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Abstract

In this paper, reanalysis fields from the ECMWF have been statistically downscaled to
predict from large-scale atmospheric fields surface moisture flux and daily precipitation
at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain) during the 1961–2001
period. Three types of downscaling models have been built (i) analogues, (ii) analogues5

followed by random forests and (iii) analogues followed by multiple linear regression.
The inputs consist of data (predictor fields) taken from the ERA-40 reanalysis. The
predicted fields are precipitation and surface moisture flux as measured at the two ob-
servatories. With the aim to reduce the dimensionality of the problem, the ERA-40
fields have been decomposed using empirical orthogonal functions. Available daily10

data has been divided into two parts: a training period used to find a group of about
300 analogues to build the downscaling model (1961–1996) and a test period (1997–
2001), where models’ performance has been assessed using independent data. In
the case of surface moisture flux, the models based on analogues followed by random
forests do not clearly outperform those built on analogues plus multiple linear regres-15

sion, while simple averages calculated from the nearest analogues found in the training
period, yielded only slightly worse results. In the case of precipitation, the three types of
model performed equally. These results suggest that most of the models’ downscaling
capabilities can be attributted to the analogues-calculation stage.

1 Introduction20

Global Climate Models (GCM) and Numerical Weather Forecast (NWF) models solve
discretized versions of the primitive equations that govern the evolution of the climate
system and, particularly, its atmospheric component. Due to technical limitations of
current supercomputers, GCM are currently run using resolutions ranging from about
4 to 1.5 degrees for climate simulations and typically 0.5–0.25 degrees for operational25

NWF models.

1952

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/1951/2011/hessd-8-1951-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/1951/2011/hessd-8-1951-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 1951–1985, 2011

Downscaling of
surface moisture flux

and precipitation

G. Ibarra-Berastegi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Statistical downscaling is one of the approaches that have been developed and used
to regionalize the outputs from GCM and NWF i.e. to construct region- or site-specific
scenarios. The rationale for this is based on the fact that the GCM and NWF are not
able to simulate surface variables with enough accuracy on regional and local scales.
Statistical downscaling consists in a search in the observed data for a statistical re-5

lationship or transfer function between the surface climate variable to be downscaled
(predictand) and potential predictors, which are frequently the large-scale upper air
variables.

The analogue downscaling approach tries to identify from historical records, synoptic
conditions that are similar to the current atmospheric state as described by GCM and10

NWP models. The idea is that historical records at a given location obtained under past
similar atmospheric conditions, can now be expected to be a good estimate for current
observations at the same place. The Euclidean distance is usually employed (Matulla
et al., 2008) to compare current and past synoptic conditions and then identify those
which are close (similar) to the current state of the atmosphere. In order to reduce15

the dimensionality of the phase space and to help in the finding of good analogues,
empirical orthogonal functions (EOF) are usually calculated from raw synoptic data.
It is recommended to retain a number of EOF representing 80%–90% of the overall
variability (Matulla et al., 2008).

The analogue technique has often been used as a downscaling method (Zorita and20

von Storch, 1999; Fernández and Sáenz, 2003; Timbal and Jones, 2008) and it per-
forms similarly when compared with Canonical Correlation Analysis (CCA) while out-
performing nonlinear approaches like Classification and Regression Trees (CART) and
neural networks (NN) (Zorita and von Storch, 1999).

For downscaling purposes, several regression techniques – linear or not – have been25

also widely used. In this line, for surface temperature, a classical CCA seems to per-
form better than other linear methods (Huth, 2002). Among nonlinear methods is worth
mentioning the use of different types of NN which are reported to overperform linear
models though not overwhelmingly (Weichert and Bürger, 1998; Davy et al., 2010).
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Other works suggest that for statistical downscaling of temperature, linear models can-
not be beaten by NN (Huth et al., 2008).

A combination of analogues with other techniques like CCA, NN or a Bayesian model
for precipitation downscaling but at 6-hourly level and in forecasting mode has also
yielded good results (Fernández-Ferrero et al., 2009; Fernández-Ferrero et al., 2010).5

In the last decade, a great number of machine learning algorithms have been de-
veloped (Witten and Frank, 2005). Among them, Random Forests (RF) has become
increasingly popular for several reasons, being the most important one its ability to
model nonlinear relationships.

RF is based on the CART technique, in which a tree is built to relate a set of inputs10

to a group of output variables. The relationship between inputs and outputs may be
highly nonlinear if taken as a whole, but if analyzed at different ranges, the nature of
the relationships inside each range may be modelled in a simpler way. For this reason,
in a CART the feature space is recursively splitted into a set of regions in which a
simple model like a constant (Hastie et al., 2001) or a simple linear regression can be15

fitted. As the splitting process progresses starting from the root, the tree is divided at
subsequent nodes into branches and sub-branches until reaching the leafs (a more
homogeneous region where a simple regression between inputs and outputs is more
evident). The final stage implies going backwards to the tree obtained and prune it
using cost-complexity pruning algorithms (Hastie et al., 2001).20

Random forests are built using CART but adding two layers of randomness (Liaw
and Wiener, 2002):

1. If a number of bootstrap samples from original data are drawn, a regression tree
can be obtained with each sample, thus obtaining a “forest”.

