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Abstract

Long time series (95 to 135 yr) of the Standardized Precipitation Index (SPI) computed
with the 12-month time scale relative to 10 locations across Portugal were studied with
the aim of investigating if drought frequency and severity are changing through time.
Considering four drought severity classes, time series of drought class transitions were5

computed and later divided into 4 or 5 sub-periods according to length of time series.
Drought class transitions were calculated to form a 2-dimensional contingency table for
each period. Two-dimensional loglinear models were fitted to these contingency tables
and an ANOVA-like inference was then performed in order to investigate differences
relative to drought class transitions among those sub-periods, which were considered10

as treatments of only one factor. The application of ANOVA-like inference to these data
allowed to compare the four or five sub-periods in terms of probabilities of transition
between drought classes, which were used to detect a possible trend in time evolution
of droughts frequency and severity that could be related to climate change. Results for
a number of locations show some similarity between the first, third and fifth period (or15

the second and the fourth if there were only 4 sub-periods) regarding the persistency
of severe/extreme and sometimes moderate droughts. In global terms, results do not
support the assumption of a trend for progressive aggravation of droughts occurrence
during the last century, but rather suggest the existence of long duration cycles.

1 Introduction20

Drought is a normal recurrent feature of climate, which occurs in all climatic zones.
There are many definitions for drought; in this study the one proposed by Pereira et
al. (2009) is assumed: Drought is a natural but temporary imbalance of water availabil-
ity, consisting of a persistent lower-than-average precipitation, of uncertain frequency,
duration and severity, of unpredictable or difficult to predict occurrence, resulting in di-25

minished water resources availability, and reduced carrying capacity of the ecosystems
(Pereira et al., 2009). Thus, short dry periods or dry spells, also often called droughts,
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are excluded from our analysis. There are various approaches for assessing drought
severity, e.g. meteorological, agricultural, hydrological and socioeconomic. The first
three approaches deal with ways to measure drought as a physical phenomenon, par-
ticularly using drought indices, and the last one deals with drought in terms of supply
and demand (US National Drought Mitigation Cente, 2006). Drought indices are nu-5

merical figures incorporating mainly values of hydro-meteorological indicators. Mete-
orological drought indices respond to weather conditions that have been abnormally
dry or abnormally wet. Precipitation based drought indices are the first indicators of
droughts, since hydrological droughts may emerge considerable time after a meteoro-
logical drought has been established (Wilhite and Buchanan-Smith, 2005), due to the10

effect of storage. Consequently, precipitation-based drought indicators are the basic
tools for a drought early warning system.

The Standardized Precipitation Index (SPI), (McKee et al., 1993, 1995), is often
used for the identification of drought events and to evaluate their severity thus defining
drought classes. The SPI is widely used because it allows a reliable and relatively15

easy comparison between different locations and climates (Bordi et al., 2009; Raziei et
al., 2008). It has the advantage of statistical consistency and the ability to reflect both
short-term and long-term drought impacts (Steinemann et al., 2005) since it may be
computed on shorter or longer time scales, which reflect different lags in the response
of water cycle to precipitation anomalies. Another advantage of SPI is that, due to its20

standardization, its range of variation is independent on the aggregation time scale of
reference, as well as on the particular location and climate. Therefore, SPI values are
more suited to be used as drought triggers, i.e. thresholds that determine when drought
management actions should begin and end (Steinemann et al., 2005). The stochastic
properties of the SPI time series can be used for predicting the likelihood and poten-25

tial severity of future droughts, thus assisting in drought management (Moreira et al.,
2008; Paulo et al., 2005; Paulo and Pereira, 2007). The 12-month time scale, as well
as larger time scales, identifies dry periods of long duration which relate with the global
impact of drought on hydrologic regimes and water resources of a region (Paulo et al.,
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2003; Paulo and Pereira, 2006); differently, shorter time scales of 3 to 6 months are
more useful to detect agricultural droughts. For the Portuguese conditions, where a
dry period of near 6 months occurs, droughts impacting the hydrologic regime are bet-
ter assessed when using the 12-month time scale (Paulo and Pereira, 2006). Hence,
former studies on drought variability or on prediction of drought class transitions were5

performed with the SPI 12-month.
It is common in our time the idea that water resources have been decreasing in

consequence of several causes, mainly due to less precipitation in certain regions of
the planet, like the Mediterranean basin, as a result of climatic changes. In particular, it
is often said that drought events are becoming more frequent and/or more severe due10

to climate change (Brunetti et al., 2004; Huntington, 2006; Szép et al., 2005; Richter
and Semenov, 2005). In fact, dry spells are foreseen to be in augmentation in Europe
due to climate change (Beniston et al., 2007), as well as hydrological droughts (Lehner
et al., 2006). Differently, results of our former studies led to conclude that droughts
are not more frequent or having an increased severity (Moreira et al., 2006), rather a15

possible occurrence of cycles in precipitation has been detected (Moreira et al., 2008).
Also, results by Bordi et al. (2009) and Raziei et al. (2011) are in agreement with
the hypothesis that droughts are not in augmentation. Mishra et al. (2010), regarding
the Midwestern United States in the period 1916–2007, indicate that the study region
is experiencing reduced extreme and exceptional droughts with lesser areal extent20

in recent decades (Mishra et al., 2010). An analysis of risk of dryness in Italy did
not evidence climate change effects on this domain (Moonen et al., 2002). Also, the
analysis of extreme rainfall events in Ireland show that a much greater proportion of
extremes have occurred in the period since 1975 and also it was detected an increase
in annual precipitation after this date (Kiely, 1999). A study on changes in streamflow25

in Duero River, it has shown that decreased discharges essentially related to land use
changes (Morán-Tejeda et al., 2002).

The statistics of extremes has been widely used to study hydrologic extremes. Katz
et al. (2002) approached this topic and discussed the anticipated intensification of
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the hydrologic cycle as part of global climate change (Katz et al., 2002). Raje and
Mujumdar (2010) using two approaches for hydrologic drought prediction obtained an
increasing probability of extreme, severe and moderate droughts and decreasing prob-
ability of normal and wet conditions in Orissa, India as a result of climate change (Raje
and Mujumda, 2010). In a study on streamflow droughts in Europe, it is said that5

“scientists generally agree that the global hydrological cycle will intensify and sug-
gest that extremes will become or have already become more common” (Hisdal et
al., 2001). However, authors also wrote “Despite several reports on recent droughts
in Europe, the non-parametric Mann-Kendall test and a re-sampling test for trend de-
tection showed that it is not possible to conclude that drought conditions in general10

have become more severe or frequent. The period analyzed and the selection of sta-
tions strongly influenced the regional pattern. Within the period 1962–1990 examples
of increasing drought deficit volumes were found in Spain, the eastern part of East-
ern Europe and in large parts of the UK, whereas decreasing drought deficit volumes
occurred in large parts of Central Europe and in the western part of Eastern Europe.15

