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Abstract

Urbanization and the resulting land-use change strongly affect the water cycle and
runoff-processes in watersheds. Unfortunately, small urban watersheds, which are
most affected by urban sprawl, are mostly ungauged. This makes it intrinsically difficult
to assess the consequences of urbanization. Most of all, it is unclear how to reliably5

assess the predictive uncertainty given the structural deficits of the applied models. In
this study, we therefore investigate the uncertainty of flood predictions in ungauged ur-
ban basins from structurally uncertain rainfall-runoff models. To this end, we suggest a
procedure to explicitly account for input uncertainty and model structure deficits using
Bayesian statistics with a continuous-time autoregressive error model. In addition, we10

propose a concise procedure to derive prior parameter distributions from base data
and successfully apply the methodology to an urban catchment in Warsaw, Poland.
Based on our results, we are able to demonstrate that the autoregressive error model
greatly helps to meet the statistical assumptions and to compute reliable prediction
intervals. In our study, we found that predicted peak flows were up to 7 times higher15

than observations. This was reduced by 150 % with Bayesian updating, using only a
few discharge measurements. In addition, our analysis suggests that imprecise rainfall
information and model structure deficits contribute mostly to the total prediction uncer-
tainty. In the future, flood predictions in ungauged basins will become more important
due to ongoing urbanization as well as anthropogenic and climatic changes. Thus,20

providing reliable measures of uncertainty is crucial to support decision making.

1 Introduction

Urbanization and the resulting land-use change strongly affect the water cycle in wa-
tersheds (Rosso and Rulli, 2002; Ott and Uhlenbrook, 2004; Shepherd, 2005; Brath
et al., 2006; Clarke, 2007; Quilbé et al., 2008; Barron et al., 2011; Jung et al., 2011;25
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Schaefli et al., 2011). By 2020 it is estimated that more than 80 % of European citizens
will be living in urban agglomerations and there is no apparent slowing in this trend
(EEA, 2006). Probably the most obvious consequence of urbanization is that semi-
natural pervious lands are substituted by sealed ones, which changes the hydrology
of the urbanized basin and not only increases flood risk, but also impairs the chemical5

and ecological status of receiving water bodies through erosion and increased pollution
(Dietz and Clausen, 2008).

To assess flood risk and mitigation strategies, urban planners rely on models which
predict the runoff from a given rain event, design storm or long-term precipitation
record. Unfortunately, small urban watersheds in areas of urban sprawl are mostly10

ungauged (Sivapalan, 2003) and where data are available, records often contain only
a few years of the most basic hydrological variables, such as rainfall and streamflow.
This makes it intrinsically difficult to assess the consequences of urbanization and pre-
dictions of such ungauged or poorly gauged basins are considered highly uncertain
(Franks, 2002; Sivapalan et al., 2003; Wagener and Gupta, 2005).15

In ungauged catchments, the lack of data also prohibits the use of detailed physically-
based models and simple conceptual models with only few parameters are often the
only feasible tool to predict the consequences of future urbanization (Sikorska and Ba-
nasik, 2010; Bocchiola et al., 2011). While a clear advantage of using such models
is that their parameters often can be related to the physical catchment characteris-20

tics (Kapangaziwiri and Hughes, 2008), the price is the increased uncertainty due to
model structure deficits (Seibert and Beven, 2009). It is commonly accepted that the
uncertainty of predicted flows stems from parameter uncertainty, model structure error,
measurement error and uncertain inputs to the model (Kavetski et al., 2006a, b).

In the context of urban planning and flood prediction, a reliable measure of uncer-25

tainty in predicted runoff is of vital interest. It is current practice to map prediction
uncertainties entirely to parameters uncertainties and propagate them through the
model (Wagener and Gupta, 2005). A popular example for this approach is Gener-
alized Likelihood Uncertainty Estimation (Beven and Freer, 2001). However, it has
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been demonstrated that Bayesian statistics is conceptually more satisfying than other
approaches of uncertainty analysis (Mantovan and Todini, 2006; Yang et al., 2008).

Bayesian statistics requires an explicit formulation of the error process. This er-
ror process represents typically the input, structural and measurement uncertainty
together. Unfortunately, it has been shown that the assumption of independent and5

normally distributed residuals, although mathematically convenient, is often violated
(Sorooshian and Dracup, 1980; Kuczera et al., 2006; Cawley et al., 2007; Balin et al.,
2010). A promising alternative is the lumped continuous autoregressive error model
proposed by Yang et al. (2007) which is based on more realistic assumptions but has
not been widely recognized so far.10

Such a lumped error process is usually sufficient to compute the prediction uncer-
tainty. However, a separate treatment of the uncertainty sources makes it possible to
quantify the contribution of each to the output uncertainty. This is useful to assess in
how far the prediction uncertainty can be reduced by reducing the uncertainty of a par-
ticular source. With regard to the importance of the individual sources of uncertainty,15

it is reported that measurement errors of the run-off, while acknowledged, are often
considered to be relatively small and in the order of about 5 % (Leonard et al., 2000;
Di Baldassarre and Montanari, 2009). In contrast, Gourley and Vieux (2006) state that
model structure errors and input uncertainty can be the most significant sources of
uncertainty in predicted flows.20

The uncertainty of forcing input, such as rainfall, is well recognized but rarely con-
sidered in hydrological modelling (Kavetski et al., 2002; Kuczera et al., 2006). Unfor-
tunately, this is particularly important for ungauged catchments, where rain gauges,
if available, are often sparse and do not capture the spatial variability of precipitation
(Kavetski et al., 2006a; Bárdossy and Das, 2008; Moulin et al., 2009; McMillan et25

al., 2010).
Besides the possibility to separate the sources of uncertainty, Bayesian statistics

has another feature that makes it appealing to apply it in ungauged catchments: it
makes it possible to incorporate knowledge about the parameters from various sources,

11078

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/11075/2011/hessd-8-11075-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/11075/2011/hessd-8-11075-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 11075–11113, 2011

Bayesian uncertainty
assessment of flood

predictions

A. E. Sikorska et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

such as expert knowledge or previous results, as a probability distribution. This prior
distribution can be subsequently updated if measurement data become available (Beck
and Katafygiotis, 1998; Sivia and Skilling, 2006; Zhang et al., 2011).

