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Abstract

The performance of the ensemble Kalman filter (EnKF) in soil moisture assimilation ap-
plications is investigated in the context of simultaneous state-parameter estimation in
the presence of uncertainties from model parameters, initial soil moisture condition and
atmospheric forcing. A physically-based land surface model is used for this purpose.5

Using a series of idealized twin experiments, model generated near-surface soil mois-
ture observations are assimilated to estimate soil moisture state and three hydraulic
parameters (the saturated hydraulic conductivity, the saturated soil moisture suction
and a soil texture empirical parameter) in the model. The single imperfect parameter
can be successfully estimated using the EnKF. Results show that all the three estimated10

parameters converge toward their respective true values, while the root mean squared
errors (RMSE) of soil moisture associated with these parameters is on average reduced
by 54% and 53% comparing with the non-parameter-estimation benchmark RMSE for
near-surface layer and root zone layer, respectively. The performance of simultaneous
multi-parameter estimation is significant degraded, mainly because the inherent bal-15

ance relationship of these parameters is broken and the degree of freedom increases
in assimilation processes. By introducing constraints between estimated parameters,
the performance of the constraint-based simultaneous multi-parameter estimations are
as good as that of single-parameter cases even assimilating temporal-sparse obser-
vations. In terms of the relative root mean squared error (RRE), the constraint-based20

estimation cases can achieve 36% to 53% in near-surface layer and 25% to 50% in
root zone layer for different assimilation intervals ranging from 1-day to 40-days. This
result suggests that the greatest advantage of this method can be displayed with a
proper temporal-sparse assimilation interval of 10-days as actual measurement inter-
val of conventional in situ soil moisture observations. As these obtained constraints are25

mostly in statistical sense, this constraint-based simultaneous state-parameter estima-
tion scheme is supposed to be suitable for other land surface models in soil moisture
assimilation applications.
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1 Introduction

Soil moisture is a key state variable which controls the partitioning of water and energy
fluxes at the land surface. It has an important influence on the surface water cycle,
thereby influencing the latent heat flux and hence the surface energy balance. As
a numerical simulation to realistic land surface state, land surface model (LSM) is a5

popular instrument used to provide proper soil moisture initial conditions for numerical
weather prediction models and climate models. However, as been quite simplified in
physical and mathematical processes, LSM can only represent actual processes in
nature approximately. Uncertainties in hydrodynamic processes, model variables and
model parameters lead to large errors in the simulation of soil moisture condition. How10

to properly initialize soil moisture condition in LSMs is still an open and classical issue
in meteorology and hydrology research.

Modern data assimilation technique is an effective approach to account for this is-
sue. Merging information from uncertain soil moisture observations and uncertain land
model predictions optimally, this technique can improve the estimation of soil mois-15

ture state in LSMs (Houser et al., 1998; Reichle et al., 2001a,b). As a new-emerging
sequential assimilation method, the ensemble Kalman filter (EnKF) has received an
increasing amount of research attention in recent years. It is a Monte Carlo approxima-
tion to the traditional Kalman filter (Kalman and Bucy, 1961) which was first introduced
by Evensen (1994). By propagating an ensemble of state vectors in parallel such that20

each state vector represents a particular realization of generated model replicates, it
provides flow-dependent estimates of background error and can more optimally ad-
just the background to newly available observations. In recent years, the EnKF has
been successfully applied to different soil moisture assimilation problems (Walker and
Houser, 2001; Reichle et al., 2002a,b, 2008; Reichle and Koster, 2005; Crow and Van25

Loon, 2006; Crow and van den Berg, 2010; Ni-Meister et al., 2006; Zhang et al., 2010).
In most of these studies, however, it is noticeable that the EnKF was only used for
estimating time-varying state variables under the presumption that model parameters
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were to be specified in advance by calibrations. In common calibration methods, model
parameters are adjusted in such a way that the behavior of model approximates, as
closely and consistently as possible, the observed represents of the real land system
over some period of time using a historical batch of measurements (Niyogi et al., 2002;
Xia et al., 2002; Coudert et al., 2006). There are two main weaknesses exist in such5

approach: (i) it can not include information from new observations, and (ii) it only ad-
dress parameter error while errors from initial condition and atmospheric forcing data
are ignored. As the EnKF is able to account for a wide range of possible model er-
rors easily (Evensen, 2003), it has the potential to overcome these two drawbacks by
explicitly taking all sources of uncertainty into account and developing a simultaneous10

treatment of state and parameter estimation to refine its assimilation performance.
By the means of state augmentation technique (Anderson, 2001), model parame-

ter estimation can easily be included in the framework of the EnKF. The principle of
state augmentation is that model parameters can be considered as parts of model
states beside conventional state variables, and then the error covariance sampled by15