2. In standard trees, each node is split using the best split among all variables. In a25

random forest, for each tree, each node is split using the best among a subset of
m predictors randomly chosen at that node.
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The only relevant parameter in running the RF algorithm is m (the number of predic-
tors made available to each node). Being p the number of candidate predictors, values
of m like p/3 or p0.5 are usually adopted. Nevertheless, results do not strongly rely on
the choice of m (Breiman, 2001).

RF can be used for classification and regression purposes. In the case of regres-5

sion, the output of the RF model will simply be the average of the outputs obtained in
each tree. RF are reported to clearly overperform CART (Siroky, 2009), being one of
RF’s most important advantages when compared with other techniques, that overfit-
ting never takes place (Siroky, 2009). The relative importance of each predictor on the
predictand is estimated at each tree by calculating the increase in the mean square10

error due to permuting a given predictor. If that regressor has no predictive value for
the response, it should not make a difference if its values are randomly permuted be-
fore the predictions are generated (Grömping, 2009). Then, differences due to these
permutations in all the trees are averaged and normalized by the standard error. This
is known as mean decrease in accuracy of the predictor.15

A thorough revision regarding the major mathematical aspects of RF, can be found in
the literature (Breiman et al., 1984; Breiman, 2001; Hastie et al., 2001; Breiman, 2002;
Liaw and Wiener, 2002; Ishwaran, 2007; Siroky, 2009; Grömping, 2009)

When compared with other techniques also intended to deal with nonlinear regres-
sion, in the case of similar downscaling problems the literature shows that RF and a20

type of NN, the multilayer perceptron, perform similarly (Eccel et al., 2007).
In the case of the Iberian Peninsule (IP), precipitation shows an important spatial

variability with typical yearly values ranging from 300 to 3000 mm depending on the lo-
cation. The variability of precipitation is associated with several atmospheric patterns,
depending on the area or the season of the year: East Atlantic (EA), North Atlantic Os-25

cillation (NAO); Southern Oscillation Index (SOI); Scandinavia (SCAND) (Rodriguez-
Puebla et al., 1998; Fernández et al., 2003).

Although in precipitation downscaling there is little consensus as to the choice of
atmospheric predictor variables (Wilby and Wigley, 2000), the most common input
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variables have been 850 and 500 hPa heights. In other works, additional variables like
500 hPa temperature, 700 hPa levels, 500 hPa relative humidity, 500 hPa wind compo-
nents, 1000–500 hPa thickness and 850 hPa temperature fields to mention a few, have
also been used (Cavazos, 2000; Wilby and Wigley, 2000; Schoof and Pryor, 2001).
In more recent works, the predictors for the downscaling procedure include mean sea5

level pressure, geostrophic wind field, specific humidity and moisture flux (Wei Yang et
al., 2010) or total precipitable water (Timbal and Jones, 2008)

In the case of precipitation, using highly nonlinear techniques like radial basis func-
tion (RBF) neural networks instead of more simple linear models, only represents a
marginal improvement (Weichert and Bürger, 1998). Other works also suggest that in10

the case of precipitation, a linear model of downscaling can perform equally or even
better than highly nonlinear neural networks (Trigo et al., 2001). A comparison be-
tween NN and linear downscaling for daily temperature and precipitation showed that
NN performed better, although the results with precipitation have been significantly
poorer (Schoof and Pryor, 2001). As reported in the literature, performance tends to15

be better in winter (Timbal and Jones, 2008; Wei Yang et al., 2010) and mid latitudes
(Cavazos and Hewitson, 2005). Typical correlation coefficients between predictions
and observations may reach values around 0.7 for downscaling of monthly averages
and about 0.5 for daily precipitation.

The technique of analogues have been used for precipitation downscaling in the IP20

with similar results and are reported to outperform NN (Zorita and Von Storch, 1999).
Analogues followed by a bias-correcting heuristic formula has also been used for pre-
cipitation downscaling (Timbal and Jones, 2008).

Generally speaking, the combination of classification schemes like Cluster Analy-
sis (Schoof and Pryor, 2001), or Self-organizing maps (Cavazos and Hewitson, 2005)25

followed by regression techniques (linear or not) seem to yield the best results for pre-
cipitation downscaling. A comprehensive review of methods and predictors used can
be found in the literature (Wilby and Wigley, 2000).
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At a hemispheric scale, changes in the vertically integrated moisture transport are
connected to the different phases of the NAO (Hurrell, 1995). Regarding the moisture
transport on the Iberian Peninsule (IP), the NAO and EA patterns are known to play
a key role (Fernandez et al., 2003). The two most important moisture source regions
affecting the IP are in a tropical–subtropical North Atlantic corridor that extends from the5

Gulf of Mexico to the IP, and the IP itself and the surrounding Mediterranean (Gimeno
et al., 2010). The importance of these two source areas varies throughout the year,
and also with respect to different climatic regions inside the IP.