Trends in drought deficit volumes or durations could, to a large extent, be explained
through changes in precipitation or artificial influences in the catchment. Changes in
the number of drought events per year were determined by the combined effect of cli-
mate and catchment characteristics such as storage capacity” (Hisdal et al., 2001).
Also for Europe, Bordi et al. (2009), using data sets from 1949 to February 2009, have20

noted in the time series of drought and wetness area coverage (number of grid points
above/below the severity threshold) a remarkable linear trend until about the end of the
last century, which is reversed in the last decade. This recent trend reversal is an indi-
cation of a nonlinear trend, which is more pronounced on the hydrological time scale.
The nonlinear trend analysis was performed based on the time series of the principal25

component (PC) associated to the first spatial SPI-eigenvector after embedding it in a
time delay coordinate system using a sliding window of 70 months (singular spectrum
analysis). Nonlinearity appears as a clear feature on the hydrological time scale (Bordi
et al., 2009).
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Regarding Iran, Raziei et al. (2008) found a long-term decreasing trend towards
dry periods in the northern region, while an increasing but weak long-term trend has
been observed in the southern sub-regions, though they are not statistically signif-
icant (Raziei et al., 2008). Seager (2007) regarding the turn of the century North
American drought, wrote “Except in southern South America the global pattern of5

precipitation anomalies of the turn of the century drought is similar to that during
the five prior droughts. These comparisons suggest that the earlier period of this
most recent drought is the latest in a series of multiyear droughts forced by persistent
changes in tropical Pacific Ocean temperatures. Warm tropical North Atlantic Ocean
temperatures may play a secondary role” (Seager, 2007). More recently, Seager et10

al. (2009), in a study using observations of precipitation and model simulations forced
by historical sea surface temperatures from 1856–2007, wrote “The recent drought in
Southeastern United States, forced by reduced precipitation and with reduced evap-
otranspiration, has no signature of model-projected anthropogenic climate changes”
(Seager et al., 2009b). In another paper they wrote “While the last decade or so in15

north and central México has been drier than preceding decades, the associated con-
tinental pattern of hydroclimate change does not fit that which models project to occur
as a consequence of rising greenhouse gases and global warming. However, models
robustly predict that México will dry as a consequence of global warming and that this
drying should already be underway. At least for now, in nature, this is likely obscured20

by strong natural atmosphere-ocean variability” (Seager et al., 2009a).
Hence, despite the uses of different statistical tools in the analysis, still it is far from

existing a global consensus regarding drought increasing of intensity and frequency
in various regions of the planet. To be noted that uncertainty is present in climate
change impact studies as analyzed by Droogers et al. (2007) and Olesen et al. (2007).25

However, since the concept of drought is different among authors of related studies, it
is more difficult to find if drought or dry spells are influenced by climate change. The
present study is therefore one more contribution to the discussion.
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In general, the purpose of this study is to analyze the historical frequency and du-
ration of meteorological drought in Portugal. In particular, the objective of this study is
to detect a possible trend in time evolution of droughts frequency and severity through
the analysis of drought class transitions, which could be related to climate change, or
instead, the occurrence of large cycles originated by a natural variability. The method5

used in this study is not commonly used for detection of trends in hydrology and clima-
tology as are for example linear regression methods (Moonen et al., 2002; Mazvimavi,
2010; Shang et al., 2011; Shao et al., 2011). Other authors used principal component
analysis to observe the spatial and temporal variability of drought and assess linear
and no-linear trends (Bordi et al., 2004, 2006; Raziei et al., 2009).10

This analysis is based on the SPI due to its above mentioned advantages, and in
loglinear modeling, which has shown to be an adequate tool for drought class transi-
tions analysis and for short-term forecast of SPI class transition probabilities (Moreira
et al., 2006, 2008). The loglinear modeling, done upon the contingency tables for
SPI drought class transitions, was used to obtain probability ratios, named Odds, and15

their confidence intervals, that allowed the comparison of different sub-periods of the
same time series (Moreira et al., 2006, 2008). However, the Odds confidence intervals
some times were too large, therefore not enough reliable, thus calling for adopting a
more robust probability analysis. Since loglinear models proved well for analyzing and
predicting transitions between successive SPI drought classes (Moreira et al., 2006,20

2008), the adjusted models were used as a base for the current ANOVA-like inference
approach. Suhailaa et al. (2011) used functional data analysis and one way functional
analysis of variance to compare rainfall patterns between regions and find significant
differences between regions, in Peninsular Malaysia. The ANOVA-like inference is a
very robust and sensitive method to find variability and allows to locate significant dif-25

ferences between treatments. In this study, it was used to find significant differences on
the number of drought class transitions between equivalent sub-periods of the same
time series. So, the sub-periods of each time series are considered as treatments in
the current ANOVA.
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2 Data, SPI time series and division in sub-periods

The data used in this study is constituted by long time series of monthly Standardized
Precipitation Index in a 12-month time scale (SPI-12) for 10 meteorological stations
located in Portugal (Fig. 1).

The time series duration is not the same for all stations. Their size varies between5

95 and 135 yr. In Table 2 are presented the identification and time series duration for
each station.

The methods used to assess the quality of precipitation data series and to compute
the SPI at the 12-month time scale are described in Paulo et al. (2003, 2005). The
annual precipitation data sets used in SPI computation were investigated for random-10

ness, homogeneity and absence of trends using the autocorrelation test (Kendall τ),
the Mann-Kendall trend test and the homogeneity tests of Mann-Whitney for the mean
and the variance (Helsel and Hirsch, 1992). As a result, only the time series not re-
jected by these tests at 5 % significance level were included in the study. In addition,
the appropriateness for using the gamma distribution to compute the 12-month time15

scale SPI for the south and north of Portugal, was verified using non-parametric tests,
namely the Chi-square test. SPI computation is described in former studies (Paulo et
al., 2003, 2005; Paulo and Pereira, 2006, 2007).

The SPI time series were converted into drought classes according to Table 1. The
severity drought classes adopted, also defined in Table 1, are modified from those20

proposed by McKee et al. (1993, 1995) by grouping the severe and extremely severe
drought classes. This modification was done for modeling purposes since transitions
referring to the extremely severe drought classes are much less frequent than for other
classes; thus, a possible bias is avoided since too many zeros in the contingency tables
cause problems in the fitting.25

In order to achieve the final goal of this study – perceive if there is a trend for drought
aggravation – the large duration time series (from 1872 to 2007) were divided into 5
or 4 shorter sub-periods of different size with the intent of statistical comparison. The
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time series division into 5 or 4 different sub-periods (depending of the time series total
duration) is presented in Table 2. All sub-periods but the first have the same length for
all locations.