ensemble members can be used directly to update those model parameters in exactly
the same manner as for the conventional state variables. Recently, the simultaneous
state-parameter estimations using the EnKF have been successfully applied in atmo-
spheric, oceanic, hydrologic and ecologic assimilation fields (Aksoy et al., 2006; Vrugt
et al., 2005; Annan et al., 2005; Moradkhani et al., 2005; Chen et al., 2008). All these20

studies provide encouraging results and show that the EnKF is a robust and effective
algorithm in simultaneous state-parameter estimation. However, similar studies in soil
moisture assimilation are few at present. The study of Montaldo et al. (2007) shows
that soil moisture assimilation approaches may fail when key LSM hydraulic parame-
ter is estimated poorly. Therefore, in this paper we aim to thoroughly investigate the25

application of EnKF-based parameter estimation method in soil moisture assimilation.
Despite promising results are obtained from the applications of the EnKF in param-

eter estimation, some deficiencies still exist in these studies. A noticeable one is the
decline of estimation performance when multiple imperfect parameters are estimated
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simultaneously (Aksoy et al., 2006; Jung et al., 2010; Moradkhani et al., 2005). When
the number of estimated parameters increases to a certain extent, some parameters
could not converge to their benchmark “true” values even with long enough estimation
periods. Recently, this problem is still a challenge in the application of the EnKF in
parameter estimation. Therefore, the second objective of this paper is to impose a new5

“constraint-based” parameter estimation procedure for solving this problem and subse-
quently to improve the EnKF performance in simultaneous multi-parameter estimation
of soil moisture and model parameters.

The organization of the paper is as follow. The model and parameter estimation
framework used in this study are explained in Sect. 2. The background and approach10

of idealized twin experiments are presented in Sect. 3. The results and analyses are
presented in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Land surface model and parameter estimation framework

2.1 Land surface model

The land surface model used is the Atmosphere-Vegetation Interaction Model (AVIM)15

(Ji, 1995), which contains a physical process mode and a vegetation biological pro-
cess mode. Detailed descriptions of this model are given by Ji and Hu (1989) and
Ji (1995). The version used in this study only considers the physical process mode
which is a typical soil-vegetation-atmosphere (SVAT) type model developed by Ji and
Hu (1989). This model includes three soil layers with thicknesses of 0.1, 0.9, and 3.6 m20

from ground. The layer-averaged soil moisture and temperature are modeled for each
of the three soil layers. In the deepest layer, both soil water flux and heat flux are as-
sumed to be zero with constant soil moisture and temperature condition in this layer.
The change of soil moisture in near-surface layer and root zone layer over a time step
is controlled by the change in water flux over these two layers. Richards’ equation for25

unsaturated flow is used for the simulation of this flux. It is expressed as:
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F (z) = −k(z)
dψ(z)

dz

∣∣∣∣z + k(z) z 6= 0 (1)

where z is the depth and F (z) is the soil water flux. The unsaturated hydraulic con-
ductivity k(z) and unsaturated soil water suction ψ(z) are defined in Clapp and Horn-
berger (1978):

k(z) = ksat

(
δ
δsat

)2 b + 3

(2)5

ψ(z) = ψsat

(
δ
δsat

)−b
(3)

where δ and δsat are the unsaturated and saturated soil moisture; ksat and ψsat are the
saturated hydraulic conductivity and soil moisture suction respectively; andb is a soil
texture empirical parameter. In this paper, parameters ksat, ψsat and b are chosen to
be estimated.10

2.2 Parameter estimation framework using the EnKF

Parameter estimation frameworks used in this paper are based on the EnKF. As the
comprehensive presentation of the standard EnKF is given by Evensen (2003), this
subsection represents mainly the modifications to the standard EnKF after considering
simultaneous state-parameter estimation in its framework.15

2.2.1 State-parameter estimation without constraint

To extend the applicability of the EnKF to simultaneous state-parameter estimation, it
is needed to build an evolution of parameter similar to that of model state variable. By
adding mean-zero Gaussian random noise τit−1 with covariance Qθt−1 to parameter θi ,
the evolution of parameter can be expressed in the form of:20

θi−t = θi+t−1 + τit−1, τ
i
t−1 ∼ N

(
0, Qθt−1

)
(4)
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The superscripts “−” and “+” refer to states in forecast step and update step respec-
tively. When multiple parameters are to be estimated simultaneously, perturbations on
different parameters are considered as mutually independent for simplicity.