Some works have also focused on the downscaling of different moisture variables. A
set of downscaling models built on multiple linear regression showed that in the case10

of humidity variables, the most efficient predictors are the low-medium tropospheric air
humidity variables (up to 500 hPa) and adding circulation and/or temperature variables
to the predictors could only bring a marginal or even no improvement over the down-
scaling models based on the humidity variables only (Huth, 2005). The results show
that in the case of water vapour pressure and dew point temperature, results are better15

than those obtained for relative humidity and dew point depression (Huth, 2005). Like
in the case of precipitation, a comparison of water vapour downscaling methods using
linear regression and RBF neural networks, showed that a nonlinear model like RBF
outperfoms linear models, although not dramatically (Wilby and Wigley, 2000).

In this study, a combination of analogues, RF and linear regression techniques are20

applied, analyzed and compared for downscaling purposes in the Ebro Valley (Spain)
(Fig. 1). The target variables are the moisture flux and precipitation. Changes in the
variables involved in the water cycle in the area of interest (Ebro Valley) like moisture
flux and precipitation, are likely to have an impact on future changes regarding the
overall water cycle in the Mediterranean Sea. Gaining a better knowledge on down-25

scaling techniques applied to the variables involved in the water cycle, may contribute
to a more accurate regionalization of future projections as described by large-scale
climatic models (Mariotti, 2010).
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Precipitation is one of the most commonly used variables for climate change studies,
since rainfall is one of the most important limitating factors for a whole set of natural
and economic processes.

In the case of the surface moisture flux (in this paper, denoted as the vector q10 with
zonal and meridional components qx and qy ), it is a variable closely related with the5

hydrological cycle over any area. Most of the humidity transport takes place through
low-level atmospheric layers and is affected by several surface characteristics such as
topography, land surface and others that vary in the smallest scales.

Unfortunately, historical data from rawinsonde observations are quite scarce, and the
study cannot be currently easily extended to vertically integrated moisture transports in10

order to close the atmospheric hydrological cycle through the whole troposphere. Thus,
for this study the moisture fluxes at the surface are considered as an initial problem
before further studies allow an analysis of tropospherically integrated transports.

Section 2 presents the data used in the study and the methodology applied to per-
form and evaluate the forecasts. Results are presented in Sect. 3. Finally, conclusions15

and prospects for future work are presented in Sect. 4.

2 Data and methodology

The previous experiences gained by the research group in the combination of ana-
logues and linear/nonlinear techniques (Fernández and Sáenz, 2003; Fernández-
Ferrero et al., 2009; Fernández-Ferrero et al., 2010) has inspired the methodology20

used in this paper. In this work, analogues, linear regression and random forests have
been used to build statistical downscaling models for surface moisture flux and precip-
itation at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain) corresponding
to the period 1961–2001. The models have been built at a daily time scale.
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2.1 Data

For q10 and precipitation downscaling purposes, the large-scale observed predic-
tors have been derived from the European Centre Medium-RangeWeather Fore-
cast (ECMWF), corresponding to the ERA-40 (Uppala et al., 2005) and ERA-Interim
reanalysis with a 1.125◦×1.125◦ resolution. ERA-40 and ERA-Interim reanalysis are5

projected onto the same grid. The studied area is a rectangle of 35 gridpoints with
latitudes in the range (39.375◦ N, 43.875◦ N) and longitudes between −3.375◦ E and
3.375◦ E, that is, the North-Eastern part of the Iberian Peninsule, and more specifically,
the Ebro valley (Fig. 1).

The original predictors as defined in ERA-40 and ERA-Interim reanalysis grid were10

as follows: geopotential (Z), temperature (T ), zonal wind speed (U), meridional wind
speed (V ) and relative humidity (RH) defined at the following 5 levels: 300, 500,
700, 850 and 1000 hPa, Additional variables considered were mean sea level pres-
sure (MSL), surface pressure (SP), zonal wind speed at 10 m (U10), meridional wind
speed at 10 m (V 10), temperature at 2 m (T2) and dew point temperature at 2 m (D2).15

Finally, for all these variables at the 35 gridpoints, data were available at 00:00 h,
06:00 h, 12:00 h and 18:00 h. That made a total of 4200 daily predictor variables in
the area considered.

