty description of remote sensing derived water stages. Ac-
cording to Schumann et al. (2008), geo-location accuracy of the flood extent and pa-25

rameter uncertainty in flood delineation algorithms are the most significant sources of
uncertainty in SAR-based flood mapping applications. In a data fusion application,
these errors add up to the errors that are inherent in the topography data. The uncer-
tainty assessment approach of Schumann et al. (2008) results in cross-section specific
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cumulative distribution functions (cdfs) of water elevation estimates. In the case study
of the Alzette 2003 flood, the indirect water stage measuring technique yields cdfs
that indicate non-normal distributions and skewness of the SAR-based water level es-
timates for many cross-sections. Uncertainty of stage over the entire river reach was
on the order of 2 m.5

In situ measurements are routinely assimilated for hydrologic-hydraulic modelling ap-
plications (e.g. Neal et al., 2007; Madsen and Skotner, 2005; Pauwels and De Lannoy,
2009). However, only a few studies have attempted to assimilate remote sensing-
derived water stage data into hydraulic models. Matgen et al. (2007) used a direct in-
sertion method that forced water stage data simulated by a hydraulic model to fall within10

the confidence interval of ENVISAT and European Remote Sensing satellite (ERS-2)
SAR-derived water stages. They showed that the insertion of remote sensing derived
water levels increased the accuracy of modelled water levels. However, this version
of a direct insertion method is not an optimal sequential assimilation method and ap-
pears as a useful approach only if uncertainties associated with observation data are15

much smaller than simulation uncertainties and distribution functions of observations
are unknown.

Different variants of the Kalman filter present dynamic methods for merging uncertain
simulation data with uncertain observations. Andreadis et al. (2007) and Biancamaria
et al. (2010) successfully applied an ensemble Kalman filter (EnKF) to assimilate syn-20

thetic water level measurements from the proposed SWOT mission with simulations
from the LISFLOOD-FP 2-D hydraulic model. Durand et al. (2008) assimilated virtual
SWOT-derived water level observations into a hydraulic model of the Amazon River
to improve the estimates of bathymetric depths by 84% compared to the model runs
without assimilation.25

Neal et al. (2009) used the EnKF with a real event SAR image of the flood extent.
The ensemble uncertainty was estimated by image histogram thresholding with dif-
ferent backscattering values and repeatedly shifting the resulting flood boundaries in
space in order to approximate geo-location errors. The measurement error covariance
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was defined from the perturbations of this ensemble of water level estimates around
the mean. Neal et al. (2009) only considered the measurement members with the
smallest inter-quantile range over the ensemble at any river section. They argue that
because of the spatial coverage offered by remote sensing it is not necessary to use all
measurements. Following this approach, they showed that it is possible to significantly5

reduce discharge and water level uncertainty of a hydraulic model by using ENVISAT
Advanced SAR-derived water stage estimates.

Since the Gaussian error assumption may not be satisfied for most remote sensing
observations of water stage, Matgen et al. (2010) proposed an assimilation scheme
based on the Particle Filter (PF) as a possibility to relax the Gaussian assumption in10

the EnKF while preserving its advantages. Their experiments showed that the PF is
able to correct water depths from a corrupted 1-D hydrodynamic model by assimilating
synthetic observations that are realistic in terms of accuracy for remote sensing-derived
water levels. In this case, the PF leads to a significant increase of the accuracy and
a reduction of the model forecast uncertainty. Matgen et al. (2010) further state that15

problems related to a spatially and temporally variable non-Gaussian distribution of
water level observations still need to be solved.

The objective of this paper is thus to examine the usefulness of currently available
satellite data to update a hydraulic model in near real time, through a PF-based assim-
ilation scheme. The specific objectives are: (1) to adapt the PF assimilation scheme in20

order to deal with non-Gaussian distributions of remote sensing derived (RSD) water
levels; (2) to deal with model structural errors and parameter uncertainties, proposing
two variants of the PF; (3) to assess the usefulness of SAR data with respect to in situ
hydrometric station data.

2 Study area and available data25

The area of interest is situated in the Grand Duchy of Luxembourg (Fig. 1).
The hydrologic model is applied to a basin area of 356 km2 draining to a stream
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gauge located in Pfaffenthal. This produces the upstream boundary condition for the
hydrodynamic model, which simulates the 19 km reach of the Alzette River between hy-
drometric stations at Pfaffenthal and Mersch (Montanari et al., 2009). The river reach
is described by 144 ground-surveyed and evenly spaced (∼130 m) channel cross sec-
tions.5

The investigated event was a flood recorded in January 2003. Hydrometric data
were recorded every 15 min at six stream gauges interspersed throughout the 19 km
reach (Pfaffenthal, Walferdange, Steinsel, Hunsdorf, Lintgen and Mersch). Moreover,
information about the maximum water level reached along the river during the flood was
available, as measured by means of a theodolite (altimetric accuracy around ±2 cm) at10

distributed points across the floodplain. The availability of in situ data not only allows
evaluating the results of the assimilation of remote sensing data, but also helps to
contrast the use of space-based and in situ based water level monitoring in a data
assimilation exercise. The comparison of results provides insights on the advantages
and limitations of each data set.15

This paper makes use of the actual measured precipitation rate to drive the hydro-
logic model: hourly rainfall data observed in Livange between the 1st and the 7th of
January 2003 are available. Contrary to Neal et al. (2009), who used predictions of
convective and stratiform precipitation and evaporation, in this case the forcings of the
hydrologic model can be considered as the best available representation of the rain20

field, potentially leading to a more accurate basin response. The set-up of this case
study can be viewed as a realistic representation of an operational application of the
proposed methodology.