With artificially perturbed parameters, time evolution for each ensemble member of
state vector xi in the EnKF can be expressed as follows:5

xi−t = ft
(
xi+t−1, u

i
t−1, θ

i+
t−1

)
, i = 1, 2, ..., n. (5)

where xi−t is the i -th forecast ensemble member at time t and xi+t−1 is the i -th updated
ensemble member at time t−1. The nonlinear operator f (.) denotes the land surface
model processes which contain state vectors x

i , forcing data vectors u
i , and model

parameter vectors θ
i . The forcing data perturbations are made by adding mean-zero10

Gaussian noise µit−1 with covariance Qut−1 to the forcing data at each time step:

uit−1 = ut−1 + µit−1, µ
i
t−1 ∼ N

(
0, Qut−1

)
(6)

When observations are available, each ensemble member of state vector is updated
as follows:

xi+t = xi−t + Kθ,xt
(
y it −Ht x

i−
t

)
(7)15

where Ht is the measurement operator and y it is the i -th member of observation en-
semble generated by adding mean-zero random measurement error ηit with covariance
Qyt to actual observation (Burgers et al., 1998):

y it = yt + ηit, η
i
t ∼ N

(
0, Qyt

)
(8)

Kθ,xt is the Kalman gain matrix that considers simultaneous state-parameter estimation.20

It is obtained by:

Kθ,xt = Pθ,x,−t HT
t

(
Ht Pθ,x,−t HT

t + Rt
)−1

(9)
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where Pθ,x,−t and Rt are forecast error covariance matrix and observation error covari-

ance matrix respectively. Pθ,x,−t is computed as the sample covariance from forecast
ensemble of model state variables and parameters. It is defined as an ensemble co-
variance matrix around the ensemble mean:

Pθ,x,−t =
1

n − 1
Xt XT

t (10)5

where,Xt = [x1−
t − x̄−t , ..., x

n−
t − x̄−t ; θ1−

t −θ
−
t , ..., θ

n−
t −θ

−
t ] and x̄−t = 1

n

∑n
i=1x

i−
t , θ

−
t =

1
n

∑n
i=1θ

i−
t denote the ensemble mean of forecast state variables and parameters, re-

spectively.

2.2.2 State-parameter estimation with constraint

Actually, some statistical relationships exist between different model parameters10

(e.g. Cosby et al., 1984; Rawls et al., 1982; Schaap and Leij, 2000; van Genuchten,
1980; Zhuang et al., 2001). As additional information, these statistical constraints be-
tween parameters are also needed to be taken into account in the framework of the
EnKF to perform better state-parameter estimation.

In the general case the constraints are nonlinear, which can be expressed as:15

g∗t = Gt
(
θ∗t
)

(11)

where g∗t denotes nonlinear constraints between different model parameters θ∗t at time
t. Without losing any generality, the parameters which do not contained in g∗t are

defined as θ
′′
. The post-constrained update to each ensemble member of state vectors

x
i is computed as follows:20

xi+t = xi−t + Kθ
′′
,g∗

t

(
y it − Ht x

i−
t

)
(12)
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where Kθ
′′
,g∗

t is the Kalman gain matrix including constraints. It is obtained as follows:

Kθ
′′
,g∗

t = Pθ
′′
,g∗,−

t HT
t

(
Ht Pθ

′′
,g∗,−

t HT
t + Rt

)−1

(13)

where Pθ
′′
,g∗,−

t is the post-constrained error covariance matrix of states ensemble and
parameters ensemble. Note that each ensemble member will satisfy the constraints.

3 Experiments background and approach5

The study in this paper is based on a series of idealized twin experiments taking
soil moisture in top two layers and parameters ksat, ψsat and b as state variables in
the EnKF. The design of idealized twin experiment is similar to that of Crow and Van
Loon (2006), with the assumptions that the “true” states are model-generated and the
source and magnitude of model errors and observation errors are perfectly known in a10

statistical sense. This approach avoids a number of key complexities facing to assim-
ilate actual soil moisture observations and makes the parameter estimation behavior
of the EnKF more transparent. However, it needs to be noted that little information
about the statistical properties of errors may degrade the performance of the EnKF in
parameter estimation in realistic soil moisture assimilation.15

Because the objective of this study is to investigate the feasibility of EnKF-based
parameter estimation in soil moisture assimilation, all experiments here are conducted
at point scale for computational simplification. Jiangji station (the outlet of Shiguanhe
sub-basin in the Huaihe River Basin) of the HUaihe river Basin EXperiment (HUBEX,
China’s contribution to GEWEX Asian Monsoon Experiment; Fujiyoshi et al., 2006)20

is chosen as experiment site for having comprehensive meteorological forcing data
sets. In this station, soil texture is sandy loam and vegetation type is broadleaf shrubs
with bare soil. The experiment period covers the entire year in 1998. During the
Intensive Observation Period in 1998 (from 21 May to 31 August), hourly gauge-based
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precipitation, once daily air temperature, humidity, surface pressure and wind speed
data sets were available in Jiangji. During other period in the year, daily observations
of these meteorological forcing from the Gushi meteorological site (about 15 km from
Jiangji) was used. Not having incoming radiation observation, the radiation forcing
data from the NCEP (National Centers for Environmental Prediction) reanalysis dataset5

version 1 was used as a substitute. All these forcing data sets were used to force the
AVIM in Jiangji in all idealized twin experiments with time step of half hours for the
model and one-day frequency for assimilating soil moisture “observations”.