In a previous study (Moreira et al., 2006), a first attempt was done just by dividing
smaller time series into 3 sub-periods of similar duration (22/23 yr), because 3 was5

the minimal number in order to find either a cycle or a trend. However, if there is a
cycle, it is not expectable that periods of drought recurrence should have exactly the
same duration in every location. It is more likely that they refer to a larger range as for
previous results (Moreira et al., 2008). Differently, if for some sites there is a significant
trend of progressive increasing in droughts occurrence and severity, the successive10

sub-periods should present significant differences between them. It can be observed
that, excepting for the sites in northern Portugal, there are sub-periods with much less
events of moderate and severe/extreme droughts when compared with the previous
and the subsequent sub-period (Figs. 2 and 3). Thus, the sub-periods were defined
according to this perceived dynamics in order to gain accuracy when comparing them.15

After dividing the time series, the number of one step transitions between any
drought class was counted for each sub-period in order to form a 2-dimensional 4×4
contingency table with N =16 cells each one. An example of these contingency tables
is presented in Table 3, where the 5 contingency tables resulting from the division of
the Porto time series into 5 sub-periods can be observed.20

The observed frequencies, denoted by nh,j ,h,j =1,...,4 on that table, are the number
of times that it occurs the drought class h in a given month, followed by the drought
class j in the next month (number of transitions between drought classes in successive
months). In each pair of consecutive months, the first one is the entry month, while the
other is the exit month.25

In these contingency tables, since the sub-periods have different sizes, the observed
frequencies were weighted in order to make it possible the comparison between the 5
(or 4) sub-periods in terms of the number of drought class transitions.
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3 Modeling and methods of analysis

Loglinear models were fitted to contingency tables for the different stations. The ad-
justed models were used to carry out an ANOVA like-inference to compare the 4 or 5
sub-periods. These sub-periods correspond to the treatments of a one-way ANOVA.

Previous studies (Moreira et al., 2006, 2008) led to adjust to these contingency ta-5

bles the quasi-association (QA) loglinear models (Agresti, 1990). Denoting by mh,j
the mean value E (nh,j ) of nh,j , h,j = 1,...,4, also called expected frequency, the QA
loglinear models for two-dimension contingency tables have the following formulation

wh,j = log mh,j = λ+λrh+λcj +β×h× j +δhI(h= j ) (1)

where λ is the constant parameter also designated by the grand mean; λrh is the pa-10

rameter representing the row effect, i.e. the effect of drought class h of the entry month,
h=1,...,4; λcj is the parameter representing the column effect, i.e. the effect of drought
class j of the exit month, j =1,...,4; β is the linear association parameter between rows
and columns; δh is a parameter related to the h-th diagonal element of the contingency
table, h= 1,...,4 and I(h= j ) takes the value 1 when the condition h= j holds and the15

value 0 otherwise. The expected frequencies mhj represent the expected number of
transitions between drought classes h and j in two consecutive months during each
sub-period. The word “effect” refers to any deviation above the mean. The QA loglin-
ear models allow linear-by-linear association of the main diagonal of the contingency
tables and are adequate to fit to squared tables (when the number of columns and lines20

are equal) with ordered categories, resulting from a pairwise comparison of dependent
samples, which is the case.

In adjusting these models it is assumed that the nh,j ,h,j =1,...,4, were values taken
by independent Poisson distributed variables (Agresti, 1990). The assumption of in-
dependency of the nh,j , h,j =1,...,4 could be considered because transitions between25

drought classes in successive months mainly depend on the amount of precipitation
occurring in those months, not on previous months (Paulo and Pereira, 2007). Then,
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the maximum likelihood estimators (MLE) λ̂, λ̂rh, λ̂cj , β̂, δ̂h and m̂h,j , h,j = 1,...,4 of the
model parameters were obtained. However, not all the parameters in the model are
linearly independent since the constraint

4∑
h=1

λrh =
4∑

j=1

λcj =0

is required in this kind of modeling in order to make the parameters identifiable (Agresti,5

1990). As a result, it was taken λh1 = λc1 =0, which simplifies the model.
To ease the computations, from now on, matrix notation will be used. The linearly

independent parameters in the model are 12 (λ, λr2, λr3, λr4, λc2, λc3, λc4, β, δ1, δ2, δ3,
δ4) and they constitute the parameter vector θ . Thus, for instance θ4 = λr4. The cor-
responding maximum likelihood estimators of the parameters constitute the vector θ̂ .10

Moreover, n, m and w are, respectively, the vectors of observed frequencies, expected
frequencies and the logarithms of expected frequencies ordered according to the in-
dices l = 4h+ j −4. In Table 4 is presented the correspondence between the expected
frequencies indexed by l and the expected frequencies in the contingency table. This
correspondence needs to be known because it is required to relate the results for the15

frequencies with the corresponding drought class transition, which is given by their po-
sition in the contingency table. The model matrix, containing known constants derived
from Eq. (1), takes the form

X=



1 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 1 0 0 2 0 0 0 0
1 0 0 0 0 1 0 3 0 0 0 0
1 0 0 0 0 0 1 4 0 0 0 0
1 1 0 0 0 0 0 2 0 0 0 0
1 1 0 0 1 0 0 4 0 1 0 0
1 1 0 0 0 1 0 6 0 0 0 0
1 1 0 0 0 0 1 8 0 0 0 0
1 0 1 0 0 0 0 3 0 0 0 0
1 0 1 0 1 0 0 6 0 0 0 0
1 0 1 0 0 1 0 9 0 0 1 0
1 0 1 0 0 0 1 12 0 0 0 0
1 0 0 1 0 0 0 4 0 0 0 0
1 0 0 1 1 0 0 8 0 0 0 0
1 0 0 1 0 1 0 12 0 0 0 0
1 0 0 1 0 0 1 16 0 0 0 1


.
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Let designate the 12 components row vectors of X by xt with t= 1,...,16. This matrix
X is the same for all stations because it relates with the QA loglinear model and does
not depend on the data set. The QA loglinear model in matrix notation is then

w = logm=Xθ . (2)

Since a rather long time span is used, it may be assumed that:5

– the vector θ̂ of MLE estimates is asymptotically normal with mean value θ and
variance-covariance matrix

(XTD(m̂)X)−1 (3)

(Agresti, 1990), where D(m̂) is the diagonal matrix, whose principal elements are
the adjusted expected frequencies;10

– the vector θ̂ is independent from the residual deviance

G2 =2
16∑
l=1

nl log(nl/m̂l )=2

(
16∑
l=1

nl log(nl )−
16∑
l=1

nl ŵl

)
(4)

which is asymptotically distributed as a central Chi-Square with four degrees of
freedom since there are 16 cells in the contingency tables and 12 linearly indepen-
dent parameters to be adjusted (Agresti, 1990; Nelder, 1974). In the expression15

of G2 the frequencies were ordered according to index l .

Therefore, to validate the adjustment of the model, the Chi-Square test may used with
statistic G2 (Agresti, 1990; Nelder, 1974). Table 5 presents the adjusted parameters
and the residual deviances for all stations and respective sub-periods.

