
HESSD
8, 189–206, 2011

Probabilistic
assessment of

rainfall variation

R. Maity and D. Prasad

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Hydrol. Earth Syst. Sci. Discuss., 8, 189–206, 2011
www.hydrol-earth-syst-sci-discuss.net/8/189/2011/
doi:10.5194/hessd-8-189-2011
© Author(s) 2011. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences
Discussions

This discussion paper is/has been under review for the journal Hydrology and Earth
System Sciences (HESS). Please refer to the corresponding final paper in HESS
if available.

Technical note on probabilistic
assessment of one-step-ahead rainfall
variation by Split Markov Process
R. Maity and D. Prasad

Department of Civil Engineering, Indian Institute of Technology Kharagpur, W.B., 721302,
India

Received: 1 December 2010 – Accepted: 3 January 2011 – Published: 12 January 2011

Correspondence to: R. Maity (rajib@civil.iitkgp.ernet.in)

Published by Copernicus Publications on behalf of the European Geosciences Union.

189

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/189/2011/hessd-8-189-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/189/2011/hessd-8-189-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 189–206, 2011

Probabilistic
assessment of

rainfall variation

R. Maity and D. Prasad

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

In this paper, Split Markov Process (SMP) is developed to assess one-step-ahead vari-
ation of daily rainfall at a rain gauge station. SMP is an advancement of general Markov
Process (MP) and specially developed for probabilistic assessment of change in daily
rainfall magnitude. The approach is based on a first-order Markov chain to simulate5

daily rainfall variation at a point through state/sub-state Transitional Probability Matrix
(TPM). The state/sub-state TPM is based on the historical transitions from a particular
state to a particular sub-state, which is the basic difference between SMP and general
MP. In MP, the transition from a particular state to another state is investigated. How-
ever, in SMP, the daily rainfall magnitude is categorized into different states and change10

in magnitude from one temporal step to another is categorized into different sub-states
for the probabilistic assessment of rainfall variation. The cumulative state/sub-state
TPM is represented in a contour plot at different probability levels. The developed cu-
mulative state/sub-state TPM is used to assess the possible range of rainfall in next
time step, in a probabilistic sense. Application of SMP is investigated for daily rainfall at15

Khandwa station in the Nimar district of Madhya Pradesh, India. Eighty years of daily
monsoon rainfall is used to develop the state/sub-state TPM and twenty years data is
used to investigate its performance. It is observed that the predicted range of daily
rainfall captures the actual observed rainfall with few exceptions. Overall, the assessed
range, particularly the upper limit, provides a quantification possible extreme value in20

the next time step, which is very useful information to tackle the extreme events, such
flooding, water logging etc.

1 Introduction

Rainfall is one of the most complex and difficult components of the hydrologic cycle to
model due to the complexity of the atmospheric processes and the wide range of varia-25

tion both in space and in time. However, prior information of rainfall is essential (both at
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large and small spatio-temporal scale) for proper planning and management of water
resources. This is a high priority objective for developmental activities of a country,
where the agricultural sector plays a key role for their economic growth. Large spatio-
temporal variation of rainfall creates many water-related problems, such as, flood and
drought, which seriously affect the crop production. Reasonably accurate rainfall pre-5

diction is required to alleviate such problems through planning for appropriate cropping
patterns corresponding to water availability.

At smaller spatio-temporal scale, variation of rainfall has an effect on day-to-day life,
such as, water logging, heavy traffic jams, shutdown of airports, blackout problem and
so on. Heavy rain may paralyze most of daily activities. High intensity of rainfall at10

Mumbai on 26 July 2005 caused a complete halt for the city, large number of death (al-
most 1100) and an enormous loss of housing, trade and commerce, agriculture, cattle
(as per the status report published by the government). An early information (at least
a day before) could have helped in better management of the disaster. Scientists at
National Centre for Medium Range Weather Forecasting (NCMRWF), which is a pre-15

mier institute to provide medium range weather forecast in India, indicate the limitations
in the prediction performance for severe weather events, which have a very short life
but still cause extensive damage (Bohra et al., 2006). Thus, even though the predic-
tion of rainfall (spatio-temporal) is possible to achieve from numerical weather model,
probabilistic information on of rainfall could be an added advantage for the concerned20

community. The main purpose is to provide as much advance notice as possible to the
people to save the human and animal lives and properties from an impending disaster.
The focus of this paper is the variation of point rainfall at a particular station.