Two subsequent SAR images, acquired at two distinct stages of the 2003 flood event
have been used in this study: one was acquired by the ERS-2 satellite during the rising25

limb of the flood wave; the second image by the ENVISAT satellite just after the flood
peak. The two images are shown in Fig. 2 aswell as the six stream gauges distributed
along the river. A LiDAR DEM of the floodplain at a spatial resolution of 2 m and a
vertical accuracy of ±15 cm was fused with remote sensing derived flood boundaries
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to retrieve the water stages (Schumann et al., 2009). RSD observations of the water
stages in the river were retrieved from the two available images, which have a spatial
resolution of 12.5 m: in other words, at each cross section more or less independent
water stages were observed.

2.1 Uncertainty assessment for RSD water stages5

Different approaches can be used to estimate spatially distributed water levels and their
associated uncertainties from a sequence of wet/dry flood edges extracted from radar
imagery and fused with a DEM.

Schumann et al. (2008) and Hostache et al. (2009) proposed procedures to esti-
mate uncertainty associated with RSD water stage data using a Monte Carlo-based10

statistical analysis. Both approaches take into account different sources of uncertainty
(i.e. parameters of image segmentation algorithm, co-registration of geo-information
layers, accuracy of digital elevation model) that affect the retrieval of water eleva-
tion data from remote sensing imagery. First, flood extension limits with their re-
spective geo-location uncertainty are derived from a SAR image using a radiometric15

thresholding-based procedure. Next, the ensemble of flood boundaries is superim-
posed on a DEM in order to estimate water levels. The method takes into account the
uncertainty stemming from the underlying DEM and ultimately provides empirical dis-
tribution functions of water level data from space at every river cross section (Fig. 3).
In assimilation studies, this approach thus potentially allows exploiting the full empirical20

distribution of observed water levels. However, the resulting uncertainty can be very
high (Fig. 3). Moreover the distribution functions often exhibit bias and skewness, es-
pecially in the vicinity of steep embankments. All of these factors render the use of the
empirical distribution functions in data assimilation studies problematic.

In order to reduce the estimation uncertainty, all water level estimates were hydrauli-25

cally constrained. The procedure introduced by Raclot (2006) consisted of applying
hydraulic rules governing overland flow in a floodplain. Up-/downstream relationships
between water level estimates were first defined depending on the location of the water
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stage estimates within the floodplain. Knowing that the water level decreases from up-
stream to downstream, an algorithm imposed the following two constraints on the water
stage estimate intervals: (1) the upper bounds of the water stage intervals have to de-
crease from upstream to downstream and (2) the lower bounds of the water stage
intervals have to increase from downstream to upstream. This algorithm allowed a5

significant reduction of the mean water level estimation intervals, as shown in the pan-
els on the bottom right in Fig. 3. As a result, water level information was available as
cross-section specific values of the possible local water levels and it is assumed that
the “true” water level values are included among them.

3 Simulation design10

Figure 4 shows the setup of the data assimilation experiments using event data. The
methodology consists of assimilating remote sensing-derived water stage observations
into an ensemble of 1-D hydraulic model integrations for a number of cross sections.
The upstream boundary conditions (flow hydrographs) are produced using an ensem-
ble of semi-distributed hydrologic model forecasts with perturbed parameter sets, initial15

conditions and precipitation data.

3.1 Coupled hydrologic-hydraulic model

The semi-distributed hydrologic model is loosely coupled to a 1-D hydraulic model: the
discharge hydrograph computed by the hydrologic model is used as upstream bound-
ary condition to drive the hydraulic simulation, but the hydraulic model does not feed20

back into the hydrologic model.
The rainfall-runoff transformation is carried out using the Community Land Model ver-

sion 2.0 (CLM 2.0) (Dai et al., 2003), a global land surface model built over the 356 km2

drainage area of the Alzette River extending upstream from the gauging station at
Pfaffenthal. To generate meaningful ensembles of model predictions, we followed the25
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procedure of De Lannoy et al. (2007). Model parameters, forcings and initial conditions
of the hydrologic model were perturbed in such a way that the ensemble mean dif-
fers from the observation by a value that is equal to the time average of the ensemble
spread (De Lannoy et al., 2006). More details on the ensemble generation and the
verification measures that were used to monitor the ensemble spread can be found in5

Matgen et al. (2010). The land surface model was initialized a month before the ana-
lyzed flood event to allow spin up and balancing of the state variables in each ensemble
member.

In order to represent the hydrodynamic model uncertainty, an ensemble of 64 up-
stream boundary conditions (i.e. discharge) was generated with CLM 2.0, adopting10

the same methodology as discussed in Matgen et al. (2010). The hydrographs are
shown in Fig. 5 together with the 2 time steps of satellite overpasses for the 2003 flood
event. As opposed to the synthetic experiment by Matgen et al. (2010), no artificial
bias was added here to the output of the hydrologic model. However, we noticed that
during the receding limb of the hydrograph, the ensemble did not bracket the observed15

discharge, indicating a tendency of the hydrologic model to underestimate the inflow
during that period. The ensemble of the hydraulic model realizations or particles (see
box on top-left of Fig. 4) has been produced by integrating the hydrodynamic model
with all the members of the discharge ensemble generated by the hydrologic model for
the analysis period 1st January 15:00 – 7th January 23:00, 2003 (GMT+1).20

