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Abstract

It is well established in the hydroclimatic literature that the interannual variability in
seasonal streamflow could be partially explained using climatic precursors such as
tropical Sea Surface Temperature (SST) conditions. Similarly, it is widely known that
streamflow is the most important predictor in estimating nutrient loadings and the as-5

sociated concentration. The intent of this study is to bridge these two findings so
that nutrient loadings could be predicted using season-ahead climate forecasts forced
with forecasted SSTs. By selecting 18 relatively undeveloped basins in the Southeast
US (SEUS), we relate winter (January-February-March, JFM) precipitation forecasts
that influence the JFM streamflow over the basin to develop winter forecasts of nu-10

trient loadings. For this purpose, we consider two different types of low-dimensional
statistical models to predict 3-month ahead nutrient loadings based on retrospective
climate forecasts. Split sample validation of the predictive models shows that 18–45 %
of interannual variability in observed winter nutrient loadings could be predicted even
before the beginning of the season for at least 8 stations. Stations that have very high15

R2
(LOADEST) (>0.8) in predicting the observed WQN loadings during the winter (Table 2)

exhibit significant skill in loadings. Incorporating antecedent flow conditions (Decem-
ber flow) as an additional predictor did not increase the explained variance in these
stations, but substantially reduced the RMSE in the predicted loadings. Relating the
dominant mode of winter nutrient loadings over 18 stations clearly illustrates the asso-20

ciation with El Niño Southern Oscillation (ENSO) conditions. Potential utility of these
season-ahead nutrient predictions in developing proactive and adaptive nutrient man-
agement strategies is also discussed.

1 Introduction

Concerted efforts to improve national water quality conditions resulted in the enactment25

of the 1972 Clean Water Act with section (303) d requiring the states and territories to
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list impaired water bodies and develop Total Maximum Daily Loads (TMDLs) for these
waters. Despite these efforts and frequent updates to TMDLs, the US Environmental
Protection Agency’s recent update reveals that nutrients affect 20 % of impaired and
12 % of the assessed river miles (EPA, 2006). The increase in aquatic nutrients might
result from population growth as well as from increased fertilizer application (Meybeck5

1982; Vitousek et al., 1997). However, natural variability associated with weather (e.g.
hurricanes) and climatic events (e.g. El Niño) could also induce significant increase
in nutrient concentrations beyond critical levels (Chen et al., 2007) even if the basin
is not experiencing any pressure from urban development or changes in agricultural
practice. Thus, it is critical to estimate the seasonal nutrient loadings conditioned on10

the expected runoff from nonpoint sources.
The National Research Council (NRC, 2001, 2002) has emphasized that a detailed

understanding of various sources of uncertainties, including the role of climate change
and climate variability, is required for improving water quality prediction in natural sys-
tems. One of the dominant and well understood modes of global climatic variabil-15

ity is ENSO that has a periodicity of 3–7 yr and exhibits anomalous warm/cold SST
conditions in the equatorial Pacific, thereby modulating the climate particularly in the
tropics and sub-tropics (Ropelewski and Halpert, 1987). Considerable research now
exists on the recurrence and regime structure of ENSO and its teleconnections to rain-
fall/streamflow, and their potential predictability of interannual hydroclimatic variabil-20

ity over the United States (Ropelewski and Halpert, 1987; Dettinger and Diaz, 2000;
Devineni and Sankarasubramanian, 2010). It is also well known that instream nutri-
ent concentration and loadings primarily depend on streamflow variability (Borsuk et
al., 2004; Paerl et al., 2006; Lin et al., 2007) and antecedent flow conditions (Vec-
chia, 2003; Alexander and Smith, 2006). Recent studies on the relationship between25

coastal water quality conditions and SST conditions also show that there is a strong as-
sociation between climatic modes and concentrations of phosphorous (Childers et al.,
2006), aquatic vegetation (Cho and Poirrier, 2005), and chlorophyll and phytoplankton
levels (Arhonditsis et al., 2004). However, systematic research in associating climatic
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variability to instream nutrient variability and utilizing that linkage to estimate season-
ahead nutrient loadings is very limited.