With the aim to reduce the dimensionality of ERA-40 and ERA-Interim data, EOF
were calculated, selecting for each variable a varying number of EOF under the con-20

dition that the retained fraction of variance was at least 80%. With this criterium, the
number of EOF for each variable ranged from 5 to 28, thus notoriously reducing the
number of predictors from 4200 to a final global amount of 79. These 79 leading EOF
were calculated for ERA-40 (Table 1) and ERA-Interim (Table 2). The four values corre-
sponding to the same days (00Z , 06Z , 12Z and 18Z) are considered as four samples25

at different times during the computation of the EOFs in the same way that data with
time delays is used during the computation of extended EOFs (Weare and Nasstrom,
1982).
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Surface observations at two locations (Zaragoza and Tortosa) were obtained from
the European Climate Assessment (ECA) dataset http://eca.knmi.nl (Klein Tank et al.,
2002). The variables obtained from ECA repository were temperature, relative humid-
ity, mean sea level pressure, precipitation and wind speed and direction from which
zonal and meridional components (Us and Vs) were computed. Mean sea level pres-5

sures at Tortosa (48 m altitude) and Zaragoza (247 m altitude) were corrected to sur-
face pressure (SP) by assuming that the vertical temperature profile corresponds to
the adiabatic lapse rate. Combining SP with observed temperature and relative humid-
ity, specific humidity (q) values (kg water vapour/ kg air) at surface level were calculated
at both locations using the Clausius-Clapeyron equation. Zonal and meridional mois-10

ture fluxes (qx and qy expressed as kilograms of water vapour per square meter per
second) were calculated as follows:

qx = qρUs (1)

qy = qρVs (2)

where ρ represents the density of air as a function of temperature,15

In Zaragoza, the meridional component of q10 (qy ) accounts for 29.3% of the over-
all variance associated to the q10 vector, while in Tortosa, the meridional component
represents as much as 67.3%. The most important values of the variables measured
in Zaragoza and Tortosa can be seen in Table 3.

In a similar way as described above, (Clausius-Clapeyron followed by Eqs. (1) and (2)20

fed with U10 and V 10 instead of Us and Vs), zonal and meridional q10 were calculated
on the ERA-40 and ERA-Interim gridpoints using T2, D2, SP and ρ. For comparison
purposes, zonal and meridional components of q10 (qx and qy ) at the nearest grid-
points to Zaragoza (13.6 km away) and Tortosa (65.1 km away) were considered. The
reason is that any downscaling effort on q10 should yield better results that the values25

of q10 as calculated from both reanalyses at the geographically closest gridpoints.
Additionally, daily precipitation data were also retrieved from Global Precipitation Cli-

matology Project (GPCP) http://jisao.washington.edu/data/gpcp/daily/ which provides
1960
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gridded precipitation data with a 1◦×1◦ resolution (Huffman et al., 1995, Adler et al.,
2003).

The precipitation data from the GPCP dataset (Adler et al., 2003; Huffmann et al.,
2001) is used because previous studies (Lucarini et al., 2007) have already found
inadequacies in precipitation data from ECMWF reanalyses. Precipitation observations5

are not directly assimilated during the preparation of reanalyses and therefore, they are
produced by the model used in the data assimilation system. Therefore, it is better to
use precipitation data from other sources like GPCP.

In the GPCP grid, the closest gridpoints to Zaragoza and Tortosa are located respec-
tively 59 and 36 km away from the observatories. Persistence and precipitation data as10

given by the GPCP dataset at these two gridpoints were used as additional reference
values. Again, the idea behind the use of these data is that any downscaling effort on
precipitation could only be justified if better results than local persistence and/or raw
GPCP data at these two nearest gridpoints were obtained.

2.2 Building the models15

The original database consisted of 14 975 daily cases spanning from 1961 through
2001 and was splitted into a training (years 1961–1996, 13 149 cases) and a test period
(years 1997–2001, 1826 cases). In both the training and the test periods, daily ERA-
40 and surface ECA values were available. Additionaly, for the test period ERA-Interim
data were also available.20

In this study, downscaling models have been built for two locations (Zaragoza and
Tortosa) and three variables: zonal and meridional components of q10 and precipita-
tion. The steps followed in all cases have been:

1. For each of the 1826 days belonging to the test dataset, the 300 nearest cases
among the 13 149 days corresponding to the training database are selected. The25

nearest cases are those with the smallest Eucledian distance to the current
case as defined in the 79-dimensional hyperspace corresponding to the historical
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ERA-40 data (Table 1). The reason for choosing a number of 300 analogues was
to allow for a reasonable number of cases (4–5) for each of the 79 candidate
predictors, thus avoiding overfitting at the following regression stage.

2. With these 300 analogues, two downscaling regression models are built using as
candidate predictors the 79 ERA-40’s principal components and, as predictand,5

the chosen variable (any of the the two components of q10 or precipitation in
Zaragoza or Tortosa). Two techniques are used to build the models: random
forests (RF, with m= 9 predictors) and multiple linear regression (MLR, stepwise
regression).