The hydraulic model is implemented over a 19 km reach of the Alzette River between
the gauging stations of Pfaffenthal and Mersch. Since flow direction in this area is
mainly parallel to the channel, the 2-D flow field that is typically related to riverbank
overtopping can be accurately approximated by a 1-D representation and thus, the
Hydrologic Engineering Center River Analysis System – HEC-RAS (HEC-RAS 4.0,25

2008) – was set-up for 1-D river flow computation.
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3.2 Data assimilation algorithm

The data assimilation technique applied in this study is a sequential Particle Filter (PF),
an ensemble filtering method that has its origin in Bayesian estimation. Unlike the
widely used EnKF (e.g. Burgers et al., 1998; Evensen, 1994), which simplifies the
recursive estimation by assuming a Gaussian distribution for state variables, the PF5

relaxes the need for restrictive assumptions regarding the shape of the probability den-
sity functions and can easily manage the propagation of a non-Gaussian distribution
through nonlinear hydrologic and hydrodynamic models (Moradkhani, 2008). In the PF
the assumption of Gaussianity is relaxed and the fundamental idea is to represent the
required posterior density by a set of properly weighted samples (Smith et al., 2008),10

named particles, and to compute the estimate based on these samples and weights.

3.2.1 Sequential Importance Sampling (SIS)

The simplest implementation of the PF is based on the Sequential Importance Sam-
pling (SIS) method (see box in the middle of Fig. 4). Each particle consists of a possible
value of the state. The filtering density is approximated by a discrete distribution, whose15

support is the set of particles. The probability mass assigned to each particle is pro-
portional to that particle’s weight, which, in turn, is proportional to the likelihood of the
observation at the assimilation time step (Fearnhead, 2002).

In this case study, a particle represents the water surface line resulting from one
hydrodynamic model run at the assimilation time step t = k, and the number of state20

variables corresponds to the number of cross sections. The particles are sampled di-
rectly from the state-space to represent the posterior probability, and a weight is com-
puted for each particle according to the information contained in the RSD water level
observations. In this case study, the SIS algorithm was implemented using two different
distribution functions that are characteristic for the data sets at hand. A local weight,25

w i ,j , is assigned to any state variable j for any particle i (the index k is left out to avoid
confusion but the weights are recomputed at any time-step of observation acquisition).
Note that the weighting procedure can be adapted to any kind of distribution function.
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Section 2.1.2 describes an approach for retrieving for each cross section an interval
of possible water stage values. In this case the most appropriate way to assimilate the
observation data is the application of a uniform distribution whose boundaries are the
derived maximum and the minimum water stage estimate. Therefore, the likelihood or
weight, w i ,j , of the water level, xi ,j , simulated by particle i at cross section j for the5

time-step of the observation acquisition is simply computed as:

w i ,j =

{
1

b−a for aj ≤xi ,j ≤bj

0 for xi ,j <aj or xi ,j >bj (1)

where x is the state vector of the state variables (simulated water stages at any cross
section j for any particle i ),a and b are the lower and upper observed endpoints or
minimum and maximum, respectively, for any cross section j .10

All assimilation experiments were also carried out using hydrometric station data as
it allowed contrasting results obtained with relatively uncertain but densely distributed
satellite-derived data with those obtained with accurate but poorly distributed in situ
measurements. When assimilating data from these stations, a Gaussian distribution
was used, assuming the recorded water level to be the mean of a normal distribution15

whose shape is also defined by a pre-defined value of standard deviation (Matgen et
al., 2010). Note that water stage estimates obtained from space-borne swath altimeters
were assumed to be normally distributed as well (Andreadis et al., 2007). One weight,
w i ,j , for any water level, xi ,j , simulated by particle i at cross section j for the time-step
of the observation acquisition is therefore computed as:20

w i ,j =
1

σ
√

2π
e

−
(
xi,j−µj

)2

2σ2 (2)

where x is the state vector of the state variables (simulated water stages at any cross
secrtion j for any particle i ), µ is the observation vector and σ is the standard deviation
associated to the observations.
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Regardless of the way the weights of the individual particles are computed (e.g. as-
suming a normal or uniform distribution of residuals), the matrix of weights contains all
local weights, w i ,j , that are obtained for any model run or particle i at all the No ob-
served cross sections j . Subsequently, an overall likelihood of the water level globally
simulated along the river reach for any particle or model run is computed by applying5

the joint probability theory for independent variables:

w i =
No∏
j=1

w i ,j (3)

where No is the number of observations.
The resulting global weight is then normalized.

W i =
w i

Np∑
i=1

w i

(4)10

Np is the number of particles or water surface lines.
The probability obtained with the global weights at the previous steps allows comput-

ing an expectation of the updated water stage as follows for the assimilation time-step
k:

E (xk)=xexp =
Np∑
i=1

xiW i (5)15

3.2.2 Sequential Importance Resampling (SIR)

Because of the stochastic behaviour of the system, the particles tend toward dispersion
and there is a risk that many of them obtain negligible weight during the analysis.
This behaviour, called degeneracy, is defined as the tendency to converge to a single
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point estimate (Moradkhani et al., 2005). To avoid unnecessarily high computational
resources, a resampling step is carried out to eliminate samples with low weight and
to replicate samples with high weight. In other words, the HEC-RAS model is re-
initialized at the time-step of the observation acquisition, k, replicating the water lines
with higher weight (see box on the bottom of Fig. 4). The resampled particles have the5

same weight, until the next assimilation step. The most common resampling scheme is
the Sequential Importance Resampling (SIR) developed by Gordon et al. (1993). The
authors refer to Moradkhani et al. (2005) and Weerts et al. (2006) for more detailed
explanations of the SIR and its use in hydrologic applications.