While in other applications of Bayesian statistics, the definition of a prior distribution,
e.g. through the elicitation of expert knowledge, is a research field of its own (Winkler,5

1967, O’Hagan, 1998, Garthwaite et al., 2005), most hydrological studies disregard this
aspect. More often than not, investigators choose “reasonable” values, often based on
their personal experience (McIntyre et al., 2005) or the software’s user manual (Yang et
al., 2007). For modelling ungauged catchments, further difficulties arise from unavail-
able base data and, to the best of our knowledge, a concise approach of formulating10

the prior knowledge on hydrological model parameters is missing.
In this paper, our aim is therefore to investigate the uncertainty of flood predictions

in ungauged urban basins with structurally uncertain rainfall-runoff models. Specifi-
cally, we apply current state-of-the-art approaches to explicitly account for both input
uncertainty and model structure deficits. In addition, we propose a concise procedure15

to derive prior parameter distributions from base data. Our study is innovative in three
distinct aspects:

1. For Bayesian inference with a Unit Hydrograph-type model, we use a likelihood
function that combines a Box–Cox data transformation with a continuous-time au-
toregressive error model. Additionally, we explicitly account for input uncertainty20

using rainfall multipliers. To the best of our knowledge, that is the first time when
this is done for a small urban ungauged catchment.

2. We support the concise formulation of prior knowledge by combining five different
methods to derive model parameters from base data. This approach is readily
transferable to model other ungauged catchments with this type of model.25

3. We assess the importance of parameter uncertainty, input and model structure
error on the uncertainty of predicted flows and use scenario analysis to derive
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practical recommendations regarding the performance of the methods for prior
knowledge generation.

Our approach was tested on a case study from the Sluzew creek catchment in War-
saw, Poland, which has undergone rapid urbanization in the last three decades and
has been strongly affected by urban flooding and soil erosion in recent years. As no5

routine monitoring data of precipitation or discharge are available for the Sluzew Creek,
we performed a dedicated monitoring campaign to have a thorough basis for this anal-
ysis. Our results clearly show that predictions in ungauged basins remain a difficult
task: after calibration uncertainties in peak flow are high and up to 5 times larger than
observed values. This is mainly due to imprecise rainfall information and the simplistic10

model structure.
The remainder of the article is structured as follows: in Sect. 2 we present the con-

ceptual rainfall runoff model and details on the Bayesian parameter estimation. In
Sect. 3, the Sluzew creek case study catchment is described and the experimental de-
sign of the monitoring is given. In Sect. 4, we present the results. Finally, we discuss15

the results and draw conclusions in Sects. 5 and 6.

2 Methods

2.1 Conceptual modelling in ungauged basins

As mentioned above, modelling ungauged or poorly gauged catchments is a difficult
task due to the lack of measurement data. Therefore, different conceptual rainfall-runoff20

models have been applied to predict the magnitude of flooding.
The most frequently applied runoff models for ungauged or poorly gauged catch-

ments rely on the Soil Conservation Service Curve Number (SCS-CN) (USDA-SCS,
1986, 1989; Walker et al., 2000; Rosso and Rulli, 2002; Mishra and Singh, 2003;
Hawkins et al., 2009; Soulis et al., 2009). The SCS-CN accounts for most runoff pro-25

ducing watersheds characteristics, such as soil type, land use and treatment, surface
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and antecedent moisture conditions while its parameter can be derived from physical
properties of the catchment. Therefore, it is popular for modelling in ungauged catch-
ments (Mishra and Singh, 2003; Banasik et al., 2008; Hawkins et al., 2009; Soulis et
al., 2009; Sikorska and Banasik, 2010).

In this study we applied a conceptual model that combines the SCS-CN method with5

an instantaneous unit hydrograph model (IUH) to convolute effective rainfall into direct
runoff at the outlet of the catchment (Nash, 1957):

Q(t)=
∫ min(t,teff)

0
Pe (ϕ)h(t−ϕ)dϕ (1)

where Q(t) is a runoff, Pe(ϕ) is unit volume of instantaneous hyetograph, and teff the
duration of the effective rainfall. The unit hydrograph h(t) is expressed as:10

h(t)=
A
∆t

t∫
t−∆t

u(ϕ)dϕ (2)

u(ϕ)=
1

kΓ(N)

(ϕ
k

)N−1
e(−ϕ

k ) (3)

where A is the area of the catchment, ∆t is an interval time, and u(ϕ) is the instanta-
neous unit hygrograph defined by a gamma probability density function (Nash, 1957).
N is the number of identical linear reservoirs with retention time k.15

The effective rainfall Pe(t) in Eq. (1) is computed with the SCS-CN method:

Pe(t)=



0 , if
t∑

ϕ=0
P (ϕ)− I ≤0

(
t∑

ϕ=0
P (ϕ)−I

)2

t∑
ϕ=0

P (ϕ)−I+S
,else

(4)
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where P(ϕ) is the total rainfall at time ϕ, S is the maximal potential retention of a
catchment, and I is the initial abstraction.