An analysis of variance was applied following this modeling aiming at finding signif-20

icant differences between the sub-periods of each time series. The logarithms of the
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expected number of transitions between all drought classes were taken as observa-
tions in an one-way ANOVA linear model with fixed effects (Hocking, 2003). In this
ANOVA application, each expected frequency obtained from fitting a loglinear model
to a contingency table relative to every sub-period, was compared with the same ex-
pected frequency of another sub-period of the same time series.5

In order to perform ANOVA to compare the expected frequencies generated by the
different loglinear models, some ANOVA algorithms had to be adapted as presented in
Appendix A.

4 Results and discussion

The F test was applied to all drought class transitions and the results obtained are10

presented in Table 6 for the transitions that present significant differences between
the sub-periods. Those results allow concluding that, in general, there are significant
differences between the 5 or 4 sub-periods of each time series for the transitions m1,1,
m2,2, m3,3, m4,4, m3,4, m4,2, m3,2 and m2,3. Differently, the remaining transitions did
not show significant differences.15

The transitions m1,1, m2,2, m3,3 and m4,4 between each drought class and them-
selves, are the most important for the analysis in the sense that they indicate the per-
sistence of these drought classes. In particular, the transition m4,4, referring to the per-
sistence of the severe/extreme drought class, and the m3,4, referring to the transition
from moderate to the severe/extreme drought class, are of special interest, because20

this study aims to detect if droughts severity and frequency are increasing.
The Scheffé multiple comparison method was applied for the transitions that pre-

sented significant differences, whose results are presented in Tables 7 and 8. With this
method, each combination of pairs of sub-periods was tested in order to find significant
differences between 2 sub-periods for each drought transition mh,j , h,j = 1,2,3,4. In25

Tables 7 and 8, the word “yes” is used to indicate when there is significant differences
between h & j sub-periods and “no” otherwise. Table 9 presents the pattern of what
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should be the typical behavior of a cycle of more or less severe droughts in opposi-
tion to a trend of progressive drought increase during the last century. When there is
a cycle, there is similarity between alternating sub-periods and significant differences
between consecutive sub-periods. Differently, if there is a trend, linear or non-linear,
then significant differences must exist between consecutive sub-periods.5

In the present study long time series were analyzed. Three of them are from the
north of Portugal and the others are from south. Analyzing the results of the first
ones (Table 7 and Fig. 2), Montalegre presents a situation of increased occurrence of
droughts from the 1st to the 3rd sub-period, a decrease from the 3rd to the 4th sub-
period, and a maintenance from 4th to the 5th. Overall, there is no evidence of drought10

aggravation for the period of 127 yr of observations. This behavior does not fit in any
typical pattern. That behavior is different from the southern locations and may relate
to the fact that local climate is humid, with the site elevation (1069 m) influencing the
precipitation regime.

Porto-Serra do Pilar (Table 7 and Fig. 2) shows a non-typical behavior: during the first15

three sub-periods there is no evidence of changes in drought frequency and severity,
while, from the 3rd to the 4th sub-periods there is a significant decrease of droughts
occurrence and severity followed by a non-significant increase from the 4th to the 5th
sub-periods. Thus, results do not show aggravation of drought for the last 135 yr. To
be noted that Porto is near the Atlantic Ocean and has a sub-humid to humid climate.20

Penhas Douradas (Table 7 and Fig. 2) shows a significant increase of the occurrence
of severe/extreme droughts in the last sub-period in opposition to a maintenance of
drought severity for the 4 antecedent sub-periods. Penhas Douradas has a humid
climate and is located at 1380 m elevation; the significant increase in occurrence of
severe/extreme droughts in the last 27 yr may be due to different factors other than25

global climate change.
In the South (Table 8 and Figs. 2 and 3) a more consistent behavior can be found.

Some sites, such as Pavia, Beja, Chouto and S. B. Alportel, relative to the occur-
rence of severe/extreme droughts and moderate droughts, show a behavior typical of
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a cycle: there is similarity between alternating sub-periods and significant differences
between consecutive ones. The sub-periods with few severe/extreme droughts are fol-
lowed by sub-periods of higher frequency and persistence of severe/extreme drought.

Lisboa (Table 7 and Fig. 3), if just considering the sub-periods 2, 3, 4 and 5, shows
also a typical cyclic behavior, which is not observed for the pair of the 1st and 2nd5

sub-periods. However, there is no evidence of significant decrease of severe/extreme
droughts between sub-periods 1 and 2; results for Lisboa show a behavior that is closer
to a cycle than to a trend for increase of droughts severity and frequency.

Évora (Table 7 and Fig. 3), in the middle of the drought prone Alentejo, seems to
behave like an outlier in the sense that it would be expected that the sub-period 310

would have more severe/extreme droughts but, instead, this sub-period does not dif-
fer significatively from the 2nd and the 4th. The 1st sub-period shows to have a larger
number of drought events, hence differing significatively from the following sub-periods.
However, the occurrence and severity of droughts also increase significantly in 5th sub-
period relative to the precedent sub-periods, including relative to the 1th one. There-15

fore, this station does not show neither a clear long term trend for drought aggravation,
or a cyclic behavior; nevertheless, droughts are aggravating in the last 27 yr of the
considered period of 135 yr.

Faro (Table 8 and Fig. 3) only shows a significant increase in severe/extreme
droughts between the 4th and the 5th sub-periods, but not between the other 2 sub-20

periods and the 5th. Thus, results for this location can not be interpreted as indicating
a cyclic behavior of droughts occurrence and severity, neither expressing a trend.

The results of a previous study (Moreira et al., 2006), where time series with 67 yr
were studied relative to various locations in Alentejo (southern Portugal), pointed to
a cyclic behavior that could be related with a possible long-term natural variability.25

These results needed to be corroborated with a further study using longer time series.
In the present paper, 10 long time series, with 95 to 135 yr, from different regions of
Portugal were divided into 5 or 4 sub-periods, in the expectance of existing similar-
ity, for instance, between the 1st, 3rd and 5th sub-periods, all having significant high
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occurrence of severe/extreme drought occurrence. The results, however, show to be
different among locations studied. For the northern part of the country, where locations
have an humid climate and data sets are longer than 127 yr, that cyclic behavior was
not found. Porto and Montalegre also do not show trends for droughts aggravation
but Penhas Douradas show an aggravation of droughts for the last sub-period. For the5

South, cases of Lisboa, Pavia, Chouto, Beja and S. B. Alportel, results show a behavior
generally consistent with a cyclic occurrence and severity of droughts. However, other
stations of southern Portugal – Évora and Faro – show a significant aggravation of
droughts for the 5th period only. Because these results are in contradiction with those
of other locations within the same region, it is not possible to relate this aggravation of10

droughts to climate change. Hence, there is a possibility that droughts behavior in the
Alentejo region may be to due long-term natural variability.