Probabilistic rainfall prediction has a long history to assess the near future occur-
rence of extreme events (Box et al., 1976; Weeks and Boughton, 1987; Wójcik et al.,25

2003). A framework for probabilistic rainfall forecast using nonparametric kernel density
estimator is presented in a series of three papers (Sharma, 2000, a, b). The approach
is developed for station rainfall data. However, the temporal resolution is seasonal
to inter-annual. Application of Markov Process (MP) for short-term rainfall forecast
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through a probabilistic way is well accepted for a long time. Fraedrich and Muller (1983)
predicted the probability of weather state by first order of Markov chains by using data
of single station and forecasted daily sunshine measurements and rainfall combined
with three hourly past weather observations. Stern and Coe (1984) used a nonstation-
ary Markov chain to model the occurrence of daily rainfall along with Gamma distribu-5

tion to model the amount of rainfall. Fraedrich and Leslie (1987) used a linear combina-
tion of probabilistic approach (Markov chain) and numerical weather prediction (NWP)
for short-term rainfall prediction. A first-order Markov process is a continuous-time pro-
cess for which the future behavior, given the past and the present, only depends on
the present and not on the past and characterized by set of states and the transition10

probabilities Pi j between the states. Here, Pi j is the probability that the state in the next
time step is j , given that the same is i at the present time step. Haan et al. (1976)
developed the stochastic model based on a first-order Markov process and used rain-
fall data to estimate the Markov transitional probabilities and simulated daily rainfall
record of any length. The model is based on the estimated transitional probabilities15

and frequency distributions of rainfall amounts. It is concluded that simulated data
had statistical properties similar to those of historical data. Kaseke and Thompson
(1997) developed the partially observed Markov process algorithms for rainfall-runoff
process model and considered the special case of the martingale estimating function
approach on the runoff model in the presence of rainfall. Rajagopalan et al. (1996) es-20

timated the daily transition probability matrices non-parametrically and estimated the
transition probabilities through a weighted average of transition by kernel estimator.
Baik et al. (2006) developed the transition probabilities of different condition states in
Markov chain-based deterioration models for wastewater systems using an ordered
probit model and gained greater accuracy in deterioration modeling.25

Almost all these approaches follow a general path of creating a set of different states
depending on historical record and the probabilities of transition from one state to an-
other is obtained. For rainfall variation study, the change in rainfall magnitude is crucial
information as indicated before. However, quantifying these changes, through a single
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set of states, demands large number of defined states. Generally, in the tropical coun-
tries, the variation of daily rainfall is very high. Moreover, probabilistic prediction is more
useful than simple point prediction. Defining another set of sub-states, classifying the
changes in magnitude of daily rainfall will be helpful for such probabilistic assessment.
This is the theme of this study. The objective of this study is to develop an approach for5

change prediction daily rainfall through state to sub-state transition, which is achieved
through Split Markov Process (SMP). However, the approach considers daily rainfall in
which sequential phases within a single event of rainfall (e.g., initiation, growth, peak,
decay and vanish) is not of interest. Rather the total depth of rainfall in a day is con-
sidered, which is important from water resources point of view. Thus, the transitions10

through states to sub-states are computed through state/sub-state Transitional Prob-
ability Matrix (TPM) for a daily temporal resolution. This state/sub-state TPM is then
used for probabilistic assessment of one-step-ahead rainfall variation. The methodol-
ogy of Split Markov Process (SMP) is explained in next section. The proposed method-
ology is applied to a station rainfall data at Khandwa rain gauge station in the Nimar15

district of Madhya Pradesh, India. Results and discussions are presented afterwards.