Similar as the parameters of the SCS-CN, the parameters and characteristic values
of the IUH can be linked to catchment properties (see Sect. 2.5). Therefore, a concep-
tual run-off model allows for predictions even if no run-off data are available to calibrate5

the model.

2.2 Bayesian prediction and updating

The calculation of the prediction uncertainties is based on the likelihood function p(y |θ)
and the distribution of the parameters (see below). The likelihood function describes

the probability (density) of observing the data y =
[
y
t0
,y

t1
,...,y

tn

]
given the model and10

parameters θ. Consequently, the observed output is a random variable. This is com-
monly modelled by combining a deterministic model with a random error term (see
Sect. 2.3).

The parameters are not known precisely but the current knowledge of the parameters
is described by the probability density function p(θ). The predictive distribution of the15

model is then calculated by marginalizing the joint distribution of the runoff y and the
parameters θ:

p(y)=
∫
p(y |θ)p(θ)dθ (5)

If calibration data yC are available the distribution of the parameters θ is updated by
applying the Bayes’ theorem:20

p(θ|yC)=
p(yC|θ)p(θ)∫
p(yC|θ)p(θ)dθ

∝p(yC|θ)p(θ) (6)

The posterior distribution p(θ|yC) now describes the updated knowledge about the
parameters; a combination of the prior knowledge and the data (Gelman et al., 1996).
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Using the posterior distribution p(θ|yC) in Eq. (5) the predictive distribution becomes:

p(y |yC)=
∫
p(y |θ)p(θ|yC)dθ (7)

2.3 Likelihood function

It is often stated in literature that the assumption of independent normal distributed
errors does not hold for hydrological models. Due to model structure deficits the resid-5

uals are often heavily auto-correlated (Sorooshian and Dracup, 1980; Cawley et al.,
2007; Yang et al., 2007, 2008). Therefore, we constructed the likelihood of the model
described in Sect. 2.1 with a continuous representation of an AR(1) process together
with a Box-Cox transformation as proposed by Yang et al. (2007, 2008). See Appendix
A for details.10

2.4 Input error model

The introduced error process could represent the lumped uncertainty of the model
structure deficits, measurement errors, and input uncertainty (Chatfield, 1996). How-
ever, additional insights can be gained if different sources of uncertainty are treated
separately. It is well known that precipitation measurements contain errors, usually be-15

cause point measurements represented by rare gauges are uncertain due to the signif-
icant spatial and temporal variability of rainfall fields (Kavetski et al., 2006a; Bárdossy
and Das, 2008; Moulin et al., 2009; McMillan et al., 2010). Such spatial variation can-
not be captured by traditional rain gauges. Additionally, in many situations only a single
rain gauge is located close enough to be used.20

Consequently, the model input might be highly uncertain. This uncertainty prop-
agates through the model and can lead to large output uncertainty. Therefore, it is
sensible to consider this error in the model input. On other hand, it is a reasonable
assumption that the measurement error of the runoff is negligible small compared to
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model structure deficits and input uncertainties (Gourley and Vieux, 2006). Here, we
only treat input uncertainty separately.

As proposed by Kavetski et al. (2006a) we tackle the uncertainty of the precipitation
measurements with individual rainfall multipliers ζ j for each storm event as illustrated
in Fig. 1. The product of ζ j and the measured precipitation is then used as input for the5

model. Every event has a separate factor, as uncertainties in effective/aerial rainfall
vary depending on the characteristic of the rainfall event. We furthermore assume
that ζ j is lognormally distributed with an expected value of one, which was shown by
McMillan et al. (2010) to be a good approximation (for more details see Appendix B).

Note that this approach requires an event-based modelling approach. As for any10

analysed storm event a separate rainfall multiplier must be inferred, the number of
parameters increases with the number of events.

2.5 Formulation of prior knowledge

The specification of the prior distribution of parameters is, even for experts, a difficult
task as no explicit rules exist (O’Hagan, 1998; Scholten et al., 2011). The aim here is15

to find the distribution that best reflects the current knowledge.
As for ungauged catchments no measured flow is available, parameters have to be

estimated from other sources of information. In the literature there are three common
approaches to specify the knowledge on model parameters, which all have their difficul-
ties. The first approach is to obtain parameters values straightforward from GIS data,20

topographic maps or tabulated values from the literature (Merz and Blöschl, 2004).
The second one is to directly use parameters estimated on gauged catchments with
similar characteristics (Seibert and Beven, 2009). Finally, parameters can be derived
by empirical equations from readily available data through a regionalization process
(McIntyre et al., 2005).25

The disadvantage of the first method is that it can only be used to obtain physically
based parameters, such as the area of a catchment or the Curve Number (based on
land use and soil characteristics maps) (USDA-SCS, 1986, 1989), which can be biased
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due to out-dated data. The second method raises the question how the “similarity” of
two catchments can be assured (Oudin et al., 2010; Patil and Stieglitz, 2011). The
third method is promising, because it links also non-physically based parameters to
catchment characteristics, such as length of the stream, slope, or impervious area
(Madsen et al., 2002). However, with all three approaches no statement about the5

uncertainty of the obtained parameters can be made.
Therefore, we propose to extend the third approach by using several empirical equa-

tions in parallel and construct prior distributions from the population of obtained pa-
rameter values. Here, we combine five empirical relations to obtain values for N and k
from catchment characteristics, which we label as: (i) SCS, (ii) Lutz, (iii) Rao, (iv) GIUH10

(Geomorphologic IUH), and (v) GCIUH (Geomorphoclimatic IUH). The corresponding
equations for all methods are given in Table 1. Other methods (Haan et al., 1994;
Bhunya et al., 2003; Jain et al., 2006; Singh, 2007) are not suitable as they relate IUH
characteristics to discharge properties that are not available for ungauged catchments.