The “true” soil moisture state is obtained by integrating the AVIM from a 2-yr spinup
initial condition on 1 January 1998 to 31 December 1998 with standard AVIM parame-10

ters (Ji and Hu, 1989; Ji, 1995) and atmospheric forcing data described above. To get
“prior” state of soil moisture, model error from three sources (i) parameters (ksat, ψsat
and b), (ii) soil moisture initial conditions, and (iii) precipitation and short-wave (long-
wave) radiations (Margulis et al., 2002; Reichle et al., 2002b) are considered. In prior
integration, errors in parameters and initial soil moisture condition are generated by re-15

placing the “truth states” values with assumed imperfect values; errors in precipitation
and radiation are imposed by adding mean-zero Gaussian random noises (as shown in
Eq. 6) to the true forcing fields. Specific differences between “true” and “prior” integra-
tions are listed in Table 1. Collectively, these differences in parameter, initial condition
and forcing data are considered as “actual errors” and represent our imperfect under-20

standing to the true soil moisture states. In all these idealized twin experiments, the
“actual observation” to be assimilated is the near-surface soil moisture. It is derived
from the true state by adding mean-zero Gaussian random errors with a standard devi-
ation of 5% volumetric moisture percent once a day. The precipitation forcing, the “true”
and “prior” soil moisture for top two layers and the “actual observation” of near-surface25

soil moisture used in idealized twin experiment are displayed in Fig. 1. For errors in hy-
draulic parameters, initial condition, and atmospheric forcing data, there are significant
deviations from prior states to true states of soil moisture in both layers.
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Given the statistical properties of model errors and observation errors, the EnKF at-
tempts to modify prior state back to the true state by assimilating “actual observations”
(Crow and Van Loon, 2006). In the filter, the number of ensemble size is set to 100 in all
experiments, which achieved a balance between the computational effort of processing
a large number of runs and the need for having a sufficiently large set of ensembles5

to characterize the ensemble distribution. The ensemble of soil moisture initial values
is generated by adding zero mean Gaussian noise with a standard deviation of 50%
to the prior values at the first time step. The ensemble of forcing data is generated by
perturbing prior forcing data with the same statistical properties as the actual forcing
data errors once a day. The random perturbation method was also applied to obtain10

the ensemble of model parameters. A noticeable issue here is the magnitude of stan-
dard deviation of perturbation on model parameters since no straightforward guidance
exists for proper range of deviation of parameters to be estimated. Because parame-
ters are not dynamical variables, the variances of them are reduced at the update step
but remain constant at the forecast step. This causes the variances of parameters to15

decrease progressively and may lead to filter divergence in parameters. To avoid filter
divergence, therefore, perturbation on parameters is implemented in a similar way as
that on forcing data according to Eq. (4) with a time interval of 10 days. The standard
deviations of the perturbations on ksat, ψsat, and b are chosen as 1.7 e−6 ms−1, 0.02 m,
and 0.25 respectively, which are much smaller than the orders of parameters them-20

selves. Small standard deviation and sparse perturbation interval on these parameters
in the filter processes can avoid the behavior of the model being shocked for sharp
change of parameters in model integration.

In non-constrained parameter estimation framework, perturbations on different pa-
rameters are considered as mutually independent. In constrained estimation frame-25

work, statistical relationships between these hydraulic parameters are appropriate to
be taken into account in assimilation processes. As some literatures (e.g. Rawls et al.,
1982; Zhuang et al., 2001) did not have all relationships between all these three hy-
draulic parameters and others (e.g. Schaap and Leij, 2000; van Genuchten, 1980) did
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not have enough soil classifications as that in the AVIM model, therefore, the literature
of Cosby et al. (1984) is chose here for having unified soil samples to get statistical rela-
tionships between parameters ksat, ψrmsat, and b. The Table 5 in Cosby’s paper can be
formulized as follows to explicitly display constraints between these three parameters:

∆ksat =
(
β∆b

1 − 1
)
ksat (14)5

∆ψsat =
(
β∆b

2 − 1
)
ψsat (15)

where ∆ksat, ∆ψsat, and ∆b are the perturbations of parameters ksat, ψsat, and b
respectively, and β1, β2are constrained coefficients assigned as 1.2474 and 0.827
respectively according to statistical relationships obtained from Cosby et al. (1984).
These two equations will be included in the error covariance matrix in Eq. (13) to con-10

strain random perturbations of parameters in post-constrained estimation experiments.

4 Results

4.1 Single-parameter estimation results

Results from the individual estimation of these three hydraulic parameters are pre-
sented in Figs. 2 and 3. In each experiment only one such parameter is perturbed15

around its imperfect mean value while other parameters are kept unperturbed at their
true values.