It should be mentioned that resampling is independent of the proposal distribution10

(Fearnhead, 2002) but it is also possible to implement a PF without resampling. In
any case, the SIR algorithm also suffers from particle degeneracy. Smith et al. (2008)
showed that the resampling step only reduces the degeneracy of the particles. More-
over, a different problem may arise, known as sample impoverishment, causing parti-
cles with high weight to be selected many times, which leads to a loss of diversity in the15

sample. In fact, due to the discrete approximation of the filtering density, inaccuracies
accumulate over many time steps and the result is often a clustering of particles in
small areas of the state-space (Fearnhead, 2002).

The experimental set-up of this case study avoided the problem of sample impover-
ishment through a loose coupling of the hydrologic and hydraulic model components.20

Only the water levels were resampled, while the spread in the input data was main-
tained. Therefore, even in the extreme case where a single particle was retained and
replicated, the spread in the discharge hydrographs ensured that shortly after the as-
similation a sufficient spread of the state variables was obtained. As in Matgen et
al. (2010), at the assimilation time-step k, the estimate of the upstream water level25

x1
exp (Eq. 5) was used to compute the corresponding estimate of the discharge E

(
Q1

k

)
,

using the HEC-RAS internal rating curve. A simple algorithm was then applied for the
updating of the forcings (i.e. discharge Q) until the next assimilation time-step (see box
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on bottom right of Fig. 4):

Q1
i =Q1

i −

Q1
k−E

(
Q1

k

)
Q1

k

 ·Q1
i (6)

where Q1
i is the upstream discharge of particle i and Q1

i is the average, computed dur-
ing the analysis step k, of the hydrograph ensemble. The forcing update was applied
until the next assimilation time-step, based on the assumption that relative model er-5

rors remain constant and that correcting the inflows by the same relative error term at
subsequent time steps will improve the accuracy of the model prediction.

3.3 Synthetic experiment vs. real-event case study

The set-up of the case study was very similar to the one presented for the synthetic
experiment in Matgen et al. (2010), but there were some significant differences that10

need to be highlighted.

3.3.1 First assumption: observations

In the synthetic experiment, one of the basic assumptions was that the observed
and assimilated (synthetic) satellite water level data were unbiased and normally dis-
tributed. In a real case study, the Gaussian assumption may not be satisfied for at least15

some of the remote sensing-derived water stage observations. Examples of cross-
section specific pdfs of RSD data retrieved with the procedure proposed by Schumann
et al. (2008) are shown in Fig. 6. The data obtained from the first satellite overpass
(ERS-2 on 2.01.2003 at 11.00 GMT+1) are given for four representative cross sections.
As it can be seen, the data at each section exhibit a different pdf shape. Obviously, the20

normal distribution is not a suitable candidate distribution for representing the pdf. In
the same panels, the maximum and minimum water levels deriving from the hydraulic
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coherence concept (Hostache et al., 2009) are also shown. It can be seen from these
results that a significant reduction of the water level estimation intervals was obtained
(see also Fig. 3). Here we assume that within each interval the RSD water levels are
uniformly distributed.

Furthermore, Fig. 6 highlights bias and skewness in the RSD data retrieved using the5

first image. The RSD water levels at the first satellite overpass (ERS-2 on 2.01.2003
at 11.00 GMT+1) for the gauged cross section of Lintgen (named 115 in the hydraulic
model) were not centered on the in situ water level measurements.. For this cross
section and the considered time step, the RSD water levels showed a tendency to
overestimate the actual water level. After applying the hydraulic coherence concept, the10

plausible interval was significantly narrowed and, most importantly, included the ground
“truth”. Therefore, the data assimilation algorithm was run assuming the uniform pdf to
represent the statistical distribution of RSD water levels.

3.3.2 Second assumption: model

A further characteristic of the synthetic experiment by Matgen et al. (2010) was that15

the hydraulic model was correct in it structure, parameter set and initial or analysis
conditions. Therefore, the differences between observations and models only derived
from inaccuracies in the input data (i.e. hydrographs at the upstream boundary). This
means that, for a given forcing (Q), the model generally performs equally well (or poorly)
at all cross sections along the river. In other words, due to the fact that the same model20

is used both to generate the artificial satellite observations and to assimilate them, a
model run that is good at a given cross section performs well at all the other cross
sections.

In a real case study, model structure errors (e.g. 1-D flow approximation, errors in
geometry) and parameter uncertainties (e.g. Manning’s roughness values), cause local25

bias that need to be taken into consideration. We expect such models to have a less
uniform behavior along the river reach. This raises difficulties in the selection of a good
model run, as it might happen that one model performs globally well over the whole
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river reach but at the same time has a poor performance at a local level (i.e. at some
cross sections).

In the present case study, the Manning friction coefficients for both the channel and
the floodplain were calibrated by means of discharge measurements carried out in
the period 2001–2009 along the river reach on the hydrometric stations of Pfaffenthal,5

Steinsel, Hunsdorf and Lintgen. Measurements of both water levels and discharge
taken at the same time allowed calibrating Manning’s roughness values for the four
cited cross sections in the main channel. In particular, given the study’s focus on flood
modelling, the calibration aimed to reproduce the highest measurements of discharge.

For the calibration, parameter sets for the friction coefficient in the main channel10

were generated within the values of 0.030–0.060 s m−1/3. The results of the model
runs were compared with the field observations and the selected roughness value for
each cross section was found by minimizing the difference between the rating curves
derived from the ground observations and the internal HEC-RAS.