The SCS method is the most common method to inform IUH characteristics (USDA-15

SCS, 1986, 1989). Originally, it was developed for small agricultural watersheds
(<16 km2), however, it accounts for different types of land use and has since then been
adopted for urban and forest watersheds (Banasik et al., 2008; Seibert and Beven,
2009; Soulis et al., 2009).

In a similar study, Lutz (1984) analyzed over 950 rainfall-runoff events from 75 water-20

sheds located in southwest part of Germany with an area up to 250 km2. This method
relates the parameters to stream properties and the ratio of forest and urbanized areas
within the watershed.

An approach developed directly for small urban catchments was proposed by Rao
et al. (1972), who explicitly took into account the degree of urbanization by relating the25

total area of the watershed to the fraction of impervious area.
The GIUH approach is based on numerical experiments with a detailed physically

based watershed model on four basins in Venezuela and Puerto Rico with the area
from 3 to 103 km2 (Rodŕıguez-Iturbe and Valdés, 1979; Valdés et al., 1979; Hall et
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al., 2001). In this approach the parameters are described as a function of watershed
geomorphology and the dynamic parameter by the average peak flow velocity ν, which
is then related to rainfall and stream properties.

A variation of GIUH approach is GCIUH that was developed to relate the parameters
only to geomorphologic and climatic data (Nowicka and Soczynska, 1989; Hall et al.,5

2001).
The parameters of the IUH characteristics tp and up are related to the Nash model

parameters N and k as follows:

tp =k · (N−1), (8)

up =
1

k ·Γ(N)
·
(N−1)N−1

eN−1
(9)10

and

Lag=N ·k. (10)

The mean and variance of the parameters obtained by the five described methods are
used to fit lognormal distributions as prior distribution for N and k using the method of
moments.15

The retention capacity S is related to the Curve Number (CN), which can be derived
from GIS data, (USDA-SCS, 1986, 1989; Walker et al., 2000; Mishra and Singh, 2003;
Hawkins et al., 2009; Soulis et al., 2009):

S =25.4 ·
(

1000
CN

−10
)
. (11)

The initial abstraction (I) from Eq. (4) is specific for every rainfall event and therefore20

difficult to estimate in advance. However, it can be related to the S through the ratio
factor, which for urban catchments is typically equal to 5 % of S (Hawkins et al., 2009).
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For the watersheds characteristics, A and CN, an error due to inaccurate maps may
be considered. We assumed a normal distributed error with a standard deviation of
10 % of the mean.

The prior distribution for the standard deviation σ of the error model is difficult to
define as σ must represent a combination of both model structure deficits and mea-5

surement errors. To reflect this, a wide distribution was selected. Similarly, a wide
distribution was proposed for the characteristic correlation time of the autoregressive
process τ. For the prior distribution we assumed independence between all parame-
ters.

2.6 Assessing prediction performance10

In the context of flooding the predicted peak flow is the most important model result.
As it can be transferred to the water level in the stream it has practical relevance to
predict the flooded areas during a flood event, which is of particular importance for the
Sluzew creek case study. Specifically, we used the peak flow and its 80 %-interquantile
range to assess the model performance.15

2.7 Scenario analyses

To assess the individual error contributions and the gain of information from observa-
tions, the prediction uncertainty was analysed for four scenarios, which reflect different
degrees of data availability and knowledge of the modeller. Scenario A describes a
typical case of a completely ungauged basin, where no flow data are available for cal-20

ibration. Here, the runoff is predicted using only the prior distribution. For Scenario
B the prior distribution has been updated with run-off data of 14 rain events. For the
predictions of B we used the estimated standard deviation of all rainfall multipliers (σζ )
instead of estimated individual rainfall multipliers. This is the best option to predict
the run-off of a future rain event, for which an appropriate multiplier is not known in25

advance. In addition, we estimate the individual contributions of input uncertainties
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(Scenario C) and parameter uncertainties (Scenario D) to the total prediction uncer-
tainty. Scenario C is similar to B but disregards input uncertainty by setting σζ to zero,
which illustrates the effect of the uncertain precipitation measurements. Scenario D
is similar to scenario A only that the parameters were derived with the Rao method
and considered exactly known. This scenario illustrates the impact of the parameter5

uncertainty (see Table 3).

2.8 Implementation details

The model was implemented in R (R Development Core Team, 2008). We sampled
from the posterior probability distribution using an adaptive Monte Carlo Markov Chain
(MCMC) sampler (Vihola, 2011). This sampler adjusts the covariance matrix of the10

jump distribution to achieve a defined rejection rate and thus guarantees efficient sam-
pling. Convergence to the stationary distribution was achieved by running 72 chains in
parallel with 50 000 samples each. The number of chains was chosen in preliminary tri-
als to ensure good coverage of the parameter space. The prediction uncertainty bands
are based on 1000 Monte Carlo simulations for each of the described scenarios.15

3 Material

3.1 Test catchment

As a test catchment upper part of the Sluzew Creek basin was chosen that is located
in the city of Warsaw (Poland) and has an area of about 26.9 km2 (Ared: 18.3 km2)
(see Fig. 2). In the last three decades it has undergone rapid urbanization. As a20

consequence, it is strongly affected by urban flooding (every second year) and soil
erosion (WAU, 2002; Banasik et al., 2008).