Most of the studies on estimating instream nutrient concentrations have focused pri-
marily on predicting the average annual concentrations using runoff and various basin
attributes (Smith et al., 1998, 2003; Mueller and Spahr, 2006; Mueller et al., 1997).5

Studies have also recommended approaches to predict daily and seasonal loadings
and concentrations nutrients using streamflow and their time of observation (Cohn et
al., 1992; Runkel et al., 2004). However, these nutrient models rely on the observed
information (e.g. streamflow) during that season, which has limited utility in developing
season-ahead estimates of nutrients. Findings from the hydroclimatic literature clearly10

show that interannual variability in streamflow can be predicted by developing low di-
mensional models contingent on SST conditions (Devineni et al., 2008) as well as using
precipitation forecasts from General Circulation Models (GCMs) (Sankarasubramanian
et al., 2008). Similarly, water quality literature emphasizes that streamflow is the most
important descriptor in explaining nutrient variability (Cohn et al., 1992; Runkel et al.,15

2004; Cohn, 2005). To our knowledge, this is the first effort that associates the interan-
nual variability in all of the above noted three variables – climate, streamflow and total
nitrogen (TN) – to develop TN forecasts over a region. The purpose is to understand
the “controls” that are required for developing a skillful seasonal nutrient forecasts and
also to assess how the skill in hydroclimatic predictions translate to skill in nutrient20

forecasts over the regional scale. For this purpose, we consider two low-dimensional
models that consider season-ahead climate forecasts and land surface conditions as
predictors for developing season-ahead estimates of winter nitrogen loadings over the
SEUS.

The manuscript is organized as follows: a brief description of climate forecasts,25

streamflow and water quality databases employed in the study is first provided in
Sect. 2. Following that, Sect. 3 provides the details of the low-dimensional statisti-
cal models and skill measures utilized in developing and evaluating the season-ahead
nitrogen loadings forecasts. In Sect. 4, we present results from the winter nutrient
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forecasts developed using the low-dimensional models. Next, we discuss about the
potential implications of the findings in the context of developing adaptive water quality
management plans. Finally, in Sect. 6, we summarize the findings and conclusions
from the study.

2 Data sources5

In this section, we discuss various hydroclimatic and water quality databases employed
for associating climate forecasts with the nutrient loadings over 18 watersheds from the
Southeast US.

2.1 HCDN streamflow database

Given the intent of the study is to associate interannual variability in winter nutrient10

loadings to climatic variability, we focus our analysis on 18 undeveloped basins over
the Southeast United States (SEUS) from the Hydro-Climatic Data Network (HCDN)
database (Slack et al., 1993). Daily streamflow records in the HCDN basins is pur-
ported to be relatively free of anthropogenic influences such as upstream storage and
groundwater pumping and the accuracy ratings of these records are at least “good” ac-15

cording to United States Geological Survey (USGS) standards. The HCDN database
contains the mean daily discharge for about 1600 sites across the continental United
States with an average length of 48 yr. Figure 1 shows the location of 18 HCDN sta-
tions and Table 1 provides the list of the 18 stations considered in this study along with
their drainage areas. Since the streamflow data (Q) in the HCDN database is available20

only up to 1988, we have extended it up to 2009 based on the USGS historical daily
streamflow database.
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2.2 WQN Water Quality Network database

USGS provides national and regional descriptions of stream water quality conditions
in Water Quality monitoring Network (WQN) across the nation (Alexander et al., 1998).
The WQN database comprises water quality data from USGS monitoring networks
from both large watersheds (National Stream Quality Accounting Network, NASQAN)5

and minimally developed watersheds (Hydrologic Benchmark Network, HBN). We em-
ploy the observed daily concentrations of Total Nitrogen (TN) available for these 18
stations from the NASQAN. Observed streamflow during the time of sampling is also
available as part of the WQN database. The available water quality data varies from
10–30 yr depending on the measured water quality variable and station. By ensuring10

the selected watersheds are from HCDN basins, we basically ensure that both the
streamflow and water quality data are minimally affected by anthropogenic influences.
For additional details about WQN, see Alexander et al. (1998). The selected 18 HCDN
stations have observed TN concentrations for 12–22 yr (Table 1). However, the number
of samples for each station ranges from 54–152 daily observations with an average of15

five-seven observations per year.