Being 79 the number of predictors, several values of m as suggested by the lit-10

erature were tested with RF: m= 9 (790.5, usually employed for classification),
m = 26 (79/3, usually employed for regression), m = 79 plus the sequence of
m = 10,20,30,40,50,60,70. For these ten candidate values of m, the correla-
tion coefficients between observations and predictions were computed for all the
variables and also, the most influential inputs were identified. The correlation15

coefficients obtained with the different candidate values of m were not different
at a 95% confidence level for all the variables studied. Also, the relevant inputs
identified were roughly the same – as could be expected from CART-based RF
(Grömping, 2009), – so for the sake of simplicity m=9 was the final value selected
for this study.20

As mentioned above, two regression models for each variable (predictand) are
fitted on the 300 nearest cases. In all cases, the candidate predictors are the
79 EOF from ERA-40 reanalysis and the predictand, the surface variable (qx, qy ,
or precipitation in Zaragoza or Tortosa as derived from ECA observations). One
of the models is fitted using a MLR and the other using random forests.25

Due to the gaps in the ECA database, some historical records of the predictands
corresponding to the most similar 300 days identified in the atmospheric circula-
tion analogues (reanalysis), are not present. For this reason, regression is carried
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out using a set of cases in which predictors and predictand are present that typ-
ically ranges between 250 and 300. For each of the 1826 days belonging to the
test dataset, two models (RF and MLR) are fitted in this way.

3. Using the 79 EOF corresponding to every day of the test dataset as inputs, the
two models previously fitted (RF and MLR) on the 250–300 most similar historic5

records were used to calculate an estimated value of the chosen variable for the
same day in Zaragoza or Tortosa. To test the sensitivity of both techniques (RF
and MLR) to the use of ERA-40 or ERA-Interim analyses, once the two models
have been fitted on ERA-40 data, both models are run with two different sets of
inputs: (i) the 79 EOF from ERA-40 (models denoted as RF ERA-40 and MLR10

ERA-40) and (ii) the 79 EOF obtained with ERA-Interim (RF ERA-Interim and
MLR ERA-Interim). Additionally, a plain average obtained from ECA values cor-
responding to the 250–300 most similar daily cases identified, is used to build an
additional analogue-type downscaling model (denoted as “Analogues” model).

4. Finally, as mentioned above, the most evident estimations of q10 and precipitation15

were also considered. In the case of zonal and meridional components of q10,
(qx, qy ) the values directly calculated using ERA-40 and ERA-Interim reanalyses
raw data at the geographically nearest points to Zaragoza and Tortosa. In the
case of precipitation, the idea is the same but two other references were used.
The first one was the GPCP satellite and rain gauge merged precipitation data set.20

The second one was just to consider the persistence of levels from the previous
day.

2.3 Evaluation of models

All the models have been evaluated and intercompared using the 1826 observations
corresponding to the test dataset. Being the objective of this paper to assess the overall25

performance of the models mentioned above, a set of statistical indicators has been
chosen to compare observations and models’ predictions:
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i. correlation coefficient (R).

ii. ratio of standard deviations (RSD) between observations and model’s standard
deviations. A good model should show values near one.

iii. root mean square error (RMSE).

With the aim to summarize in a visual manner models’ performance according to this5

group of three statistical indicators (R, RSD and RMSE), Taylor diagrams (Taylor, 2001)
have been plotted. Additionally, three more statistical indicators have also been con-
sidered:

iv. fraction of two (FA2). FA2 indicates the fraction of cases in which the ratio between
observations and model’s predictions falls in the range [0.5–2].10

v. ratio of means (RM) between observations and model’s averages.

vi. index of agreement D. In order to overcome some of the widely reported problems
associated to the plain use of the correlation coefficient, an additional indicator
called index of agreement has been proposed (Wilmott, 1981; Wilmott, 1982;
Wilmott et al., 1985) and adopted for this study. It is an indicator of the overall15

agreement between model and observations that ranges between 0 and 1 (perfect
model).

In all cases, bootstrap resampling (1000 samples extracted from the test data set)
has been used to calculate 95% confidence intervals corresponding to these statistical
indicators. Likewise, for model intercomparison purposes, 95% confidence intervals20

have also been calculated to assess differences between two models’ performances
as described by the set of indicators mentioned above.

The relative importance of input variables is to be assessed in two different ways,
depending on the nature of the model. In the case of RF models, input relevance is
related to the increase of the mean square error MSE (%) due to the random permu-25

tation of the input variable’s values. For linear regression models, the most important
1964
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variables will be the ones that after being incorporated into the equation, are respon-
sible for the highest increases in the overall determination coefficient R2 (Grömping,
2009). The most influential predictors with one technique or another (MLR or RF) are
roughly the same, as could be expected from the literature (Grömpig, 2009).

3 Results5

The main results can be seen in Tables 4–5 and Figs. 2–7. In both locations (Zaragoza
and Tortosa) models’ best performance for precipitation (R ∼ 0.5) is notoriously poorer
than for any of the two components of q10 (R ∼ [0.8,0.85]). The reason for this is that
the nature of precipitation is much more intermitent and dependant of very local factors
than for the other predictands.10

It is worth mentioning that models fitted with ERA-40, when they are fed with ERA-
Interim data, experiment a deterioration in performance which is more evident in ana-
logues followed by MLR. In the case of analogues+RF, the degradation is much smaller
being a reasonable option for the future fitting RF models on ERA-40 data (covers the
period from mid-1957 to mid-2002) and use them with the more recently available15