The average annual precipitation in this part of city is about 520 mm and the average
daily temperature varies from −3 ◦C in January to +18 ◦C in July (WAU, 2002). As a
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lowland watershed, no steep slopes exist and the elevation varies from 95 m to 110 m
above sea level. Thus, the topography of the watershed does not have a major influ-
ence on the surface runoff which instead is dominated by the land use type (Barron
et al., 2011). Urban areas cover 58.7 % of the catchment and the ratio of impervious
areas of the whole catchment is 32 %. As a small ungauged basin, no routine moni-5

toring data of precipitation and discharge are available and we implemented our own
monitoring program.

3.2 Data collection

Rainfall data at three locations and the runoff at the outlet of the catchment have been
observed for three hydrological years with a temporal resolution of 10 min.10

For our analysis, we selected 14 rainfall-runoff events from the period 2007–2009.
The selection and separation of the events was based on both, the amount of total
areal-averaged precipitation per an event (>3 mm) and the maximal observed dis-
charge at the outlet (>1 m3 s−1). Storm events with discontinuous rainfall and during
the winter period (due to potential snowmelt that can significantly contribute to runoff)15

were excluded from the analysis.

4 Results

4.1 Prior distribution

The prior distribution for the parameters of the IUH and the watershed characteristics
were derived as described in Sect 2.5. The obtained prior distributions are summarized20

in Table 2 (see also Fig. 3). We find that the values for N obtained with the empirical
formulas roughly vary by a factor 2, whereas the results for k vary by a factor of 4. The
resulting lognormal distributions have a mean of 3.21 and standard deviation of 0.97
and a mean of 1.78 h and standard deviation of 0.86 h for N and k respectively.
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4.2 Bayesian parameter estimation

The model was calibrated with seven parameters: N and k of the IUH model, A and
S for the watershed characteristics, σ and τ of the error model, and σζ of the rainfall
multipliers. Additionally, all 14 rainfall multipliers were inferred. The marginal posterior
parameter distributions for most parameters were found to be distributed close to the5

prior but, as expected, with smaller variances (Fig. 3). An exception was the asymptotic
standard deviation of the error process σ, for which more information was gained from
the data, because not only its variance was greatly reduced but also the mode was
shifted from 1 to 0.4.

Interestingly, the posterior standard deviation of all rainfall multipliers (σζ ) increased10

compared to the prior. This means that the prior distribution underestimated the input
uncertainty. The mode of the estimated rainfall multipliers varied from 0.58 to 1.70 with
a mean of 0.96 for all events (see Supplementary Material). For events with a higher
observed precipitation the accuracy of the rainfall measurement was found to be higher
and closer to the value of one. For events with lower observed rainfall the input error15

was found to be higher (Supplement).
The diagnostic plot of model residuals and innovations is presented in the Fig. 4.

Not surprisingly, the residuals show a strong autocorrelation. This highlights the fact
that the assumption of simpler likelihood functions with independent error terms would
be clearly violated. The assumption of the continuous AR process with independent20

innovations is fulfilled much better, even if some week autocorrelation is still observed
for the event 12. Moreover, time series of standardized observed innovations of the au-
toregressive error model show a reduced heteroscedasticity compared to the residuals
(not shown).

4.3 Predictive uncertainties of flood discharges25

The performance and uncertainties of model prediction were assessed under the four
scenarios defined in Sect. 2.7. First, the model accuracy was measured with the peak
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flow (Table 3). As expected, the relative error of the predicted to the observed peak flow
was found to be the highest for scenario D. Using prior parameter distributions delivered
from different methods (scenario A) instead of a single method (scenario D) makes it
possible to better account for uncertainties in the parameters and slightly improves the
accuracy of the peak flow estimation. The accuracy may be further improved through5

calibration with run-off data in scenario B.
Second, the predictive uncertainties were calculated for the different scenarios

(Fig. 5). Solid lines correspond to predictions using the mode of the posterior den-
sity. Gray bands depict the 80 % predictive intervals. For scenarios where no run-off
data are available, the achieved uncertainty bands were up to 7 times more than ob-10

served peak flows, which is large. A calibration with data allows reducing the uncer-
tainties by a factor of 150 % (scenario B). However its 80 %-prediction interval is still
wide compared to the observed data. Scenario C illustrates that the contributions of
the input uncertainty are important, because the uncertainty bands are 50 % narrower
compared to scenario B. Scenario D shows that the parameter uncertainty is not a15

relevant contribution in predictive uncertainties for this ungauged catchment.

5 Discussion

In this study, we present an approach to assess the prediction uncertainties of a con-
ceptual run-off model in ungauged urbanized catchments. The above results show that
the prediction uncertainty is rather large and dominated by input uncertainty and model20

structure errors. Here, we would like to discuss three important aspects, namely (i) the
obtained results for the prior and posterior parameter distribution, (ii) the choice of the
likelihood function and the consideration of input uncertainty, and (iii) problems with
assessing the consequences of urbanization and modelling in ungauged basins with a
brief outlook on future challenges.25

With regard to point (i), to derive a useful prior distribution, we propose the use
of five different empirical methods. As described above, the parameter values varied
significantly depending on the choice of the empirical method. This indicates that the
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use of a single empirical method most probably leads to biased flow predictions, which
usually overestimate the runoff from big events and underestimate runoff during small
events. However, as the largest uncertainty is contributed by input uncertainties (shown
by Scenario C) and the model structure errors, the predictions are not so sensitive to
the prior distributions of the model parameters (shown by scenarios D). While we can5

suggest a concise approach to derive a prior for the model parameters, obtaining prior
distributions for the parameters of the error model (σ and τ) is difficult. While τ can be
interpreted as the memory effect of the catchment, σ captures both the model structure
error and the measurement error and has no physical meaning. Therefore, the prior
distribution of σ is best directly taken from calibrated models. As such information is10

not available so far, we hope that the results from our case study could represent a
valuable contribution. For larger or more rural catchments, we recommend choosing a
conservative (i.e. wide) prior distribution for σ to avoid overconfidence.