5 Conclusions

ANOVA-like inference together with loglinear models have shown high potentialities to
compare drought class transitions among different sub-periods. The methodology re-15

vealed to be robust and very sensitive in detecting variability. In this study, ANOVA is a
new approach that can be used as an alternative to the Odds ratios and correspondent
confidence intervals, as used in a former analysis with loglinear models.

In the Southern region, results for the sites of Pavia, Beja, Chouto, S. B. Alportel
and Lisboa have shown that droughts occurrence and severity behave in a cyclic way,20

in which a sub-period with few severe/extreme droughts is followed by a sub-period of
higher frequency of severe/extreme droughts. This cycle may be related to a long-term
natural variability, with the duration of the sub-periods ranging from 26 to 30 yr. For
the other locations, mainly those from North, there is no evidence of a typical cyclic
behavior, neither a trend for drought aggravation. Therefore, globally, the results do not25

support the assumption of a trend of drought aggravation since the beginning of the
twenty century that could be related with climate change. Nevertheless, if comparing
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the last period of 27 yr with the precedent one of 24, in general there is a significant
increasing of droughts occurrence and severity with exception of Montalegre and Porto
in the north. Results also point out the need for using long time series.

Appendix A
5

One-way ANOVA-like inference and Scheff multiple comparison

Following Sect. 3

ŵl =xT
l θ̂ ,l =1,...,16 (A1)

is also normal with mean value wl and variance

V (ŵl )=xT
l (XTD(m̂)X)−1xl . (A2)10

Thus, an ANOVA-like inference can be used to compare the expected frequencies
between the sub-periods of the same time series, since the normality of the response
variable (the logarithms of the expected frequencies) can be assumed.

ANOVA-like inference was performed for each time series. Supposing a time series
divided into 5 sub-periods, these 5 were considered as treatments of one-way ANOVA15

(Montgomery, 1997). For easiness of the computation and presentation, the ANOVA
technique is presented following a matrix formulation.

Let the 5 sub-periods be indexed by i = 1,...,5, so the vectors ni , m̂i and ŵ i can be
defined, as well as a matrix

Y= [ŵ 1...ŵ 5]T (A3)20

with row vectors yl = [ŵl ,1...ŵl ,5], having mean vectors µl = [wl ,1...wl ,5], l = 1,...,16. If
the 5 sub-periods are similar, the hypothesis

H0,l :wl ,1 = ...=wl ,5,l =1,...,16 (A4)
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will hold. This hypothesis may be rewritten as

H0,l : Aµl =0,l =1,...,16 (A5)

where the matrix A has, for instance, the following configuration

A=

[
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

]
that serves to correctly formulate the hypothesis of equality between the mean val-5

ues wl ,i ,l = 1,...,16,i = 1,...,5. Vectors yl are normal with mean vectors µl and diag-
onal variance-covariance matrices, Dl , with principal elements xT

l (XTD(m̂1)X)−1xl ,...,
xT
l (XTD(m̂5)X)−1xl , l =1,...,16, independent from

SG2 =
5∑

i=1

G2
i (A6)

which is asymptotically distributed as a central chi-square with 20 degrees of free-10

dom (Scheffé, 1959). Thus, Ayl is also normal with mean vector Aµl and variance-
covariance matrix ADlA

T , l = 1,...,16. Therefore, when H0,t, l = 1,...,16 holds, the
statistics

Fl =
12
2

(Ayl )
T (ADlA

T )−1Ayl

SG2
,l =1,...,16 (A7)

will have a central F distribution with 4 and 20 degrees of freedom (Scheffé, 1959).15

The null hypothesis is rejected if the value of the Fl statistic exceeds the 5 % quantil for
an F distribution with 4 and 20 degrees of freedom (F0.05,4,20).

When the time series were divided into 4 sub-periods, the vectors yl and µl have
only with 4 components, a matrix

A=
[

1 −1 0 0
1 0 −1 0
1 0 0 −1

]
20
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is used and the Fl statistic have central F distribution with 3 an 16 degrees of freedom.
In order to find if there are significant differences between sub-period pairs, the

Scheffé multiple comparison method is used.
As a consequence of Scheffé theorem (Scheffé, 1959), if the inequality

|dTyl |>
√

4
20

F0.05,4,20dT (Dl )−1dSG2,l =1,...,165

occurs, then the sub-periods

– 1 and 2 are significantly different if considering a vector

dT = [1−1 0 0 0];

– 1 and 3 are significantly different if considering a vector

dT = [1 0 −1 0 0];10

– ...

– 3 and 4 are significantly different if considering a vector

dT = [0 0 0 1 −1].

Thus, just for the cases that presented significant differences in the F test, it can be
found between which combination of sub-periods pairs there are significant differences15

(combinations of 5 sub-periods two by two, 10 in total or combinations of 4 two by two,
6 in total).
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Table 1. Drought classification of SPI (modified from Mckee et al., 1993).

Code Drought classes SPI values

1 Non-drought SPI ≥ 0
2 Near normal −1 < SPI < 0
3 Moderate −1.5 < SPI ≤ −1
4 Severe/Extreme SPI ≤ −1.5
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Table 2. Division into 4 or 5 sub-periods according to each time series total duration.

Montalegre Porto-Serra Pilar Penhas Douradas Pavia, Chouto

Period Year Size (years) Year Size (years) Year Size (years) Year Size (years)

1880 1872 1883
1st 1900 20 1900 28 1900 17 1912

2nd 1926 26 1926 26 1926 26 1926 14
3rd 1956 30 1956 30 1956 30 1956 30
4th 1980 24 1980 24 1980 24 1980 24
5th 2007 27 2007 27 2007 27 2007 27

Total 127 135 124 95

Lisboa, Évora S. B. Alportel Beja, Faro

Period Year Size(years) Year Size(year) Year Size(years)

1872
1st 1900 28 1910 1900

2nd 1926 26 1926 16 1926 26
3rd 1956 30 1956 30 1956 30
4th 1980 24 1980 24 1980 24
5th 2007 27 2007 27 2007 27

Total 135 97 107
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Table 3. Contingency tables resulting from the division of the Porto time series into 5
sub-periods.

1st period 2nd period 3rd period 4th period 5th period
Drought class t+1 Drought class t+1 Drought class t+1 Drought class t+1 Drought class t+1

Drought
class
month
t

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 163 16 0 0 121 24 0 0 139 15 0 0 195 12 0 0 141 24 0 0
2 16 101 14 0 23 111 13 2 15 93 11 3 14 102 8 1 23 103 9 1
3 1 13 19 5 1 15 22 3 1 11 30 5 1 8 12 2 1 8 30 4
4 0 1 4 8 0 0 6 20 0 3 5 30 0 0 2 4 0 0 4 11
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Table 4. Correspondence between the expected frequencies mhj ,h,j = 1,2,3,4 and the same
expected frequencies indexed by t=1,...,16.

mt m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16
mh,j m1,1 m1,2 m1,3 m1,4 m2,1 m2,2 m2,3 m2,4 m3,1 m3,2 m3,3 m3,4 m4,1 m4,2 m4,3 m4,4
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Table 5. Estimates of QA loglinear model parameters fitted to contingency tables and corre-
spondent residual deviances for the 10 sites by sub-period.