2 Methodology

2.1 General Markov Process

The Markov Process (MP) at discrete time points is characterized by a set of states
and the transition probabilities Pi j from state i at time step t to state j at time step t+120

(Haan et al., 1976; Haan, 2002). The matrix representation of all possible Pi j forms the
transition probability matrix (TPM) of the Markov chain, denoted as P . The definition of
the Pi j implies that the sum of all elements in any row equal to 1 as the transitions from
a particular state to all possible states are “collectively exhaustive”.

The order of a MP is equal to the number of previous observation(s) on which the25

present value depends. For example, the conditional probability for mth order Markov
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Process is expressed as P [Xt=aj/Xt−1=ai ,Xt−2=ak ,···,Xt−m=al ]. Similarly, a first order
Markov process is a stochastic process in which the state of the value Xt of the process
at time t depends only on the state of Xt−1 at time t−1 and no other previous values.
Thus, the transition probability for the first order MP, Pi j , is expressed as

Pi j = P
[
Xt =aj/Xt−1 =ai ,

]
(1)5

The collection of all these probabilities with m different states forms the transition prob-
ability matrix (TPM), which provides information of transition from one state to another
state, and thus can be synonymously termed as state-to-state TPM or state/state TPM
as against state/sub-state TPM in case of SMP.

2.2 Split Markov Process (SMP)10

Major steps of SMP are shown in a flowchart in Fig. 1. It is a data driven process as in
case of a MP. In order to investigate the daily rainfall variation, another set of sub-states
is introduced in addition to the set of states. Thus, the states categorize the daily rainfall
amount and the sub-states categorize the change in daily rainfall magnitude. The
observed rainfall data is classified in different categories depending on its variability15

and these categories are denoted as different states, say, S1,S2,···,Sn, n being the
total number of states. The amount of variation in daily rainfall magnitude is obtained
by first order differencing of original data. These variations in daily rainfall magnitude
are classified into different categories depending on the range of their variability. These
categories are denoted as sub-states, say, s̄1,s̄2,···,s̄m, m being the total number of20

states. The transitions from a particular state to a particular sub-state are computed
from historical data and denoted as state/sub-state transition probability. The general
mth order state/sub-state transition probability is expressed as

P m
S,s̄(j ) = P

[
rn = s̄j/Rn−1 =Si ,Rn−2 =Sk ,···,Rn−m =Sl

]
(2)

where R denotes the daily rainfall magnitude and rdenotes the change in daily rainfall25

magnitude. A first-order state/sub-state transition implies that the change in magnitude
194
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for the next time step depends on the state of the system at the present time. Thus,
a first-order state/sub-state transition probability is expressed as

P 1
S(i ),s̄(j ) = P

[
rn = s̄j/Rn−1 =Si

]
(3)

The first-order state/sub-state TPM is expressed as (omitting the superscript for clarity)

PS,s̄ = P


PS(1),s̄(1) PS(1),s̄(2) ··· PS(1),s̄(m)
PS(2),s̄(1) PS(2),s̄(2) ··· PS(2),s̄(m)

...
...

...
...

PS(n),s̄(1) PS(n),s̄(2) ··· PS(n),s̄(m)

 (4)5

State/sub-state transition probability matrix is computed by selecting a particular state
and counting the number of transition from that state to a particular sub-state. If a par-
ticular state, say S(j ), is observed for a total n times and m is the number of transi-
tion from state S(j ) to a particular sub-state s̄(j ), then the (i ,j )th component of the
state/sub-state TPM will be10

PS(i ),s̄(j ) =
m
n

(5)

The total number of times a particular state is observed and its transitions to different
sub-states are obtained from sufficiently long record of daily rainfall series.

Once the state/sub-state TPM is obtained, the cumulative state/sub-state TPM is ob-
tained by row wise summation of column-by-column probabilities. A contour plot of this15

cumulative state/sub-state TPM will represent the nature of possible variation (prob-
abilistically) in the forthcoming step from all possible states at the current time step.
Thus, this contour plot can be used for probabilistic prediction of possible range of daily
rainfall in the next step. For instance, from a particular state (current step), the possi-
ble variation of magnitude of expected change in next day rainfall (at some probability20

level) is computed using cumulative state/sub-state TPM. For graphical interpretation,
one has to start from that particular state to that probability contour (desired probability
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level) and magnitude of expected change can be computed using a suitable interpola-
tion technique. The minimum and maximum possible changes (with sign) are added
to the rainfall magnitude of the current step to obtain the possible range of rainfall in
the next time step. If the minimum possible change turned out to be very high negative
value, it might be possible to get the lower limit of predicted rainfall range as negative5

value. However, the lower bound of the predicted range of possible rainfall should be
bounded by zero.