In our case study, we furthermore find that the modes of obtained posterior distri-
butions lie within the expected ranges. If the model is calibrated to each rain event15

separately, the retention S is comparably larger for “small” storm events with less than
12 mm rainfall. This explains the wide posterior distribution for this parameter and cor-
responds to the recent findings (Hawkins et al., 2009; Soulis et al., 2009). With regard
to the correlation time τ of the autoregressive process, we obtained most probable
values around 400 min, which is reasonable for a small urbanized catchment. Interest-20

ingly, the posterior mode of σ is more than two times smaller than the prior, which was
rather unexpected.

With regard to point (ii), the results of Bayesian parameter estimation are only mean-
ingful if the assumptions of the error model are fulfilled. Here, reasonable uncertainty
bands were achieved with the proposed autoregressive error process and the fact that25

larger flows have higher uncertainties than dry weather flows confirms our expecta-
tions. We find that the applied error model is very convenient, because it is straightfor-
ward to implement and, because of its continuous form, it is suitable for data that are
not equally spaced in time (e.g. due to missing values).
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Input uncertainty was considered by using rainfall multipliers. Inferring one rainfall
multiplier per rain event from the observed rain and the run-off has several advantages.
First, it limits the number of parameters to be inferred to a manageable number. Second
it, allows for a better fit to the data (Supplement) and an estimation of the uncertainty
in the input. This uncertainty must then be considered in the prediction uncertainty.5

The main limitation of rainfall multipliers is that they fail when no precipitation has been
observed for a runoff event. While we took great care in our study to eliminate this
problem by an experimental design with multiple rain gauges, this can be relevant in
practical applications. The posterior rainfall multipliers were found to vary around one,
whereas the standard deviation σζ of all multipliers was found to be relatively high10

(about 0.4). Consequently, the uncertainties linked to the input error are important.
However, it must be noted that the rainfall multipliers ultimately increase the flexibility
of the model and thus partly compensate for model structure deficits. Therefore, we
agree with Seibert and Beven (2009) that the inferred rainfall should not be interpreted
as “real” rainfall, but as the estimated inputs for the applied model.15

With regard to point (iii), it was found that the uncertainties in peak flows are about
5 times higher than observed values, which is large and raises concerns for practical
applications of IUH-type models. On the one hand, we are able to show that the pa-
rameter uncertainty can be greatly reduced and the prediction improves even with only
a few discharge measurements. However, on the other hand, for Sluzew creek, putting20

more effort into flow monitoring or collecting long-term records will most probably not
improve the results significantly, because model structure deficits and input uncertainty
remain. Reducing the input uncertainty seems most promising, but typically has some
cost attached to it. For example, more detailed rainfall information requires investments
into a denser network of rain gauges, weather radar or retrieving data from microwave25

links (McMillan et al., 2010). In our case, the model structure can probably be also
improved, but in general this is tied to the availability of runoff data for calibration. In
totally ungauged catchments, however, one is limited to models where the parameters
are roughly known or can be derived with empirical methods. This is particularly true
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if the conditions of the basin are expected to change, for example due to urban growth
which is currently especially relevant in Eastern European cities (EEA, 2006). With
continuing urbanization, even a complex model calibrated to current conditions will not
reliably predict future run-off. Therefore, despite their limitations, simple conceptual
models are justified when it is straightforward to derive parameters and predictions for5

different future scenarios.
In summary, we agree with predecessors (Sivapalan et al., 2003; Seibert and Beven,

2009; Reichert and Mieleitner, 2009) that hydrological modelling in small ungauged or
poorly gauged catchments is not a trivial task and find, once more, that the predictions
are very uncertain. Unfortunately, in many cases there is no alternative to predictions10

of models that cannot be verified with data (Kapangaziwiri and Hughes, 2008). Nev-
ertheless, we believe that it is especially important in these situations to quantify the
prediction uncertainty. Furthermore, the uncertainty must be communicated to the de-
cision makers and, if possible, be taken into account in the urban planning process
(Ramos et al., 2010). This, again, is especially important for urbanized catchments,15

where the economic consequences of flooding can be severe.
Despite economic losses due to flooding, urban growth usually affects the receiving

water quality through point and non-point source pollution. In this regard, wet-weather
pollution, which is often associated with the amount of total suspended solids, is espe-
cially crucial. Future work should therefore investigate the uncertainties of water quality20

impairments (e.g. from sediment loads) in ungauged catchments under urbanization.
Promising approaches for multi objective calibration within a Bayesian framework that
would lend themselves to this task have been recently suggested (Dietzel and Reichert,
2010; Reichert and Schuwirth, 2011).

6 Conclusions25

In this study, we investigated the uncertainty of flood predictions in ungauged urban
basins with structurally uncertain rainfall-runoff models. We used Bayesian statistics
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to explicitly account for parameter uncertainty, input uncertainty and model structure
deficits together with measurement errors and successfully demonstrated the approach
on an urban catchment in Warsaw, Poland. Based on our results we conclude that:

– The proposed procedure to derive prior distributions for the model parameters
from base data by combining five different empirical methods is concise. It deliv-5

ers meaningful results and is readily transferable to other ungauged catchments.
In contrast, it is difficult to specify prior distributions for the parameters of the er-
ror model, which do not necessarily have a physical meaning. Our results are
therefore beneficial for other studies in similar basins.