1st sub-period

Montalegre Porto Penhas Pavia Chouto Lisboa Évora Beja SBAlportel Faro

λ 1.008 1.361 0.785 1.974 1.337
λr2 −1.780 −2.350 −1.320 −2.518 −2.100
λr3 −6.460 −7.680 −4.790 −7.970 −7.310
λr4 −12.650 −14.770 −8.960 −13.630 −13.260
λc2 −2.040 −2.400 −1.140 −2.564 −2.100
λc3 −6.880 −7.810 −4.980 −8.120 −7.310
λc4 −13.330 −14.890 −9.720 −13.760 −13.260
β 1.645 1.893 1.117 1.781 1.752
δ1 2.199 1.840 3.740 1.465 1.999
δ2 1.212 0.431 1.140 0.217 0.298
δ3 0.859 0.030 0.870 1.335 0.598
δ4 0.840 0.090 0.030 −0.594 0.201
G2 2.301 2.869 2.446 1.352 1.492

2nd sub-period

Montalegre Porto Penhas Pavia Chouto Lisboa Évora Beja SBAlportel Faro

λ 1.851 1.603 1.584 1.660 2.205 2.215 1.081 1.422 1.738 0.623
λr2 −2.547 −2.033 −1.860 −1.450 −2.120 −2.550 −0.640 −0.430 −0.080 −0.726
λr3 −8.350 −7.670 −6.700 −7.160 −7.420 −8.170 −5.620 −5.300 −4.360 −5.570
λr4 −14.820 −13.820 −12.310 −13.410 −12.430 −14.380 −10.500 −9.280 −7.170 −10.440
λc2 −2.587 −2.032 −1.990 −1.480 −2.170 −2.590 −0.540 −0.510 −0.080 −0.789
λc3 −8.450 −7.720 −6.950 −7.170 −7.400 −8.400 −5.440 −5.540 −4.360 −5.670
λc4 −14.920 −14.050 −12.540 −14.120 −13.130 −14.980 −10.360 −10.110 −7.170 −10.680
β 1.947 1.794 1.506 1.601 1.494 1.786 1.240 1.082 0.819 1.422
δ1 0.865 1.400 2.198 1.169 1.471 1.135 2.690 2.608 2.362 1.945
δ2 0.140 −0.002 0.825 −0.036 0.937 0.460 −0.030 0.000 −0.069 0.360
δ3 0.473 0.731 0.997 1.440 0.960 0.078 1.594 1.772 2.661 1.514
δ4 0.396 0.561 0.960 0.250 −0.540 0.180 0.620 0.670 −0.510 0.521
G2 1.354 5.253 3.065 2.570 2.846 2.393 1.713 2.423 6.840 3.515

3tr sub−period

Montalegre Porto Penhas Pavia Chouto Lisboa Évora Beja SBAlportel Faro

λ 0.911 0.863 2.051 1.054 1.118 1.667 1.283 1.120 1.371 1.518
λr2 −0.428 −0.804 −2.550 −1.400 −1.965 −2.056 −1.128 −1.076 −1.594 −2.490
λr3 −3.920 −5.600 −8.110 −6.420 −6.680 −7.490 −5.110 −6.100 −6.670 −7.900
λr4 −7.100 −9.610 −14.580 −11.680 −12.190 −11.810 −10.320 −9.860 −10.420 −14.960
λc2 −0.428 −0.867 −2.600 −1.457 −2.048 −2.056 −1.192 −1.131 −1.652 −2.540
λc3 −3.920 −5.740 −8.260 −6.590 −6.860 −7.490 −5.170 −6.230 −6.810 −8.030
λc4 −7.100 −9.720 −14.710 −11.980 −12.350 −11.810 −10.380 −9.960 −10.540 −15.080
β 0.958 1.340 1.808 1.574 1.643 1.680 1.275 1.408 1.512 1.914
δ1 2.849 2.731 1.185 2.328 2.375 1.505 2.678 2.462 2.036 1.611
δ2 0.954 −0.020 0.523 −0.121 0.614 0.191 0.389 −0.070 0.389 0.507
δ3 1.080 1.814 1.446 0.925 0.858 1.594 0.148 1.662 1.895 −0.109
δ4 1.837 0.425 −0.590 1.182 0.744 −1.708 0.624 −0.572 −1.570 0.667
G2 0.430 1.457 2.979 5.938 1.341 1.958 0.080 2.500 2.479 2.872
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Table 5. Continued.

4th sub−period

Montalegre Porto Penhas Pavia Chouto Lisboa Évora Beja SBAlportel Faro

λ 2.246 1.322 0.421 3.023 2.256 0.987 0.990 1.617 1.345 0.706
λr2 −2.290 −1.770 −0.960 −3.150 −2.310 −0.953 −1.592 −0.966 −2.400 −0.575
λr3 −7.230 −6.600 −5.630 −8.140 −7.200 −5.090 −6.280 −4.680 −7.260 −4.550
λr4 −12.110 −12.730 −12.120 −12.550 −11.530 −8.330 −11.590 −9.000 −13.510 −7.810
λc2 −2.330 −1.990 −1.040 −3.190 −2.370 −1.030 −1.592 −0.966 −2.400 −0.575
λc3 −7.630 −6.830 −5.800 −8.790 −7.170 −5.550 −6.280 −4.680 −7.350 −4.550
λc4 −13.080 −12.560 −12.680 −13.700 −12.220 −8.850 −11.590 −9.000 −13.810 −7.810
β 1.478 1.560 1.531 1.545 1.396 1.154 1.522 1.056 1.750 1.006
δ1 1.780 2.392 3.097 0.840 1.830 3.116 2.786 2.665 2.252 3.765
δ2 0.576 0.829 0.116 1.677 1.209 1.044 0.615 0.485 0.949 0.685
δ3 1.610 0.561 0.328 0.000 0.940 2.036 0.576 0.319 −0.091 1.733
δ4 −0.710 0.400 2.180 −1.500 −0.840 −0.070 −2.160 −0.520 −2.020 0.210
G2 2.179 2.416 2.461 2.017 3.143 8.857 1.528 9.058 2.742 2.733