ERA-Interim (from 1989 onwards). For zonal and meridional components of q10 at
both locations, the comparison of the downscaling using raw ERA-40 or ERA-Interim
data at the nearest gridpoints, indicates that ERA-Interim values tend to be more ac-
curate than those yielded by ERA-40. The lack of continuity between both reanalyses
suggests that the procedures and algorithms used in ERA-Interim provide a better de-20

scription of at least q10. Even though they perform worse than RF ERA-40 and MLR
ERA40 models, both reanalyses’ direct outputs yield reasonable estimates of q10, par-
ticularly for the meridional component. The overall performance of raw ERA-Interim
predictions, particularly in the meridional component of q10 at Zaragoza and Tortosa,
compares well with that obtained by analogues. Zaragoza (13.6 km) is closer than Tor-25

tosa (65.1 km) to its corresponding nearest gridpoint and this can explain why results
at Zaragoza are somewhat better than those at Tortosa.
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Analyzing in detail the downscaling of q10 in Zaragoza, it can be seen that RF ERA-
40 gives the best results with values of R of 0.86 (zonal) and 0.85 (meridional). How-
ever, the comparison with MLR-ERA40 (Table 4) indicates only a marginal improve-
ment in favour of RF ERA-40. For the zonal component of q10 (70.7% of variance),
R, RMSE, FA2, and D skill scores exhibit better values with RF ERA-40 model than5

with MLR ERA-40. RM values are not different at a 95% confidence level while RSD
is closer to 1 for MLR ERA-40 (Fig. 2). In the case of the meridional component of
q10 (29.3% of variance), RMSE, RM and D are not different at a 95% confidence level,
while RSD and RM are better for the linear MLR ERA40 model. Only the correlation
coefficient is higher for RF ERA-40 (Fig. 3).10

In the case of the zonal component of q10 in Tortosa (Fig. 4) (Table 5), RF ERA-40
and MLR ERA-40 at a 95% confidence level do not have different values of FA2, RM,
and D. R and RMSE are better for RF ERA-40 while MLR ERA-40 has got a better
RSD indicator. For the meridional component of q10, (Fig. 5) (Table 5), RF ERA40
slightly overperforms MLR ERA40 in all the statistical indicators, except for RSD. In15

all the cases mentioned above, it can be seen that analogues only have a little worse
performance when compared with RF ERA-40 and MLR ERA-40. Therefore, it can
be concluded that obtaining analogues represents the most efficient step in the model
building process and accounts for the most important part of the goodnes of fit. Using
RF or MLR at a next stage adds a much smaller improvement. The employment at this20

second stage of RF, a recently developed machine learning algorithm intended to deal
with highly non linear mechanisms like the ones known to be involved in atmospheric
processes, does not represent a net improvement when compared with the classical
MLR model.

The most influential variables in the downscaling of q10 at both locations, have been25

identified, as mentioned above, by computing the increase (%) of MSE due to the
permutation of their data when acting as inputs for the RF. In the 1826 RF models
fitted, the most frequently selected as influential inputs have been the first EOF of V 10,
the first EOF of T2 and the first and second EOF of D2 (Table 1). The interpretation
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is as follows. As can be seen in q10 roses at both locations (not shown) the direction
of q10 at both locations is mainly zonal. The meridional component of surface q10
affects moisture fluxes due to the fact that meridionally flowing air must cross mountain
ranges, thus suffering a strong Föhn effect. Similarly, warmer air leads to a higher
moisture flux due to the Clausius-Clapeyron equation. The variability in the dew-point5

temperature enclosed in the two leading EOFs reflect the main temporal (1st EOF) and
spatial changes (2nd EOF) of the humidity in the air.

Regarding precipitation at both locations, for RF ERA-40, MLR ERA-40 and ana-
logues, the statistical indicators R, RMSE and FA2 do not differ at a 95% confidence
level. In both locations, the model of analogues can represent better the observed10

mean, MLR ERA-40 exhibits the best RSD and RF ERA-40 has the best D value.
Therefore, it can be concluded that, if globally considered, RF ERA-40 and MLR ERA-
40 models do not represent any significant improvement over the plain use of ana-
logues (Tables 4–5). At both locations, these three models overperform GPCP predic-
tions and also persistence. The results are similar to those found in the literature (see15

Introduction). The most important input variables for precipitation downscaling have
been the first EOF of relative humidity RH, the first EOF of meridional wind speed V
and the second EOF of dew-point temperature D2. Similarly, precipitation depends
on the availability of moisture and the saturation of air (leading EOF of relative humid-
ity), the direction (northern/southern) from which the air flows (1st EOF of V ) and local20

effects accounted for by the second EOF of D2.