The calibration reproduced the high discharge values reasonably well, with Man-15

ning’s roughness coefficients set equal to 0.042, 0.044, 0.053 and 0.039 s m−1/3, for
Pfaffenthal, Steinsel, Hunsdorf and Lintgen, respectively. The plots in Fig. 7 display
the calibrated rating curves for the cross sections with available measurements. For
the cross sections in between, the friction coefficient was linearly interpolated. It has
to be noted that the distance between Pfaffenthal and Steinsel is nearly 8 km, which20

is rather significant with respect to the total river reach length (19 km). Therefore we
expect model errors to be higher in the upper part of the river reach. In particular,
the cross section of Walferdange did not have measurement data and its friction value
was deduced from the one in Steinsel, the nearest calibrated cross section. For the
floodplain, a Manning’s coefficient equal to 0.184 s m−1/3 was assumed (Montanari et25

al., 2009).
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4 Results and discussion

The hydrodynamic model, built from the 144 surveyed cross sections, was used to
simulate water levels along the river reach, considering as inputs the ensemble of
64 hydrographs generated by the CLM 2.0. At each satellite overpass, RSD water
level estimated were assimilated into the coupled hydrologic-hydraulic model following5

the procedure outlined in Sect. 3.2. The results are compared against in situ station
data. In addition, some tests with assimilation of these station data are discussed for
reference.

4.1 Global weighting procedure (gw)

4.1.1 Analysis step10

When a satellite observation becomes available, weights are computed for all the sim-
ulations at any cross section. A global weight is computed for every particle according
to the procedure outlined in Sect. 3.2.1.

Figure 8 shows the histograms of computed water stages before and after resam-
pling the particles during the assimilation procedure. The histograms shown here cor-15

respond to the four intermediate gauging stations in Walferdange, Steinsel, Hunsdorf
and Lintgen. The two groups of four panels on top refer to the first satellite overpass
(i.e. ERS-2 image), while those on the bottom refer to the second assimilation time
step (i.e. ENVISAT image). On the left, the results of the assimilation corresponding to
the application of the uniform pdf with the RSD observed data are displayed, while on20

the right the reported outcome corresponds to the application of the normal pdf with
the in situ data. The in situ measurements at six hydrometric stations located on the
river reach also serve as validation datasets for assessing the performance of the anal-
ysis. The performance of the assimilation is evaluated through the mean error value,
the change in distance between the mean of the a priori histogram and the truth com-25

pared to the distance between the mean of the a posteriori histogram and the truth.
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The standard deviation of the histogram both a priori and a posteriori is computed as a
measure of the reduction of uncertainty in the water level at the assimilation time step.

Considering the use of the uniform pdf (panels on the left side in Fig. 8), the results
obtained via the assimilation of the intervals, defined by the maxima and minima of the
retrieved water stages, show a significant reduction of the spread in the a posteriori5

distribution of the simulated water stages. The reduction in uncertainty is evident for
the first time step and becomes even more significant for the second. Moreover, at the
time step of the ERS-2 image acquisition, at all the investigated cross sections the a
posteriori distribution of water level estimates encompasses the truth. However, the
spread reduction is most significant for cross sections in Hunsdorf and Lintgen, located10

in the downstream part of the river, where most of the flooding occurred (i.e. where
most observations of water stage are available). As a result of the analysis there is a
decrease of the mean error value, changing from −0.07 to 0.02 m for Hunsdorf cross
section and from −0.14 to −0.06 m for Lintgen. The decrease in terms of standard
deviation (changing from 0.29 to 0.13 m and from 0.33 to 0.14 m for the two cross sec-15

tions, respectively) further outlines the positive effect that the assimilation procedure
has at a local level. However, for the sections in Walferdange and Steinsel, both lo-
cated in the upstream part of the river reach, we observe a tendency to overestimate
the recorded stage data post assimilation. In both sections the mean error value in-
creases, from 0.22 to 0.37 m in Walferdange and from 0.17 to 0.34 m in Steinsel. The20

fact that the standard deviation is reduced merely illustrates that uncertainty, as it is
defined here, only expresses model uncertainty and not truly probabilistic prediction
limits of the assimilation procedure.

This limitation of the “global weighting procedure” is confirmed by the results ob-
tained at the second assimilation time step. Overall, the assimilation of data retrieved25

from the ENVISAT ASAR image leads to the selection of only two particles; one is
kept for the simulation and the other one is replicated 62 times. This means that only
two simulations provide water surface lines that are included in the RSD intervals at
all cross sections. As a matter of fact, the standard deviation values are negligible
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after this time step, while the mean error values are reduced to less than 10 cm for
all cross sections, except Walferdange, where an overestimation remains apparent.
On all other sections the a posteriori distribution includes the truth. It has to be ob-
served that for Walferdange it was not possible to calibrate the roughness value of the
hydraulic model, due to the unavailability of discharge measurements. Its Manning’s5

coefficient was interpolated considering the values of the upstream and downstream
cross sections. The poor quality of the model results at this cross section could thus
be explained with a badly calibrated model. Moreover, as flooding only occurred on the
downstream part of the river reach, there are no RSD observations available in the up-
per part of the river (i.e upstream of the Steinsel cross section). These limitations partly10

explain the difficulty the global weighting procedure has to select models that perform
well along the entire river reach. This result shows that one of the main assumption of
the synthetic experiment, namely that input data is the only source of error in hydraulic
modelling, can no longer be maintained. Table 1 summarizes the results in terms of
mean error and standard deviation values for the two assimilation time steps and the15

two distribution functions.
Before applying and testing a procedure based on local weighting, an experiment

was carried out with precise in situ measurements of water level, recorded at six cross
sections along the river at the time of the two satellite overpasses. This test represents
a circular way to operate, due to the fact that the same data set is used for assimi-20

lation and validation. However, the rationale behind this test is to distinguish model
errors from observation errors. A good model is expected to provide results that are
centred on the truth at every single cross section. In this experiment the normal pdf
was used, assuming a standard deviation equal to 0.1 m to represent the uncertainty
of the measurements. As can be seen from the panels on the right in Fig. 8, for the25