Figure 2 shows the one year evolution (one-daily analyses) of the ensemble mean
parameter values along with the true parameter values stay constant in time. The area
between two dash gray lines around the estimated mean parameter value represents20

the 1-σ (one standard deviation) limits of the parameter spread. These standard de-
viation limits are computed by averaging the standard deviations of each 100-member
ensembles at forecast step. Successful parameter estimation should be that the error
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of the estimated parameter is smaller than or very close to the 1-σ limit. It can be
seen that estimated mean parameter values of all three parameters converge to their
true values within several months and the true values stay stably within the 1-σ limit
subsequently. When these model parameters are included in the augmented state vec-
tors of the EnKF, the perturbation of parameter can lead to the update of soil moisture5

state to a certain extent. We assume the general form of the relationship between the
perturbations of these parameters and the update of soil moisture as follows:

∆sm ∼ f1 (∆ksat) + f2 (∆ψsat) + f3 (∆b) (16)

where ∆ksat, ∆ψsat, and ∆b are the perturbations of parameters ksat, ψsat, and b, and
∆sm is the update of soil moisture. Nonlinear operators f1(·), f2(·) and f3(·) denote the10

sampled relationships between ∆sm and ∆ksat, ∆ψsat, ∆b respectively. In each single-
parameter estimation experiment, one of these operators in Eq. (16) is considered in
the EnKF update process. In assimilation processes, therefore, available near-surface
soil moisture observation information can be transferred by the operator to correct the
error in corresponding imperfect parameter and make it to be estimated successfully.15

Further analysis finds that the convergence rate of approach to the true values is differ-
ent among these three parameters. Here, we define “approach time” as the time taken
for a true parameter value to first fall within the 1-σ limit around the estimated mean
parameter. It can be seen that the approach times are about 4 months for parameters
ksat and b and about 10 months for parameter ψsat. As the approach time can scale20

the efficiency of the EnKF to estimate each parameter to a certain extent, this result
implies that errors in parameter ksat and b are easier to be corrected than that in pa-
rameter ψsat by assimilating the same soil moisture observation in individual parameter
estimation experiments.

In addition to the mean parameter values, the evolutions of the root mean squared25

error (RMSE) of one-day-ahead soil moisture forecasting in top two layers are displayed
in Fig. 3. In all panels, the RMSE from respective estimation experiments are plotted
along with the RMSE from “non-parameter-estimation” benchmark experiments. The
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results of non-parameter-estimation benchmark experiments are obtained by consid-
ering imperfect parameters but no parameter estimation in assimilation processes. For
all three parameters, the RMSE of the estimation experiments is lower than that of the
non-parameter-estimation benchmark experiments for both two soil layers. In these
idealized twin experiments, parameter error is considered as one of the main error5

sources of soil moisture simulation. With parameter errors been reduced by estimation
processes in the EnKF, therefore, less error contributions from imperfect parameters
can refine the performance of soil moisture forecasting in each estimation experiment.
Further analysis reveals that the decrease of RMSE from non-parameter-estimation
experiments to estimation experiments varies among parameters. To quantify relative10

estimation performance, we define the “relative root mean squared error”, which is
computed as follows:

RRE =
〈RMSENo−Estimation〉 − 〈RMSEEstimation〉

〈RMSENo−Estimation〉
× 100% (17)

where the operation 〈·〉 denotes time average over the entire experiment period. The
RRE is a relative measure of how much error has been reduced by parameter esti-15

mation comparing to non-parameter-estimation benchmark experiments. The results
of time average RMSE and RRE in three single-parameter estimation experiments are
summarized in Table 2. It is shows that the RMSE of near-surface layer is larger than
that of root zone layer for all experiments. One possible reason might be that imperfect
atmospheric forcing data has larger effects on soil moisture in near-surface layer than20

that in deeper layer. Among these three parameters, the largest RRE is exhibited by
the parameter b (72% for near-surface layer and 66% for root zone layer). This result
implies that the soil moisture forecasting is more sensitive to the error in parameter b
than that in other two parameters, which is consistent with the sensitivity analysis of
Wen et al. (1998). Combining the analyses of ensemble mean parameter values and25

RMSE above, it can be concluded that the EnKF-based single-parameter estimation
perform successfully in soil moisture assimilation.
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4.2 Multi-parameter estimation results

To obtain a comprehensive picture of the EnKF’s capability and limits in parameter esti-
mation when multiple imperfect parameters are involved, the results from simultaneous
three-parameter estimation experiments are presented here.