– The statistical assumption of independent and normally distributed residuals does10

not hold for simple hydrological models because of model structure deficits. In our
case, it was possible to meet the statistical assumptions much better using a Box-
Cox data transformation with a continuous-time autoregressive error model. This
lumped error process is convenient and straightforward to implement for other
cases.15

– Flood predictions of IUH models in ungauged basins are difficult, because predic-
tive uncertainties are large. In our study, we found that predicted peak flows were
up to 7 times higher than observations. This was reduced by 150 % with only few
discharge measurements.

– The separation of uncertainties is beneficial because it makes it possible to as-20

sess the individual error sources. The major contribution to the predictive uncer-
tainties is input uncertainty, i.e. imprecise rainfall information. The second main
contribution are model structure deficits, whereas the parameter uncertainties are
not so important. Flow predictions will improve most with better rainfall informa-
tion, for example from a denser network of rain gauges or microwave links.25
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Appendix A

Likelihood function

To predict the uncertainty of model output, the likelihood function in Eq. (6) in Sect. 2.2
needs to be derived. Following the notation of Yang et al. (2007) a deterministic con-5

ceptual rainfall-runoff model can be written as:

yM (θ)=
[
yM
t0

(θ),yM
t1

(θ),...,yM
tn

(θ)
]

(A1)

Where yM
ti

(θ) is the predicted runoff at time tj and θ denotes the parameter vector. A
random error term ε is then introduced to take measurement errors, input uncertainty,
and the imperfect model structure into account. In many applications a transformation10

helps to meet the statistical assumptions of the considered error model:

Y M
ti

(θ)=g−1
(
g
(
yM
ti

(θ)
)
+εti

)
(A2)

Hence, the model output Y M
ti

(θ) is a random variable and therefore written in capitals.

The transformation function g and its inverse g−1 are the forward and backward Box-
Cox transformation (Box and Cox, 1964, 1982; Yang et al., 2007, 2008):15

g(y)=

{
(y+λ2)λ1−1

λ1
λ1 6=0

ln(y+λ2) λ1 =0
(A3)

g−1 (z)=

{
(λ1z+1)1/λ1 −λ2

exp(z)−λ2

λ1 6=0
λ1 =0

(A4)

dg
dy

= (y+λ2)λ1−1 (A5)20
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Note that g includes the identity (λ1=λ2 = 1) and a log-transformation (λ1=λ2 = 0) as
special cases, y+λ2 and z must be larger than zero for all values y and z.

The simplest assumption for the error process in Eq. (A2) is that εti is independently
and identically distributed. However, it is often reported that this assumption does not
hold for runoff (Yang et al., 2007, 2008). To consider auto correlated error terms a5

continuous autoregressive error model based on the Ornstein-Uhlenbeck process pro-
posed by Yang et al. (2007, 2008) was used. Thereby, the independence and normal
distribution is assigned not to the error but rather to the random distributes, called in-
novations (Chatfield, 2003; Yang et al., 2007, 2008):

Iti =εti −εti−1
exp
(
−
ti −ti−1

τ

)
(A6)10

σIti
=σ

√
1−exp

(
−2

ti −ti−1

τ

)
(A7)

where σIti
is a standard deviation of the innovation Iti , σ is a standard deviation of the

error ε, and τ is a characteristic correlation time. In combination with the Box-Cox
transformation the following likelihood function results:15

p
(
y |θ,R

)
=

1
√

2π

1
σ

exp

−1
2

[
g
(
yt0

)
−g
(
yt0 (θ)

)]2

σ2



·
∣∣∣∣dg

dy

∣∣∣y=yt0
∣∣∣∣ · n∏

i=1

 1
√

2π

1

σ
√

1−exp
(
−2

ti−ti−1
τ

)
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·exp

−1
2

[
g
(
yti

)
−g
(
yti (θ)

)
−
[
g
(
yti−1

)
−g
(
yti−1

(θ)
)]

exp
(
− ti−ti−1

τ

)]2

σ2
(

1−exp
(
−2

ti−ti−1
τ

))


·
∣∣∣∣dg

dy

∣∣∣y=yti
∣∣∣∣] (A8)

where yt is an observation and yt(θ) is a simulated response of a model at time t.

Appendix B
5

Input uncertainty

To simplify the notation all rainfall multipliers are combined in a vector ζ = [ζ1,ζ2,...ζN ].
The distribution of all multipliers between the events is denoted by p(ζ |θζ ), where θζ

are the parameter of this distribution. The likelihood function of the runoff model de-
pends now on the parameters θζ of p(ζ |θζ ) and the model parameters θ. The joint10

distribution of y and ζ is p(y,ζ |θ,θζ )=p(y |ζ,θ)p(ζ |θζ ).
Hence, to get the predictive distribution we integrate over θ, θζ and ζ :

p(y) =
∫∫∫

p(y |ζ,θ)p(ζ |θζ )p(θ)p(θζ )dθdθζdζ
=
∫∫∫

p(y,ζ |θ,θζ )p(θ)p(θζ )dθdθζdζ
(B1)

In case data yC are available for calibration the posterior of ζ , and the parameters θ
and θζ is given by15

p(θ,θζ ,ζ |yC)∝p(yC|ζ,θ)p(ζ |θζ )p(θ)p(θζ ) (B2)

Therewith, the distribution of the prediction becomes

p(y |yC)=
∫ ∫ ∫

p(y,ζ |θ,θζ )p(θ,θζ ,ζ |yC)dθdθζdζ (B3)
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Supplementary material related to this article is available online at:
http://www.hydrol-earth-syst-sci-discuss.net/8/11075/2011/
hessd-8-11075-2011-supplement.pdf.
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Table 1. Methods used to derive IUH characteristics and Nash model parameters.