4 Conclusions and future outlook

The results of the statistical downscaling carried out for q10 and precipitation indicate
that analogues represent a powerful and at the same time, easy-to-use tool. In most
cases, their results overperform raw predictions derived from reanalysis data (ERA-40,25

ERA-Interim and GPCP) at the nearest gridpoints or persistence of daily precipitation.
Incorporating a second regression stage represents a clear though not overwhelming

1967
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improvement. However, using at this second stage either a classical linear model or a
more sophisticated and difficult to implement tool like RF, does not make a net differ-
ence. As mentioned in the Introduction, similar effects with other nonlinear techniques
like NN have been described in the literature. The explanation for this may be in the fact
that the combination of a great number of highly nonlinear mechanisms involved in the5

downscaling might result in a linearization of the overall effect. A further explanation
already pointed out in the literature (Zorita and Von Storch, 1999) might be that most of
the overall nonlinearity involved, has been already captured and described at the stage
of analogues. As a conclusion, the combination of two techniques which are quite easy
to use and implement like analogues and multiple linear regression, can be the best10

compromise between accuracy and simplicity in similar downscaling problems.
However, an important shortcome of MLR is the lack of continuty between ERA-

40 and ERA-Interim which introduces a heavy degradation in model’s performance,
thus not making possible the use of an important set of historical records and learning
periods, currently available only as ERA-40. Instead, RF models fitted on ERA-40 data15

and fed with ERA-Interim, experiment a much smaller deterioration. The reason might
be that MLR models heavily rely on the coefficients of an equation and the differences
between ERA-40 and ERA-Interim input data tend to be amplified by the values of the
coefficients. However, the nature of the regression with RF is different and is based on
CART where homogeneous areas in the final leafs are sought as the trees split at the20

different stages. In this sense, it can be expected that similar homogeneous areas can
be described either using ERA-40 or ERA-Interim EOF (Tables 1–2) as inputs, since
leading EOF from both reanalysis are likely to be describing the same physical effects
on the studied area.

Further research is currently being carried out by this group in two directions: (i) to25

find a relationship between ERA-Interim reanalysis and moisture flux at several lo-
cations on the Ebro Valley but at different upper levels (ii) to apply the methodology
followed so far to other variables involved in the water cycle.

All the calculations have been carried out using the freely available software R (R
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core development team, 2009) and apart from the core module, four specific pack-
ages have been used: (i) “FactoMineR” for calculation of EOF (Husson et al., 2008),
(ii) “MASS” for multiple linear regression (Venables and Ripley, 2002.), (iii) “random-
Forest” for RF (Liaw and Wiener, 2002) and (iv) “plotrix” for Taylor diagrams (Lemon,
2006).5
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Fernández-Ferrero, A., Sáenz, J., and Ibarra-Berastegi, G.: Comparison of the performance of

different analogue-based Bayesian probabilistic precipitation forecasts over Bilbao, Month.15

Wea. Rev., 138, 3107–3119, 2010.
Gimeno, L., Nieto, R., and Trigo, R. M.: Where does the Iberian Peninsula moisture come from?

An answer based on a Lagrangian approach, J. Hydrometeor., 11, 421–436, 2010.
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Table 1. The 79 leading EOF for ERA-40.

Percentage of overall
variability in:

Variable Number All 1st 2nd 3rd
of EOF retained EOF EOF EOF

retained EOF

Z 5 97.6 77.7 15.6 2
T 5 93.9 84.2 4.4 2.8
U 7 80.6 55.9 9.2 5.3
V 7 83.4 59.9 10.3 5
RH 28 80 27.3 10 5.4
MSL 5 98.8 89.6 4.5 2.5
U10 7 80.5 49.9 10.4 6.3
V 10 5 80 56.4 9.7 7.2
T2 5 97.6 91.2 2.9 1.7
D2 5 94.6 86.4 3.2 2.2
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Table 2. The 79 leading EOF for ERA-Interim.

Percentage of overall
variability in:

Variable Number All 1st 2nd 3rd
of EOF retained EOF EOF EOF

retained EOF

Z 5 97.6 74.7 18.2 2.2
T 5 93.7 83.8 4.4 2.9
U 7 84.5 58.2 9.7 5.5
V 7 85.8 61.2 11.2 5.3
RH 28 78.3 25.6 10.6 5.5
MSL 5 98.9 90 4.3 2.5
U10 7 86.5 56.1 13.7 6.2
V 10 5 83.3 58.7 10.4 7.6
T2 5 97.1 90.7 3.1 1.5
D2 5 94.3 86.4 3.1 3.1
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Table 3. Observed values in Zaragoza and Tortosa (1961–2001).

Average 5th percentil 95th percentil

Zaragoza

Temp (K) 288.42 277.15 300.15
Rel. Hum. (%) 64.46 43.00 91.00
Prec. (mm/day) 0.90 0.00 5.30
qx (kg vapour m−2 s−1) 0.02 −0.04 0.07
qy (kg vapour m−2 s−1) −0.01 −0.05 0.02

Tortosa

Temp (K) 290.68 281.15 300.35
Rel. Hum. (%) 66.61 41.00 89.00
Prec. (mm) 1.55 0.00 8.30
qx (kg vapour m−2 s−1) −0.0016 −0.034 0.03
qy (kg vapour m−2 s−1) 0.001 −0.037 0.045
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Table 4. Models’ results in Zaragoza when applied to the 1826 cases corresponding to the test
dataset (1997–2001).