Firstly, the case with mutually independent parameter perturbation is discussed. Fig-5

ure 4 shows the evolution of the ensemble mean parameter values. Significant degrade
of simultaneous estimation performance for all the three parameters can be observed.
The estimated ensemble mean values of all three parameters can not converge to their
true values throughout the entire experiment period. Similar results are also obtained
from simultaneous dual-parameter estimation cases (figures are not shown). Differ-10

ent from single-parameter estimation case, sampled relationships of all three param-
eters in Eq. (16) need to be considered simultaneously in the EnKF for the increase
of imperfect parameters here. Therefore, the degree of freedom in assimilation pro-
cesses increases and makes the simultaneous multi-parameter estimation unstable
and intractable. In the update process of assimilation, moreover, independent random15

perturbations added on different parameters may break inherent balance relationships
between them and deteriorate the performance of parameter estimation. For these
two reasons, the EnKF fails in the simultaneous multi-parameter estimation case with
mutually independent parameter perturbations, despite soil moisture state can still be
estimated successfully (figures are not shown). For dealing with simultaneous multi-20

parameter estimation properly, constraints in Eqs. (14) and (15) (obtained from Cosby
et al., 1984) should be taken into account to improve estimation performance.

Next, the simultaneous multi-parameter estimation case with constrained parame-
ter perturbation is discussed. The evolutions of the ensemble mean parameter val-
ues are shown in Fig. 5. It can be seen that the estimated ensemble mean values25

for all three parameters converge to their true values successfully with the same ap-
proach time of nine month. From the viewpoint of adding information, imposing these
constraints between model parameters also add new information to the assimilation
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system in addition to the available soil moisture observation. Therefore, even if the
degree of freedom in the assimilation system increase for more imperfect parameters
been considered in simultaneous multi-parameter estimation, these additional correla-
tion between parameters can be used effectively to closure the Eq. (16) and offset the
degrade of the EnKF’s performance. Moreover, constraints can also make observation5

information to be transferred to all estimated imperfect parameters in a balanced way
and keep these parameters being corrected in a coordinated and consistent way dur-
ing the whole update processes of assimilation. For these reasons, this constrained
simultaneous multi-parameter estimation method displays a good performance in soil
moisture assimilation. Because these constrained relationships between parameters10

are always in statistical sense and can be obtained from literature or from standard
parameter tables of the model, this constraint-based parameter estimation method has
potentialities to be used in other land surface models even with more imperfect param-
eters to be estimated.

The RMSE evolutions of constrained estimation experiment, non-constrained es-15

timation experiment, and non-parameter-estimation benchmark experiment are dis-
played in Fig. 6. It can be seen that the RMSE of constrained and non-constrained es-
timation experiments are both lower than that of non-parameter-estimation benchmark
experiment. The RREs are 44% and 25% for near-surface and root zone layer respec-
tively in the constrained estimation case, while 35% and 12% in the non-constrained20

estimation case. With error contributions from imperfect parameter been reduced by
estimation processes, the RRE in constrained estimation is largeer than that in non-
constrained estimation for both layers. It also can be noted that, the impact of con-
sidering constraints in parameter estimation on the model soil moisture state are not
significant enough even after the approach time. As the movement of water in soil25

is a slow process, it needs some time to embody the effects of parameter errors on
soil moisture state in land model. Therefore, we guess that frequent corrections to
soil moisture state by assimilating daily observations may weaken the advantage of
the constrained parameter estimation in soil moisture forecasting. To verify this guess,
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we explore further the behaviors of this constraint-based simultaneous multi-parameter
estimation method with temporal-sparse observation in the following section.

4.3 Sparse observation assimilation results

Actual conventional in situ soil moisture observations in China and other areas in the
world are sparse in time with a measurement interval of about 10-days (Robock et al.,5

2000; Nie et al., 2008). For applying the constrained simultaneous multi-parameter
estimation method in assimilating actual in situ soil moisture in the future, the perfor-
mance of it with temporal-sparse observation conditions are tested in this subsection
by concerned idealized twin experiments.

Results from the case with 10-days assimilation interval are shown in Figs. 7 and 8.10

It can be seen from Fig. 7 that, the performances of ensemble mean values for all pa-
rameters are comparable to that of one-day assimilation interval experiments in Fig. 5.
The estimated mean values of all three parameters can successfully converge toward
their true values. Figure 8 shows that the RMSEs of soil moisture of top two lay-
ers in both constrained and non-constrained estimation experiments are lower than15

that in non-parameter-estimation benchmark experiment. However, different from the
one-day assimilation interval experiments, there are significant reductions of RMSE
from non-constrained estimation to constrained estimation here especially after the
approach time. Because assimilation interval is large enough in this case, errors in
different sources (especially in model parameters) have more time to accumulate into20

soil moisture state in the forecast step of the EnKF. Therefore, when errors in imper-
fect parameters are corrected better by the EnKF in constrained estimation experiment
than that in non-constrained estimation experiment, model integration with little param-
eter error can produce significantly improvement in soil moisture forecasting. These
results indicate that this EnKF-based constrained simultaneous multi-parameter esti-25

mation method has strong applicability in soil moisture assimilation, even if available
observations are as sparse in time as actual conventional in situ soil moisture obser-
vations.
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Results from further experiments with 20-, 30- and 40-days assimilation intervals
show that the estimated ensemble mean values of all three parameters can converge
to their true values within the experiment period (figures are not shown), despite the
approach times and the 1-σ limits of estimated parameters increase with the increase
of assimilation intervals. The RMSE evolution results of these extremely sparse assim-5