ERS-2 satellite overpass, the resampled particles show a good reduction of the spread
(standard deviation ranging from 0.04 m to 0.10 m) and always encompass the truth.
However, the assimilation of in situ measurements at the time step of the ENVISAT
image acquisition highlights a contradictory behaviour. The reduction of the spread is
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very significant and only a limited number of particles are selected at any cross sec-
tion. The results are surprisingly similar to those results obtained with the less accurate
RSD observations. However, only in Steinsel did the assimilation methodology predict
the truth, while for all other cross-sections the resampling of the particles either leads
to a slight over- or underestimation. This indicates that no model run performs equally5

well along the entire river reach. We assume that this is due to the fact that important
sources of errors are not sufficiently well represented by the ensemble of model runs.

Table 1 summarises the information in terms of performance and standard deviation
values for the two satellite acquisitions and the two distribution functions. From these
results we conclude that the proposed PF-based filtering approach is an efficient tool10

to assimilate observations described by characteristic distribution functions. However,
the observed over- and underestimations are an indication that local inconsistencies
persist in the calibrated model. This can lead to a sub-optimal functioning of the PF or
indeed the rejection of all models: when one particle represents the water level over
the whole reach as state vector and the weights are computed according to Eq. (3),15

systematic model errors at a local scale heavily impact the weight that is attributed
to individual particles. Rather than selecting and replicating the best particles over-
all, the application of the joint probability theory for independent particles penalizes
particles that have low weight at some locations. As a result, the global weighting
procedure favours compromise solutions that provide acceptable results at all model20

cross-sections. Therefore, it is important to bear in mind that the PF has been ini-
tially designed for removing noise and not systematic errors. A pre-requisite for the
application of the PF is thus to reduce systematic errors in the model prior to any data
assimilation experiment.

4.1.2 Forecasting step25

Following the analysis step, the model is propagated in time: to do so, the hydrody-
namic model is first re-initialized with updated water stages and then run with the up-
dated upstream inflow data until a new observation becomes available. Figure 9 shows
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the stage hydrographs corresponding to the cross-section at Lintgen, when using the
uniform pdf to assimilate the RSD observations. The performance of the forecast is
illustrated considering the RMSE of the ensemble mean water stage, hass, with respect
to the recorded water stage htruth:

RMSE=

√√√√√√
tendw∑

t=tass+dt

(
hass(t)−htruth(t)

)2

tendw−tass
for (tass+dt)< tendw < tend (7)5

which is computed over different time windows, starting from the first time step after
the satellite overpass, tass +dt, and stopping at tendw, gradually increasing with dt, the
time step of the simulation, in order to evaluate the usefulness of the assimilation as a
function of the number of time steps following the analysis step (with tend corresponding
to the last time step of the simulation).10

As it can be seen from Fig. 9, after the ERS-2 satellite overpass, when the analysis
step efficiently drags the simulated water level towards the observed water level, the
RMSE is first close to zero before gradually increasing at subsequent time steps due
to the predominant effect of the inflow condition. Although the relative error term was
correctly inferred from satellite observations, it becomes obvious from Fig. 9 that the15

proposed inflow correction model (Eq. 6) under-predicts simulation errors in the time
window between the two satellite acquisitions. However, the forecasts with filter are
consistently better than the open loop predictions for the first time steps. After the
second acquisition the RMSE approaches zero and the error term in Eq. (6) leads
to correct predictions for more than 5 h after the assimilation, as the error remains20

constant for some time steps. Nevertheless, later on the application of a constant error
prediction term for the inflow leads to wrong predictions, with an underestimation of the
falling limb of the hydrograph. Hence, the analysis step is of fundamental importance in
order to carry out an efficient inflow correction. Errors in the analysis propagate through
the inflow correction model and this can significantly decrease model performance at25

later time steps.
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4.2 Local weighting procedure (lw)

4.2.1 Analysis step

As an alternative to the global weighting procedure, an approach based on local weight-
ing has been developed and tested. In this procedure, each cross section has its own
particle set, with as state vector the water levels at the cross section itself (i.e. the state5

vector is a scalar). Each particle has its own weight, as required for the PF. This proce-
dure is different from global weighting, where one particle has as state vector the water
level over the whole reach.

Once again, the uniform distribution was used in the assimilation algorithm. We
expect a local weighting based method to yield better results when model structural10

and parameterization errors are present. However, this method will be rather sensitive
to local observational errors. The results are given in Fig. 10. The histograms were
obtained at four representative cross sections.