5th sub−period

Montalegre Porto Penhas Pavia Chouto Lisboa Évora Beja SBAlportel Faro

λ 1.605 2.299 1.134 2.030 1.655 1.481 1.105 1.578 1.926 2.579
λr2 −1.620 −3.110 −2.830 −3.080 −2.510 −1.434 −1.466 −1.142 −2.632 −2.939
λr3 −6.510 −9.010 −8.250 −8.710 −8.140 −6.760 −6.380 −6.380 −7.000 −7.370
λr4 −11.810 −15.940 −16.160 −15.680 −15.220 −10.210 −10.440 −9.740 −12.770 −11.700
λc2 −1.670 −3.120 −2.820 −3.030 −2.510 −1.436 −1.532 −1.142 −2.567 −2.886
λc3 −6.770 −8.920 −8.300 −8.670 −8.200 −6.710 −6.520 −6.380 −6.940 −7.180
λc4 −12.700 −15.640 −16.200 −15.460 −15.490 −10.100 −10.560 −9.740 −12.710 −11.530
β 1.437 1.986 2.147 1.987 1.937 1.463 1.517 1.316 1.674 1.538
δ1 2.342 0.664 0.796 1.059 1.244 2.005 2.097 1.988 1.424 1.025
δ2 0.428 0.620 0.716 0.641 0.296 −0.055 0.422 −0.016 0.922 1.562
δ3 0.690 1.151 −0.197 0.568 0.741 1.599 0.982 1.128 0.282 0.769
δ4 −0.090 −0.100 0.811 0.321 0.700 −0.909 −0.344 0.821 0.103 −0.774
G2 2.265 2.715 2.861 3.401 2.706 2.089 1.714 1.947 3.300 4.018
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Table 6. Results of the F tests.

m4,4 m3,3 m2,2 m1,1
Time series F 5% F F 5% F F 5 % F F 5 % F

MONTALEGRE 38.237 > 2.866 12.767 > 2.866 31.405 > 2.866 80.423 > 2.866
PORTO 9.825 > 2.866 3.300 > 2.866 0.565 < 2.866 7.144 > 2.866

PENHAS 25.210 > 2.866 10.461 > 2.866 10.021 > 2.866 49.752 > 2.866
CHOUTO 16.502 > 3.239 14.522 > 3.239 9.706 > 3.239 19.405 > 3.239

PAVIA 12.221 > 3.239 3.753 > 3.239 15.393 > 3.239 23.658 > 3.239
LISBOA 10.766 > 2.866 4.981 > 2.866 3.571 > 2.866 5.606 > 2.866
EVORA 50.686 > 2.866 1.746 < 2.866 8.682 > 2.866 22.002 > 2.866

BEJA 12.166 > 3.239 4.840 > 3.239 3.470 > 3.239 6.627 > 3.239
S.B.ALPORTEL 7.232 > 3.239 3.189 < 3.239 3.459 > 3.239 7.823 > 3.239

FARO 4.610 > 3.239 10.065 > 3.239 21.582 > 3.239 40.592 > 3.239

m3,4 m4,2 m3,2 m2,3
Time series F 5% F F 5% F F 5% F F 5% F

MONTALEGRE 6.505 > 2.866 4.915 > 2.866 3.712 > 2.866 4.988 > 2.866
PORTO 0.355 < 2.866 0.692 < 2.866 1.166 < 2.866 0.779 < 2.866

PENHAS 6.284 > 2.866 5.697 > 2.866 5.400 > 2.866 5.657 > 2.866
CHOUTO 3.482 > 3.239 2.430 < 3.239 4.688 > 3.239 3.834 > 3.239

PAVIA 2.259 < 3.239 1.605 < 3.239 2.994 < 3.239 3.301 > 3.239
LISBOA 3.820 > 2.866 3.451 > 2.866 0.242 < 2.866 0.665 < 2.866
EVORA 8.093 > 2.866 7.787 > 2.866 0.893 < 2.866 1.075 < 2.866

BEJA 2.529 < 3.239 2.182 < 3.239 0.307 < 3.239 0.345 < 3.239
S.B.ALPORTEL 3.526 > 3.239 3.205 < 3.239 0.170 < 3.239 0.276 < 3.239

FARO 2.187 < 3.239 2.182 < 3.239 4.278 > 3.239 3.556 > 3.239
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Table 7. Results for the pairwise comparison of sub-periods (Scheffé multiple comparison
method). “yes” is used to indicate when there is significant differences between h & j sub-
periods and “no” otherwise.

Montalegre Porto Penhas Douradas Lisboa Evora

m4,4

1 & 2 yes 1 & 2 no 1 & 2 no 1 & 2 no 1 & 2 yes
1 & 3 yes 1 & 3 yes 1 & 3 no 1 & 3 no 1 & 3 yes
1 & 4 yes 1 & 4 no 1 & 4 no 1 & 4 no 1 & 4 yes
1 & 5 yes 1 & 5 no 1 & 5 yes 1 & 5 yes 1 & 5 yes
2 & 3 no 2 & 3 no 2 & 3 no 2 & 3 yes 2 & 3 no
2 & 4 yes 2 & 4 yes 2 & 4 no 2 & 4 no 2 & 4 no
2 & 5 yes 2 & 5 no 2 & 5 yes 2 & 5 yes 2 & 5 yes
3 & 4 yes 3 & 4 yes 3 & 4 no 3 & 4 yes 3 & 4 no
3 & 5 yes 3 & 5 yes 3 & 5 yes 3 & 5 no 3 & 5 yes
4 & 5 no 4 & 5 no 4 & 5 yes 4 & 5 yes 4 & 5 yes

m3,3

1 & 2 no 1 & 2 no 1 & 2 no 1 & 2 yes 1 & 2 no
1 & 3 no 1 & 3 no 1 & 3 yes 1 & 3 no 1 & 3 no
1 & 4 yes 1 & 4 no 1 & 4 no 1 & 4 no 1 & 4 no
1 & 5 yes 1 & 5 no 1 & 5 yes 1 & 5 no 1 & 5 no
2 & 3 no 2 & 3 no 2 & 3 no 2 & 3 yes 2 & 3 no
2 & 4 yes 2 & 4 no 2 & 4 no 2 & 4 no 2 & 4 no
2 & 5 yes 2 & 5 no 2 & 5 yes 2 & 5 no 2 & 5 no
3 & 4 no 3 & 4 yes 3 & 4 no 3 & 4 no 3 & 4 no
3 & 5 no 3 & 5 no 3 & 5 no 3 & 5 no 3 & 5 no
4 & 5 no 4 & 5 yes 4 & 5 no 4 & 5 no 4 & 5 no

m2,2

1 & 2 yes 1 & 2 no 1 & 2 yes 1 & 2 yes 1 & 2 yes
1 & 3 no 1 & 3 no 1 & 3 yes 1 & 3 no 1 & 3 no
1 & 4 yes 1 & 4 no 1 & 4 yes 1 & 4 no 1 & 4 no
1 & 5 yes 1 & 5 no 1 & 5 yes 1 & 5 no 1 & 5 no
2 & 3 no 2 & 3 no 2 & 3 no 2 & 3 no 2 & 3 yes
2 & 4 yes 2 & 4 no 2 & 4 no 2 & 4 no 2 & 4 yes
2 & 5 no 2 & 5 no 2 & 5 no 2 & 5 no 2 & 5 no
3 & 4 yes 3 & 4 no 3 & 4 no 3 & 4 no 3 & 4 no
3 & 5 yes 3 & 5 no 3 & 5 no 3 & 5 no 3 & 5 no
4 & 5 yes 4 & 5 no 4 & 5 no 4 & 5 no 4 & 5 no
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Table 7. Continued.