ilation intervals experiments are displayed in Fig. 9. With the increase of assimilation
intervals from 10 days to 40 days, the RMSE of soil moisture in both two layers increase
correspondingly. Table 3 gives a summary of RREs for constrained simultaneous three-
parameter estimation experiments with different assimilation intervals. It can be seen
that the largest RRE is exhibited in the 10-days-interval experiment. When assimila-10

tion interval is too small, frequent corrections from soil moisture observations to model
state may weaken the effects of proper parameter estimation in soil moisture forecast-
ing. Whereas in the extremely sparse observation cases (≥20 days here), too little
available information to update model state from soil moisture observations over a cer-
tain period (e.g. one month) makes it different to overcome the accumulation of errors15

in soil moisture state in the process of model integration. Therefore, it can be con-
cluded that proper assimilation frequency (once 10-days here) can display the greatest
advantages of this constrained simultaneous multi-parameter estimation method in soil
moisture assimilation using the EnKF. As conventional soil moisture in situ observa-
tions in China are always with 10-days measurement interval (Nie et al., 2008), this20

method is supposed to be a good choice for assimilating these in situ observations.
The application of this constrained simultaneous multi-parameter estimation method in
assimilating temporal-sparse in situ soil moisture observations over China region will
be studied in the future.

1450

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/1433/2011/hessd-8-1433-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/1433/2011/hessd-8-1433-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 1433–1468, 2011

Land surface scheme
states and

parameters using the
Kalman filter

S. Nie et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

5 Conclusions

This study explores the applicability of the EnKF-based simultaneous state-parameter
estimation in soil moisture data assimilation using a physical process land surface
model by a series of idealized twin experiments. Uncertainties in model parameters,
initial soil moisture condition, and atmospheric forcing data are considered as primary5

sources of model errors. By the means of state augmentation, model-based pseudo
near-surface soil moisture observations are assimilated to estimate model parameter
and soil moisture state simultaneously. Three key hydraulic parameters: the saturated
hydraulic conductivity, the saturated soil moisture suction and a soil texture empirical
parameter, are subjected to estimation attempts in various experiments.10

The estimation of single imperfect parameter is in general successful for all three
estimated parameters. The ensemble mean value of each estimated parameters con-
verge to its true value successfully. Moreover, with parameter errors been reduced in
estimation process, the RMSE in estimation experiments are lower than that in non-
parameter-estimation benchmark experiments. In simultaneous multi-parameter es-15

timation experiments, However, significant degrades can be seen for the estimation
performance of all parameters. The estimated ensemble mean values of all three pa-
rameters can not converge to their true values despite soil moisture state can still be
estimated successfully. The failure of estimation is ascribed to independent pertur-
bations on different estimated parameters in assimilation processes, which cause the20

increase of degree of freedom of assimilation system and the breakage of inherent
balance relationships between these parameters.

A strategy of considering constraints between estimated parameters in the filter is in-
troduced to improve the performance of simultaneous multi-parameter estimation. The
constraints used are obtained from the study of Cosby et al. (1984). The performance25

of the constraint-based multi-parameter estimation is successful, even if observations
are available with temporal-sparse intervals such as 10-days or much longer. From the
viewpoint of adding information, imposing these constraints between model parameters

1451

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/1433/2011/hessd-8-1433-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/1433/2011/hessd-8-1433-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 1433–1468, 2011

Land surface scheme
states and

parameters using the
Kalman filter

S. Nie et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

also add new information to the assimilation system in addition to the available obser-
vations, which is the correlation between parameters. For this reason, the constraint-
based estimation method effectively overcomes the negative impacts of non-closure
problem in multi-parameter estimation and behaves successfully in soil moisture as-
similation. As these constraints are always in statistical sense and can be obtained5

from literature or from standard parameter tables of the model, it is reasonable to apply
this constraint-based parameter estimation method to other land surface models even
with more imperfect parameters to be estimated.

Comparing to non-parameter-estimation assimilation, the constraint-based multi-
parameter estimation case can reduce much more RMSE in soil moisture state. More-10

over, with proper temporal-sparse assimilation interval, this method has the best perfor-
mance in improving soil moisture model state using the EnKF. Although obtained from
idealized twin experiments, these results can still provide an instructive analysis of
how to take the greatest advantage of this constraint-based multi-parameter estimation
method in soil moisture assimilation. For its superiorities to non-parameter-estimation15

method in soil moisture assimilation, it is believed that this constraint-based simultane-
ous state-parameter estimation method might become a good choice for assimilating
actual temporal-sparse in situ soil moisture observations over China in the future.
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Table 1. Specific differences of soil hydraulic parameters, initial soil moisture condition, and
meteorological forcing data between “true” and “prior” model integrations in the idealized twin
experiments.