RF RF MLR MLR ERA-40*/ ERA-Interim*/
ERA-40 ERA-Interim ERA-40 ERA-Interim Analogues GPCP** Persistence**

ZARAGOZA

Zonal q10*

R 0.86 0.84 0.81 0.20 0.82 0.46 0.61
RSD 0.90 0.87 1.01 1.93 0.79 0.40 0.50
RMSE 16.35 17.89 19.41 61.80 18.42 27.56 24.72
FA2 0.70 0.66 0.63 0.35 0.63 0.28 0.36
RM 1.46 1.54 1.40 2.21 1.45 0.54 0.62
D 0.74 0.71 0.70 0.38 0.69 0.37 0.47

Meridional q10*

R 0.85 0.82 0.78 0.46 0.82 0.75 0.82
RSD 0.62 0.58 0.93 1.70 0.52 0.55 0.77
RMSE 14.59 15.39 15.65 37.62 16.00 21.40 17.48
FA2 0.56 0.53 0.57 0.35 0.53 0.34 0.53
RM 0.78 0.83 1.01 1.25 0.86 0.14 0.32
D 0.68 0.65 0.70 0.47 0.63 0.55 0.66

Precipitation**

R 0.55 0.43 0.47 0.15 0.53 0.38 0.16
RSD 0.33 0.37 0.68 1.20 0.26 1.17 1.00
RMSE 2.97 3.10 3.13 5.12 3.05 4.24 4.43
FA2 0.08 0.08 0.07 0.05 0.09 0.05 0.03
RM 0.66 1.13 1.48 2.56 0.80 2.02 1.00
D 0.60 0.45 0.52 0.32 0.53 0.49 0.51
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Table 5. Models’ results in Tortosa when applied to the 1826 cases corresponding to the test
dataset (1997–2001).

RF RF MLR MLR ERA-40*/ ERA-Interim*/
ERA-40 ERA-Interim ERA-40 ERA-Interim Analogues GPCP** Persistence**

TORTOSA

Zonal q10*

R 0.80 0.75 0.71 0.13 0.76 0.53 0.55
RSD 0.63 0.55 0.83 1.60 0.55 0.76 0.72
RMSE 12.12 13.37 13.88 34.14 13.31 18.99 18.58
FA2 0.49 0.41 0.48 0.24 0.45 0.34 0.34
RM 0.90 0.68 1.02 0.53 1.48 −2.26 −2.35
D 0.65 0.59 0.63 0.35 0.60 0.50 0.49

Meridional q10*

R 0.83 0.79 0.77 0.22 0.79 0.71 0.74
RSD 0.93 0.82 1.02 1.70 0.82 0.66 0.79
RMSE 12.71 13.87 15.47 40.51 14.31 16.30 15.65
FA2 0.65 0.57 0.57 0.30 0.60 0.46 0.52
RM 1.02 0.73 0.48 −1.12 2.61 −0.14 −0.61
D 0.76 0.70 0.70 0.39 0.71 0.61 0.66

Precipitation**

R 0.49 0.40 0.46 0.21 0.50 0.33 0.26
RSD 0.41 0.47 0.75 1.50 0.34 0.75 1.00
RMSE 4.70 4.96 5.05 9.20 4.72 5.56 6.54
FA2 0.07 0.06 0.06 0.03 0.07 0.03 0.02
RM 0.74 1.34 1.50 3.31 0.94 1.38 1.00
D 0.61 0.43 0.53 0.29 0.53 0.52 0.55
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Fig. 1. Area of study. ERA-40 and ERA-Interim 35 gridpoints, Ebro Valley, Zaragoza (Zar) and
Tortosa (Tor).

1979

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/1951/2011/hessd-8-1951-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/1951/2011/hessd-8-1951-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 1951–1985, 2011

Downscaling of
surface moisture flux

and precipitation

G. Ibarra-Berastegi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 2. Taylor’s diagram of the models for daily zonal q10 in Zaragoza. 1826 test cases (1997–
2001). In brackets, percentage of the overall q10 variability corresponding to the zonal compo-
nent.

1980
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Fig. 3. Taylor’s diagram of the models for daily meridional q10 in Zaragoza. 1826 test cases
(1997–2001). In brackets, percentage of the overall q10 variability corresponding to the merid-
ional component.
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Fig. 4. Taylor’s diagram of the models for daily precipitation in Zaragoza. 1826 test cases
(1997–2001).
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Fig. 5. Taylor’s diagram of the models for daily zonal q10 in Tortosa. 1826 test cases (1997–
2001). In brackets, percentage of the overall q10 variability corresponding to the zonal compo-
nent.

1983
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Fig. 6. Taylor’s diagram of the models for daily meridional q10 in Tortosa. 1826 test cases
(1997–2001). In brackets, percentage of the overall q10 variability corresponding to the merid-
ional component.

1984
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Fig. 7. Taylor’s diagram of the models for daily precipitation in Tortosa. 1826 test cases (1997–
2001).
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