3 Application of SMP

The methodology is applied to the daily rainfall at Khandwa rain gauge station located
in the Nimar district in Madhya Pradesh, India. The geographical location of the rain10

gauge station is at latitude 21◦ N and longitude 79◦ E. The daily rainfall data is collected
for the period 1901 to 1999 from Indian Meteorological Department (IMD), Pune. The
data is used for the monsoon period (June to September) only as most of the annual
rainfall (above 80%) occurs in this period only. Data for the period 1901 to 1980 is
used for development of state/sub-state TPM and the data for the period 1981 to 199915

is used to test the performance of SMP.

3.1 Result and discussion

The daily rainfall data (R) is divided into nine different states. The zero rainfall (R =0) is
categorized as State 1 and range of other eight states are selected suitably as follows
(data in mm):20

State 1 → R =0

State 2 → 0<R ≤5

State 3 → 5<R ≤10

State 4 → 10<R ≤20
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State 5 → 20<R ≤30

State 6 → 30<R ≤45

State 7 → 40<R ≤65

State 8 → 65<R ≤100

State 9 → R >1005

The changes in magnitude of daily rainfall are computed by taking first order different of
the original series. These magnitudes (r) are classified into another set of nine different
sub-states. Different categories are as follows (values are in mm):

Sub-state a → r ≤−100

Sub-state b → −100< r ≤−5010

Sub-state c → −50< r ≤−25

Sub-state d → −25< r ≤−5

Sub-state e → −5< r ≤5

Sub-state f → 5< r ≤25

Sub-state g → 25< r ≤5015

Sub-state h → 50< r ≤100

Sub-state k → r >100

State/sub-state TPM is computed by selecting one particular state and historical tran-
sitions from that state to a particular sub-state are obtained from the available data, as
shown in Eq. (5) in the methodology. The state/sub-state TPM is shown in Table 1. Row20

wise summation of column-by-column probabilities in the state/sub-state TPM results
in cumulative state/sub-state TPM. The cumulative state/sub-state TPM is represented
in a contour plot (Fig. 2). In this plot, 5%, 50% and 95% probability contours are shown
in particular.

Three points can be noticed from the contour plot of cumulative state/sub-state TPM.25

First, the low probability contour lines are almost linear whereas the high contour lines
197
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are nonlinear. Second, the low probability contours indicate that a lower state can
have a larger change in the next time step, particularly for the low probability levels.
For example, if the initial state is 2, at 50% probability level, the change magnitude is
somewhere in between sub-states d and e, whereas if the initial state is 4, the change
magnitude is some where in between c and d. However, for high probability contours,5

change magnitude increases with the relatively higher initial states. This can be ob-
served for states 1 though 4 at 95% probability level. The third point is that for all the
probability lines, for higher initial states, the probability contours are linearly decreas-
ing. This indicates that an extreme event can be followed by reduction in its magnitude
in the next step (at daily scale).10

As stated before, the cumulative state/sub-state TPM can be used to probabilistically
infer the possible change in rainfall magnitude in the next time step. Being in some
particular state at the current time-step, computation of the magnitude of expected
change in rainfall (at some probability level) in the next time step is carried out using
cumulative state/sub-state TPM. Two different values (minimum and maximum possible15

changes) are computed from the identified state of change by interpolation considering
lower and upper boundaries for each sub-state. Results using linear interpolation are
presented in this paper. The minimum and maximum possible changes (with sign) are
added to the rainfall magnitude of the current step to obtain the possible range of rainfall
in the next time step. The prediction performance is investigated for the period 198120