Variables and Parameters Units True Prior

Saturated hydraulic ms−1 5.23 e−6 5.0 e−5

conductivity

Empirical parameter b – 4.74 12.0

Saturated soil moisture m −0.218 −0.7
suction

Initial soil moisture cm3 cm−3 2-yr spinup 0.12 for both two layers
values

Precipitation mm (day)−1 Gauge-based Adding Gaussian noise with mean
data and NCEP square deviation of 20% to the true
dataset 1 values once daily and the minimum

mean square deviation is limited to
2 mm (day)−1

Long- and short-waves W m−2 NCEP dataset 1 Adding Gaussian noise with mean
rediations square deviation of 30% to the true

values once daily
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Table 2. Summary of time average root mean squared error (RMSE) and relative root mean
squared error (RRE) of soil moisture in near-surface layer (SM1) and root zone layer (SM2) in
three single-parameter estimation experiments and corresponding non-parameter-estimation
experiments with individual imperfect parameters of the saturated hydraulic conductivity ksat,
the saturated soil moisture suction Ψsat, and a soil texture empirical parameter b respectively.

Imperfect Non-estimation RMSE Estimation RMSE RRE
parameter cm3 cm−3 cm3 cm−3

SM1 SM2 SM1 SM2 SM1 SM2

ksat 0.026 0.023 0.014 0.009 46% 61%
Ψsat 0.025 0.013 0.014 0.009 44% 31%
b 0.053 0.053 0.015 0.018 72% 66%

1458

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/1433/2011/hessd-8-1433-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/1433/2011/hessd-8-1433-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 1433–1468, 2011

Land surface scheme
states and

parameters using the
Kalman filter

S. Nie et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. Summary of relative root mean squared error (RRE) of soil moisture in both two layers
in constrained simultaneous three-parameter estimation experiments with assimilation intervals
of 1-day, 10-days, 20-days, 30-days and 40-days respectively.

Assimilation intervals 1-days 10-days 20-days 30-days 40-days

RRE in surface layer 44% 53% 47% 43% 36%
RRE in root zone layer 25% 50% 44% 39% 32%
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(a)

(b)

Fig. 1. The (a) precipitation forcing and (b) soil moisture used in idealized twin experiment
during the year 1998 in Jiangji station. For soil moisture in near-surface layer and root zone
layer, blue and red solid lines are for “true” states as well as green and orange dash lines are
for “prior” states. Gray solid line represents “actual observation” of near-surface soil moisture.
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Fig. 2. Time evolution of the ensemble mean parameter values (solid black line) vs. the true
parameter values (solid gray line) from single-parameter estimation results. Estimated param-
eters are (a) the saturated hydraulic conductivity, (b) the saturated soil moisture suction, and
(c) a soil texture empirical parameter b. The area between two dashed gray lines represents
the 1− standard deviation (1-σ) intervals of the parameter spread.
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Fig. 3. The time evolution of the root mean squared error (RMSE) of near-surface layer soil
moisture (a1), (a2), (a3), and root zone layer soil moisture (b1), (b2), (b3) of one-day-ahead
soil moisture forecasting from single-parameter estimation results (solid black lines) compared
with that of non-parameter-estimation benchmark experiments (solid gray lines). Parameters
shown are (a1), (b1) the saturated hydraulic conductivity; (a2), (b2) the saturated soil moisture
suction; (a3), (b3) a soil texture empirical parameter b.
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Fig. 4. Same as in Fig. 2 but for the simultaneous three-parameter estimation experiments with
mutually independent parameter perturbations.
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Fig. 5. Same as in Fig. 2 but for the simultaneous three-parameter estimation experiments with
constrained parameter perturbations.
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Fig. 6. Same as in Fig. 3 but for the time evolution of RMSE of near-surface layer soil mois-
ture (a) and root zone layer soil moisture (b) from the constrained (solid black lines) and
non-constrained (solid gray lines) simultaneous three-parameter estimation experiments cor-
responding to Figs. 4 and 5 respectively. Short-dashed gray lines represent RMSE from non-
parameter-estimation benchmark experiment.
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Fig. 7. Same as in Fig. 2 but for the constrained simultaneous three-parameter estimation
experiments with 10-days assimilation interval.
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Fig. 8. Same as in Fig. 3 but for the time evolution of RMSE of near-surface layer soil moisture
(a) and root zone layer soil moisture (b) from the constrained (solid black lines), non-constrained
(solid gray lines) simultaneous three-parameter estimation experiments, and non-parameter-
estimation benchmark experiment (short-dashed gray lines) with 10-days assimilation interval.
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Fig. 9. The time evolution of the RMSE for (a) near-surface layer and (b) root zone layer soil
moisture in constrained simultaneous three-parameter estimation experiments with temporal-
sparse assimilation intervals of 10-days (black lines), 20-days (gray lines), 30-days (red lines)
and 40-days (blue lines) respectively.
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