Montalegre Porto Penhas Douradas Lisboa Evora

m1,1

1 & 2 no 1 & 2 no 1 & 2 yes 1 & 2 no 1 & 2 no
1 & 3 no 1 & 3 no 1 & 3 yes 1 & 3 yes 1 & 3 no
1 & 4 yes 1 & 4 no 1 & 4 yes 1 & 4 no 1 & 4 yes
1 & 5 yes 1 & 5 no 1 & 5 yes 1 & 5 no 1 & 5 yes
2 & 3 no 2 & 3 no 2 & 3 no 2 & 3 no 2 & 3 yes
2 & 4 yes 2 & 4 yes 2 & 4 no 2 & 4 no 2 & 4 yes
2 & 5 yes 2 & 5 no 2 & 5 yes 2 & 5 no 2 & 5 yes
3 & 4 yes 3 & 4 yes 3 & 4 no 3 & 4 yes 3 & 4 no
3 & 5 yes 3 & 5 no 3 & 5 yes 3 & 5 no 3 & 5 yes
4 & 5 no 4 & 5 yes 4 & 5 yes 4 & 5 no 4 & 5 yes

m3,4

1& 2 yes 1 & 2 no 1 & 2 no 1& 2 no 1& 2 yes
1& 3 no 1& 3 no 1& 3 no 1& 3 no 1& 3 no
1& 4 no 1& 4 no 1& 4 no 1& 4 no 1& 4 no
1& 5 no 1& 5 no 1& 5 yes 1& 5 no 1& 5 no
2& 3 no 2& 3 no 2& 3 no 2& 3 yes 2& 3 no
2& 4 yes 2& 4 no 2& 4 no 2& 4 no 2& 4 no
2& 5 yes 2& 5 no 2& 5 yes 2& 5 no 2& 5 yes
3& 4 yes 3& 4 no 3& 4 no 3& 4 yes 3& 4 no
3& 5 yes 3& 5 no 3& 5 no 3& 5 no 3& 5 yes
4& 5 no 4& 5 no 4& 5 yes 4& 5 no 4& 5 yes
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Table 8. Results for the pairwise comparison of sub-periods. “yes” is used to indicate when
there is significant differences between h & j sub-periods and “no” otherwise (cont.).

Pavia Chouto Beja S.B.Alportel Faro

m4,4

2 & 3 yes 2 & 3 yes 2 & 3 yes 2 & 3 yes 2 & 3 no
2 & 4 no 2 & 4 no 2 & 4 no 2 & 4 no 2 & 4 no
2 & 5 yes 2 & 5 yes 2 & 5 yes 2 & 5 yes 2 & 5 no
3 & 4 yes 3 & 4 yes 3 & 4 yes 3 & 4 yes 3 & 4 no
3 & 5 no 3 & 5 yes 3 & 5 no 3 & 5 no 3 & 5 no
4 & 5 yes 4 & 5 yes 4 & 5 yes 4 & 5 yes 4 & 5 yes

m3,3

2 & 3 no 2 & 3 yes 2 & 3 no 2 & 3 no 2 & 3 yes
2 & 4 yes 2 & 4 no 2 & 4 no 2 & 4 no 2 & 4 yes
2 & 5 no 2 & 5 yes 2 & 5 no 2 & 5 no 2 & 5 yes
3 & 4 yes 3 & 4 yes 3 & 4 no 3 & 4 no 3 & 4 no
3 & 5 no 3 & 5 no 3 & 5 no 3 & 5 no 3 & 5 no
4 & 5 yes 4 & 5 yes 4 & 5 no 4 & 5 no 4 & 5 no

m2,2

2 & 3 yes 2 & 3 yes 2 & 3 no 2 & 3 no 2 & 3 yes
2 & 4 yes 2 & 4 yes 2 & 4 no 2 & 4 no 2 & 4 yes
2 & 5 yes 2 & 5 no 2 & 5 no 2 & 5 yes 2 & 5 yes
3 & 4 no 3 & 4 no 3 & 4 no 3 & 4 no 3 & 4 no
3 & 5 no 3 & 5 yes 3 & 5 no 3 & 5 no 3 & 5 no
4 & 5 no 4 & 5 no 4 & 5 no 4 & 5 no 4 & 5 no

m1,1

2 & 3 yes 2 & 3 no 2 & 3 no 2 & 3 no 2 & 3 yes
2 & 4 yes 2 & 4 yes 2 & 4 no 2 & 4 yes 2 & 4 yes
2 & 5 yes 2 & 5 yes 2 & 5 no 2 & 5 no 2 & 5 yes
3 & 4 yes 3 & 4 yes 3 & 4 yes 3 & 4 yes 3 & 4 yes
3 & 5 no 3 & 5 yes 3 & 5 no 3 & 5 no 3 & 5 no
4 & 5 yes 4 & 5 yes 4 & 5 yes 4 & 5 no 4 & 5 yes

m3,4

2& 3 no 2& 3 yes 2& 3 no 2& 3 yes 2& 3 no
2& 4 no 2& 4 no 2& 4 no 2& 4 no 2& 4 no
2& 5 no 2& 5 no 2& 5 no 2& 5 yes 2& 5 no
3& 4 no 3& 4 yes 3& 4 no 3& 4 no 3& 4 no
3& 5 no 3& 5 no 3& 5 no 3& 5 no 3& 5 no
4& 5 no 4& 5 no 4& 5 no 4& 5 no 4& 5 no
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Table 9. Pattern results of the Scheffé multiple comparison for a cycle and a trend.

Period
comparison Cycle Trend

1 & 2 yes yes
1 & 3 no yes
1 & 4 yes yes
1 & 5 no yes

2 & 3 yes yes
2 & 4 no yes
2 & 5 yes yes
3 & 4 yes yes
3 & 5 no yes
4 & 5 yes yes
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Site Latitude Longitude Altitude
(North) (West) (m)

MONTALEGRE 41.80 −7.78 1069
PORTO-SERRA DO PILAR 41.10 −8.60 100
PENHAS DOURADAS 40.40 −7.55 1388
CHOUTO 39.16 8.21 126
PAVIA 38.90 −8.02 192
LISBOA 38.70 −9.15 114
EVORA 38.60 −7.90 309
BEJA 38.00 −7.87 246
S. B. ALPORTEL 37.20 −7.90 325
FARO 37.00 −7.97 8

Fig. 1. Portugal (location of the stations).

25

Fig. 1. Portugal (location of the stations).
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Fig. 2. Drought classes through time by location (sub-periods are indicated with vertical lines).
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Fig. 3. Drought classes through time by location (cont.) (sub-periods are indicated with vertical
lines).
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