2.3 Simulated nutrients database

Though nutrient data in the WQN database is available for 12–23 yr over 18 water-
sheds (see Table 2), their samplings are intermittent. Using the daily observation over
this period, we first obtain continuous daily nutrients for the observed period using20

the LOADing ESTimation (LOADEST) program developed by USGS (Runkel et al.,
2004). The LOADEST model allows the user to select the best-fitting regression model
from eleven predefined regression models using the Akaike Information Criterion (AIC)
(Akaike, 1974). Five regression models that include “dtime” term are not appropriate
to use for extrapolation since those models incorporate a linear time trend. Therefore,25

the simulated nutrient loadings based on the remaining regression models (i.e. model
forms: 1, 2, 4 and 6) in the LOADEST program do not have any time trend. For details
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on model forms, see Runkel et al. (2004). Table 2 shows the “goodness of fit” statistics
(coefficient of determination (R2) and AIC) in predicting the observed daily loadings in
the WQN database (Table 1) and the coefficients of the best-fitting regression model for
TN for the selected 18 stations. From Table 2, we infer that R2 ranges from 0.83–0.97
indicating good fit in predicting the observed daily loadings over 18 stations.5

To relate retrospective climate forecasts (discussed in the next section), we esti-
mated the daily TN loadings from 1957–2009 using the observed streamflow data
available from the extended HCDN database and the best fitting regression model
(in Table 2). The simulated daily loadings obtained from the LOADEST model over
the period 1957–2009 are aggregated during JFM to develop winter loadings (Lt) of10

TN. Given that the estimated loadings are based on Adjusted Maximum Likelihood
Estimation (AMLE) procedure in the LOADEST model, the simulated daily and the ag-
gregated winter loadings are statistically unbiased (Cohn, 2005). We also computed
R2

(LOADEST) and the root-mean square error (RMSE(LOADEST)) for the simulated winter
TN loadings obtained from the LOADEST model. For additional details on comput-15

ing errors in seasonal predictions, see Cohn (2005). Further, to ensure that there is
no trend in the winter loadings, we performed Mann-Kendall test. At 1 % significance
level, null-hypothesis with Kendall’s tau being not equal to zero was rejected in all of
the sites for TN. We also performed regional Mann-Kendall test to account for spatial
correlation among the 18 stations (Douglas et al., 2000). The p-value for TN is 4 %20

indicating no-trend at the regional level. Our study will consider the simulated winter
TN loadings (Lt) available during 1957–2009 for relating the interannual hydroclimatic
variability to nutrient variability over 18 stations in the SEUS.

2.4 Climate forecasts database

For developing season-ahead TN forecasts, we utilize the retrospective win-25

ter precipitation forecasts from ECHAM4.5 General circulation model forced
with constructed analogue SSTs (http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.FD/
.ECHAM4p5/.Forecast/ca sst/.ensemble24/.MONTHLY/.prec/, International Research
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Institute of Climate and Society (IRI) data library) (Li and Goddard, 2005). Retrospec-
tive precipitation forecasts from ECHAM4.5 are available for 5 months in advance for
every month beginning January 1957. To force the ECHAM4.5 with SST forecasts,
retrospective monthly SST forecasts were developed based on the observed SST con-
ditions in that month based on the constructed analogue approach. For additional5

details on forcing ECHAM4.5 using constructed analogue SST forecasts, see Li and
Goddard (2005). Figure 1 also shows the locations of 56 grid points of precipitation
forecasts from ECHAM4.5 along with their latitude and longitude over SEUS. For this
study, we utilize only the forecasted mean (which is obtained by computing the average
of 24 ensembles) of winter retrospective precipitation forecasts issued in the beginning10

of January for developing 3-month ahead retrospective nutrient forecasts over the pe-
riod 1957–2007.

3 Low-dimensional models development and performance validation metrics

Given that winter streamflow over the SEUS is predominantly rainfall driven with limited
snow accumulation, we hypothesize that precipitation is the primary driver in control-15

ling the JFM loadings. To verify this, we correlate simulated JFM loadings with both
observed precipitation (Fig. 2) and principal components of the forecasted precipita-
tion from ECHAM4.5 (Table 3). In this study, we only employ Spearman rank corre-
lation for performing all correlation analyses. Similarly, the computed rank correlation
was checked for statistical significance (i.e. 1.96/(n−3)0.5 at 95 % confidence interval,20

where “n” denotes the number of data points used in calculating the correlation). Thus,
the computed correlation in Fig. 2 needs to be greater than 0.29 (n=50) to indicate
statistically significant relationship between the observed precipitation and simulated
loadings.