Using the uniform distribution together with the local weighting procedure, the re-
duction of uncertainty is less evident than with the global weighting method. At each15

cross section all particles that provide water stage estimates included in the RSD in-
tervals are retained and equally weighted. As a result, the standard deviation values
are generally higher than before. While the global weighting procedure applied to the
ENVISAT-derived data led to the selection of only two particles, the application of a
local weighting procedure causes many simulations to be retained at each cross sec-20

tion. For instance, in Lintgen after the second assimilation step the standard deviation
is reduced to 0.01 using a global weight but only to 0.24 using local weights. All the
a posteriori distributions include the truth, even if in Walferdange a tendency to over-
estimate the truth persists. With respect to the mean error values, the two weighting
approaches give comparable results at the first assimilation step. For the second satel-25

lite overpass an improvement can be observed for the upper part of the river, whereas
for Hunsdorf and Lintgen, both located in the lower part of the study area, the tendency
to slightly underestimate the truth is further enhanced.
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Finally, the assimilation was carried out using in situ water level measurements at six
cross sections at the time of the two satellite overpasses (Fig. 10). Here we apply the
local weighting procedure to compute the a posteriori histograms. As expected, this is
the easiest setup for the assimilation algorithm to recognise the truth. For both time
steps and in all the cross sections, the resampled particles encompass the truth. This5

experiment shows that if observations are of high quality, the local weighting proce-
dure yields very satisfactory results. Adopting a local weighting procedure significantly
reduced model uncertainty, as demonstrated by the means of the global weighting ex-
periment. However, as we suspect other sources of error than inflows (e.g. spatially
varying friction parameters, intermediate inflows and/or errors in geometry) to be re-10

sponsible for contradicting results obtained in sub-reaches of the model domain, it has
to be expected that these improvements cannot be maintained over many time steps.
It is therefore recommended to use the results of the analysis to find the reasons for re-
gionally conflicting results and to make use of such a diagnosis for improving the model
in a more persistent way than through a mere re-initialization and inflow correction.15

Considering the local weighting variant of the PF, Table 2 summarises the results in
terms of mean error and standard deviation for the two time satellite acquisitions and
for the two distribution functions.

4.2.2 Forecasting step

Figure 11 illustrates the performance of the forecasts considering the local weighting20

procedure to assimilate the ground measurements recorded at six hydrometric sta-
tions. It shows that when the analysis step gives good results (i.e. when the error term
at the time of the observation is correctly estimated), the short-term forecasts with as-
similation are improved. However, the limitation of a possible overcorrection of inflow
persists as the inflow-corrected mid-term to long-term forecasts seem to have less skill25

than the open loop predictions. A possible explanation is that the two satellite observa-
tions were acquired during the hydrograph’s rising limb when model errors are known
to be only weakly correlated in time. This is due to the fact that during the rising limb,
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errors are difficult to predict as precipitation errors continuously add to model param-
eter and model structural errors. This conclusion is in line with the findings of Matgen
et al. (2010) who stated that because of the underlying assumption of constant relative
errors, the inflow correction model is reliable only during flow recession periods.

5 Conclusions5

Our case study illustrates advantages and drawbacks related to the application, in
a quasi-operational context, of a PF-based assimilation of RSD water levels into a
hydraulic model. Two variants of the PF, based respectively on local weighting and
global weighting procedures, are proposed. In the global weighting procedure, a single
particle contains water levels at all cross sections as state vector. Hence, the likelihood10

for each particle is derived from its ability to correctly predict water levels along the
entire river reach. The local weighting procedure attributes a separate particle set to
each cross section (i.e. a single particle has the water level from one cross section as
state vector) and thus associates likelihoods to each particle according to its ability to
correctly predict water stage at a given cross section. The experiment concludes with15

the following findings.
1. Matgen et al. (2010) demonstrated through a series of synthetic experiments

with unbiased model forecasts and observations that a PF-based assimilation scheme
enables the sequentially updating of flood forecasting models. The filter helps to correct
for errors in the forcings and guides the recovery of the correct water depth over a20

modelled river reach. In our real-event case study, even according to the best-case
scenario when precise in situ measurements are assimilated into a hydraulic model,
difficulties arise from the fact that model accuracy varies in space. This makes it difficult
for a global weighting procedure to identify a model run that performs equally well at
all cross sections. In fact, input errors are not the only source of model uncertainty.25

Parameter uncertainty and geometry errors, as well as intermediate inflow errors, lead
to locally biased model results. Therefore, an assimilation scheme that is based on
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a local weighting procedure seems to be the preferred solution when dealing with a
model that cannot be well calibrated and when observations with a very low uncertainty
are to be assimilated.

2. Before any assimilation of data, the set-up and calibration of the hydraulic model
are of paramount importance. It is important to bear in mind that the Particle Filter5

(and also the Kalman Filter) is a method designed to filter noise, not systematic errors.
Our results show that this is particularly important when in situ measurements are
assimilated, because there is a significant risk that the performance of a model at a
local level is not truly representative for its behaviour at a regional level. In this case,
the assimilation can potentially lead to a deterioration of model performance.10

3. The quality of the observation data is the second factor that largely determines
the effectiveness of the filter. In instrumented basins with well-calibrated models, the
hydrodynamic model uncertainty appears low compared to currently available remote
sensing observation uncertainty. Nevertheless, our experiment shows that forecast im-
provements are achievable with currently existing SAR data. However, there is a need15

to take into account the possibility of bias in the observation data. A PF that is based
on a local weighting procedure is the preferred solution when assimilating unbiased
and/or very precise observations as it helps to identify the true water surface line at
the time of data acquisition. In ungauged basins where RSD water levels are the only
available data source, the PF with a global weighting procedure is to be recommended.20

Certainly, methodologies for retrieving water levels from remote sensing observations
need to be improved. The availability of VHR SAR satellites and the global DEMs with
increased accuracy can be used to further reduce uncertainty and bias of such data
sets. The hydraulic coherence concept that was applied in this study is another step
forward. We show that observational uncertainty can be significantly reduced by us-25

ing hydraulic rules governing overland flow in a floodplain to correct unrealistic water
levels.