to 1999. The prediction performance varies with the probability level for the next day
rainfall. A plot between probability level and mean square error between observed and
the average of upper and lower limits predicted range is prepared (Fig. 3). It is found
that the best performance is obtained at 81% probability level. Thus, the prediction
performance is obtained at this probability level for the period 1981 to 1999 and shown25

in Fig. 4. Top panel of Fig. 4 shows the performance for entire validation period and, for
clarity, the prediction performance for the period 1998 to 1999 is shown in the bottom
panel of Fig. 4. Upper and lower limits of possible next day rainfall are shown in this
plot along with the actual observed rainfall. It is found that the observed rainfall lies
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either within the predicted range or close to it. However, there are still few cases in
which the predicted range fails to capture the observed values. In particular, the upper
limit is very high compare to the observed one. This might be due to the non existence
of such variation in the historical record. Even though this is a shortcoming of the
prediction performance, the overall performance is very useful to the community as an5

early warning to tackle the extreme events, such flooding, water logging etc. It is also
worthwhile to mention here that one major shortcoming of the SMP is the fact that it
needs a long historical record to properly capture the historical behavior of daily rainfall
variation through state/sub-state TPM, which is a general shortcomings for almost all
data driven approaches.10

4 Conclusions

Approach of Split Markov Process (SMP) is introduced in this paper to assess the daily
rainfall variation in a probabilistic way. This study attempts to statistically analyze and
predict the probabilistic behavior of the station rainfall using SMP. SMP investigates
the transition between states and sub-states, as against the general Markov Process15

(MP), which investigates the transition between different states of the system. The
state/sub-state transition probability matrix (TPM) is generated for daily rainfall data
from a rain gauge station using SMP. The probabilistic behavior of change in daily
rainfall magnitude is captured through state/sub-state cumulative TPM, which is finally
used to predict the possible range of daily rainfall in the next time step. Prediction is20

provided with a possible range of upper and lower limit of rainfall magnitude. The re-
sults are very useful for the upper range of prediction. The early notice for the extreme
events is possible to communicate to the concerned community. However, as in the
other data driven methods, the major drawback of the SMP is that it need a reasonably
long historical record to capture the behavior of daily rainfall variation.25
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Table 1. State/sub-state transition probability matrix using Split Markov Process.

States Sub-states
a b c d e f g h k

1 0.000 0.000 0.000 0.000 0.876 0.088 0.023 0.011 0.002
2 0.000 0.000 0.000 0.001 0.773 0.155 0.048 0.017 0.006
3 0.000 0.000 0.000 0.476 0.291 0.144 0.057 0.020 0.012
4 0.000 0.000 0.000 0.684 0.113 0.112 0.055 0.025 0.011
5 0.000 0.000 0.158 0.648 0.072 0.066 0.033 0.018 0.006
6 0.000 0.000 0.646 0.229 0.044 0.026 0.022 0.026 0.007
7 0.000 0.311 0.500 0.104 0.031 0.018 0.031 0.006 0.000
8 0.000 0.782 0.126 0.058 0.012 0.000 0.000 0.000 0.023
9 0.629 0.258 0.048 0.048 0.000 0.000 0.016 0.000 0.000
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Fig 1: Flowchart showing major steps of Split Markov Process (SMP) 312 

 313 
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Fig. 1. Flowchart showing major steps of Split Markov Process (SMP).
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 314 

 315 

 316 

Fig.2. Contour plot of states/sub-state cumulative TPM showing 5%, 50% and 95% 317 

probability contours 318 

 319 

Fig. 2. Contour plot of states/sub-state cumulative TPM showing 5%, 50% and 95% probability
contours.
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 320 

Fig. 3: Plot between probability level and Mean Square Error (MSE)  321 

Fig. 3. Plot between probability level and Mean Square Error (MSE).
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322 

 323 

Fig. 4: Prediction performance for the period June 1, 1981 to September, 1999 (top) and June 324 

1, 1998 to September, 1999 (bottom) 325 

 326 

 327 

Fig. 4. Prediction performance for the period 1 June 1981 to September 1999 (top) and 1 June
1998 to September 1999 (bottom).
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