Method tp or k up or Lag

SCS tp =
L0.8 ·( 1000

CN −9)0.7

2.92·J0.5
Z

up =0.75 1
tp

Lutz tp = P1 ·
(

L·LC

Jg1.5

)
·e−0.016U ·e0.004W up = P2

1

t
P3
p

(i )

Rao k =0.56 ·A0.39 · (1+U)−0.62 ·P −0.11
e ·D0.22

e Lag=1.28 ·A0.46 ·(1+U)−1.66 ·P −0.27
e ·D0.37

e

GIUH tp =0.44
(

RA
RB

)0.55
·R−0.38

L · LΩ
ν up =1.31 ·R0.43

L
ν
LΩ

(i i )

GCIUH tp =0.33 ·Π0.67, Π=
L2.5
Ω ·n1.5 ·BΩ

S0.75
Ω ·R0.6

L ·AΩ ·ir ·tr
up =1.53 1

Π0.67

(i ) P2 =0.64, P3 =1.04 (Lutz, 1984); (i i ) ν=0.665 ·α0.6
Ω · (ir ·A)0.4, αΩ =

s0.5
Ω

nB0.67
Ω

in (m−1 s−1/3) and RB/RA =0.8 (Rodriguez-

Iturbe et al., 1982; Hall et al., 2001); Notes: L – Length of the stream from the water gauge to the watershed ridge
(km), Jz and Jg – Average slope of catchment (%) and average slope of the stream (-), sΩ = Jg, Lc – Length of the
stream to the central point, assumed to be equal to 0.5 l, U and W – Ratio of urbanized and forest areas (%), P1 –
Parameter dependent on the roughness of the stream, P2 and P3 – Dependent on the interval of estimation, Lag – Lag
time (h), A – Catchment area (km2), U – Fraction of the impervious area in the catchment (-), Pe and De – Amount and
duration of effective rainfall, respectively (mm) and (h), ir and tr – Effective rainfall intensity (cm h−1) and its duration
(h), AΩ , BΩ, LΩ – Area, width and length of the highest order stream (km2, m, km), RA, RB and RL are the Horton
area, bifurcation and length ratios of the catchment (Tarboton, 1996), ν− Average peak flow velocity (ms−1), n – The

Manning roughness coefficient (m−1/3 s−1).
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Table 2. Delivered prior distributions of model parameters.

expected value (E )
Parameter/name and meaning distribution and standard deviation (SD)

Parameters of the deterministic model

A area of a catchment [km2] Normal E =26.9, SD=2.7
S Max potential retention of a catchment

[mm]
Lognormal E =55, SD=30

N number of linear reservoirs, [-] (a) Lognormal E =3.21, SD=0.97
k retention time of a linear reservoir, [h] (a) Lognormal E =1.78, SD=0.86

empirical method
SCS – N=4.67, k=2.02
Lutz – N=3.65, k=0.57
Rao – N=2.16, k=1.7
GIUH – N=2.82, k=1.63
GCIUH – N=2.76, k=2.97

Parameters of the error model (model structure and measurement uncertainty)

σ asymptotic standard deviation of the errors
[m3 s−1]

Gamma E =2, SD=2

τ characteristic correlation time of the autore-
gressive process [min]

Gamma E =300, SD=200

λ1
Parameters of the Box-Cox transformation (b), [-]

– E =0.5
λ2 – E =0

Parameters of the input uncertainty

σζ standard deviation of the input uncertainty
factor, [mm] (c)

Gamma E =0.1, SD=0.05

ζ j rainfall multipliers for each j from n rainfall
events, [-] (d)

Lognormal E =1, SD=E(σζ )

(a) Distributions of N and k were delivered from the empirical equations presented in the table; (b) For the parameters of
the Box-Cox transformation (λ1, λ2) no inference was made. We selected the values following (Reichert and Mieleitner,
2009) based on the analysis of the innovations; (c) n – number of selected rainfall-runoff events; (d) σζ relates to the
standard deviation of each rainfall multiplier, identical for all multipliers.
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Table 3. Predictive performance for different scenario analysis for the maximum peak flow.
Qmax observed was 2.9 m3 s−1.

Parameter Input Availability of Qmax (m3 s−1);
ID Uncertainty Uncertainty measured data 10, 50, 90 % quantiles

A Prior Prior None 0.39; 7.66; 20.8
B Posterior Posterior Short-term 2.07; 6.71; 15.2
C Posterior None Short-term 4.25; 6.71; 10.3
D None Prior None 3.94; 9.60; 16.8
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Fig. 1. Schematic representation of the rainfall multipliers and the rainfall-runoff model. Y O
j (t)

and XO
j (t) are the observed runoff and rainfall, respectively. Yj (t) is the modelled runoff and

Xj (t) the inferred rainfall, j the indices for the rain event, θ the parameter of a model, θj param-
eters of the distribution of the rainfall ζj .
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Fig. 2. Overview of a topology in the Sluzew Creek catchment, Warsaw, Poland.
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Fig. 3. Prior (solid line) and posterior distribution (gray area) of model parameters.
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Fig. 4. Diagnostic plot of residuals and innovations. Autocorrelation function (ACF) of stan-
dardized residuals (top line), ACF of standardized innovations (middle) and sequences of inno-
vations (bottom).
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Fig. 5. Predicted flows in the Sluzew creek using the prior and posterior parameter distribu-
tions for different scenarios. Grey areas depict 80 % prediction uncertainty bands. Numbers in
brackets correspond to the number of the event.
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