4. Our results further show the added value of RSD water levels when compared to in
situ measurements. Both data sets appear to be complementary. In situ measurements
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are precise and provide time-continuous data. However, the data sets are only avail-
able as point measurements, which can lead to the over- or under-correction of mod-
els. The RSD information provides distributed water level information over many cross
sections. The uncertainty of water stage estimates inferred from currently operating
sensors, as well as sampling rates of 24 h and less, represent serious limitations. The5

combination of both data sets likely yields the best assimilation results but more re-
search on this topic is required.

5. For operational applications, it is important to achieve a persistent improvement
of the forecasts as a result of a PF-based assimilation of water stage data. Due to the
dominant effect of the upstream boundary condition, this means that the results of the10

analysis need to be used to correct erroneous inflow data. Although this study focused
mainly on an improvement of the analysis step, two limitations of the initially proposed
inflow correction model are highlighted. First, it becomes obvious that the analysis step
is of paramount importance for carrying out an efficient inflow correction: errors in the
analysis propagate through the inflow correction model, thereby potentially degrading15

the skill of the forecasts. Second, the error prediction model itself needs to be reviewed
as it is clearly shown that the underlying assumption of constant relative errors is not
valid, especially during the rising limb of the hydrograph. Hence, we advocate the
development of enhanced error prediction models.
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Table 1. Mean error (mev) and standand deviation (std) values computed for the two satellite
acquisitions before and after the assimilation analysis step, for the four cross sections with
available ground observation measurements, considering the assimilation of the RSD data with
the uniform pdf and the use of the normal pdf with the hydrometric station data.

uniform pdf normal pdf
mev (m) std (m) mev (m) std (m)

before after before after before after before after
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Walferdange 0.22 0.37 0.46 0.28 0.22 0.17 0.46 0.10
Steinsel 0.17 0.34 0.45 0.25 0.17 0.16 0.45 0.10
Hunsdorf −0.07 0.02 0.29 0.13 −0.07 −0.06 0.29 0.04
Lintgen −0.14 −0.06 0.33 0.14 −0.14 −0.11 0.33 0.06
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Walferdange −0.02 0.38 0.28 0.01 −0.08 0.19 0.29 0.02
Steinsel −0.36 0.10 0.28 0.01 −0.42 −0.16 0.29 0.02
Hunsdorf −0.52 −0.08 0.25 0.01 −0.58 −0.29 0.25 0.03
Lintgen −0.54 0.07 0.32 0.01 −0.61 −0.16 0.32 0.03
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Table 2. Idem Table 1, but considering the local weighting variant of the PF.

uniform pdf normal pdf
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Steinsel 0.17 0.36 0.45 0.31 0.17 0.00 0.45 0.14
Hunsdorf −0.07 −0.02 0.29 0.12 −0.07 0.00 0.29 0.08
Lintgen −0.14 −0.17 0.33 0.24 −0.14 −0.01 0.33 0.10
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Hunsdorf −0.52 −0.40 0.25 0.17 −0.58 −0.08 0.25 0.15
Lintgen −0.49 −0.41 0.31 0.24 −0.61 −0.07 0.32 0.13
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Fig. 1. Study site in the Alzette River basin showing: (a) the drainage area down to Pfaffen-
thal and the 19 km river reach whose geometry is represented by the cross sections, (b) the
hydrometric stations along the river.
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Fig. 2. The 2 available satellite images in backscatter values: (a) ERS-2 SAR image, (b)
ENVISAT ASAR image. The hydrometric stations are also shown. In radar imagery, flooded
areas appear in black colour due to the comparatively low signal return on open water bodies.
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Fig. 3. Diagram showing an example of: (a) flood extent derived from a satellite image superim-
posed on the DEM and the river cross-section location, (b) illustration of water level extraction
method from inundation extent and cross-section and (c) the remote sensing derived water
levels along a portion of stream (c) before and (d) after the hydraulic coherence constrain.
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Fig. 4. Flowchart of the data assimilation experiment.
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Fig. 5. Ensemble of the 64 upstream boundary conditions generated by the CLM 2.0. The
gauged flow is also shown in bold line and the time of the two satellite overpasses are overlaid.
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Fig. 6. Cross section specific empirical histograms of RSD water levels for four hydrometric
sections, shown with numbers increasing in river flow direction, for the first satellite overpass
(ERS-2 on 2.01.2003 at 22:00 GMT+1). RSD, minimum, maximum and station recorded water
levels (where available) are also shown.
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Fig. 7. Calibrated rating curves for the cross sections with available discharge measurements.
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Fig. 8. Histograms of water stages at 4 intermediate cross sections, before and after the
resampling step (gw: global weight). Left panels show the application of the uniform pdf on the
RSD water levels, right panels the use of the normal pdf on the hydrometric station data. Top
graphs refer to the first ERS-2 overpass; bottom ones to the ENVISAT overpass. Gauged level
and its presumed uncertainty are also shown.
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Fig. 9. Stage hydrographs at the cross section Lintgen with the 2 assimilation time steps
(bottom panel) considering the RSD water level intervals assimilated through a uniform distri-
bution: the forecasting performance is illustrated with the RMSE evolution in time (top panel).
The cyan line represents the RMSE before assimilation and the black line displays the RMSE
after assimilation.
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Fig. 10. Idem Fig. 8, but applying the local weighting approach for every location along the river
(lw: local weight).
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Fig. 11. Idem Fig. 9, but for the local weighting procedure and the assimilation of the ground
measurements.
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