From Fig. 2, we infer that the correlation between observed precipitation and simu-25

lated loadings is statistically significant and greater than 0.55 for all the basins. Given
this dependency, we first identify relevant grid points (Table 3) of JFM precipitation
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forecasts that have statistically significant correlation with JFM observed precipitation
for each watershed. Nearest grid points that are significantly correlated to each wa-
tershed (Fig. 1) are selected. The variance explained by the first principal component
(PC1) of the precipitation forecasts from these grid points is around 74–95 % indicating
the strong spatial correlation among the gridded forecasts. Further, from Table 3, we5

also infer that rank correlations between PC1 of precipitation forecasts with stream-
flow, and seasonal loadings of TN are statistically significant for all stations (>0.29)
with the only exception being station 18. The primary reason for such low correlation
for station 18 is due to the poor coefficient of determination from the LOADEST model
(Table 2) in predicting observed WQN data. To summarize, Fig. 2 and Table 3 pro-10

vide the scope for using the low-dimensional components of precipitation forecasts for
developing season-ahead forecasts of TN loadings over 18 selected stations.

3.1 Low-dimensional models

Given that our interest is primarily in understanding how large-scale hydroclimatic infor-
mation could be utilized for seasonal nutrient predictions over the SEUS, we consider15

two low-dimensional models: principal components regression (PCR) and canonical
correlation analysis (CCA). Low-dimensional models reduce the correlated predictors
and predictands so that a subspace of uncorrelated predictors and predictands could
be used for regression model development (Tippet et al., 2003; Sankarasubramanian et
al., 2008). Further, these low-dimensional models also recalibrate the GCM forecasts20

so that any marginal bias in predicting the observed precipitation could be adjusted
based on the regression model (Landman and Goddard, 2003). Brief description of
the low-dimensional models is provided next.

3.1.1 Principal Components Regression (PCR)

PCR, which is otherwise known as Model Output Statistics (MOS) (Wilks, 1995), elim-25

inates systematic errors and biases in GCM fields and also recalibrates the principal
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components (PCs) of GCM fields to predict the hydroclimatic variable of interest us-
ing regression analyses. The predictand could be streamflow (Qt) or loadings (Lt)
over a watershed. Since the gridded precipitation forecasts over a given region are
spatially correlated, employing precipitation forecasts from multiple grid points as pre-
dictors would raise multicollinearity issues in developing the regression. To avoid this,5

we employ PCR based on Eq. (1):

ln (Lt) = β̂0 +
K∑

k =1

β̂j ·PCk
t + ε̂t (1)

where Lt denotes the estimate of daily average TN loadings during the JFM season in
year “t”, PCk

t denotes the “k”th PCs from the retained “K ” PCs of precipitation forecasts
and β̂s denote the regression coefficients whose estimates are obtained by minimizing10

the sum of squares of error. We employ step-wise regression to select “K ” PCs out of
the rotated grid points of precipitation (given in Table 3) for developing the PCR model.
From Table 5, we infer that most of the stations (except stations 8, 10 and 11) require
only up to the first four principal components for developing the PCR model.

3.1.2 Canonical Correlation Analysis (CCA)15

In PCR, we develop separate regression models for each site. Given that the predic-
tands, the winter loadings, across the basins are also spatially correlated, one could
utilize that information to develop a reduced set of regression models. This could
help in utilizing the inter-site correlations to develop many (multiple predictands)-to-
many (multiple predictors) regression relationships. Consider winter loadings avail-20

able from “m” sites represented by LT = (L1, L2, . . . , Lm) (dimension: nX m) whose
corresponding “p” grid points of precipitation forecasts (p>m) are represented as
X T = (X1, X2, . . . , Xp) (dimension: nX p), then canonical correlation analysis finds

a linear combination of the “p” predictors, Y *=bT Y , that maximally correlates with
the linear combination of “m” predictands (X *=aT X ). Mathematically, the canonical25
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correlation is obtained by choosing the vectors a and b that maximizes the relationship(
a
T∑

xyb
)/{(

a
T∑

xxa
)(

b
T∑

yyb
)}1/2

where
∑

denotes the variance-covariance

matrix between the two variables in the subscript. For a detailed mathematical treat-
ment of CCA, see Wilks (1995). Number of components from “m” predictands and
“p” predictors to be retained for the regression is decided based on step-wise regres-5

sion. Squared values of canonical correlation represent the percentage of variance
explained in each predictand by the predictors under that dimension. Thus, the skill
in predicting the loadings for each site could be obtained based on the precipitation
forecasts by developing a reduced set of models.

Before performing CCA, we first group the basins based on k-means clustering (Har-10

tigan and Wong, 1979) so that CCA could be performed on each cluster. Based on
clustering, four groups were identified (Table 4) with the sites having the highest load-
ings placed under group 1 and the lowest average loadings placed under group 4. Sep-
arate CCA was performed for each group. For instance, CCA on group 1 is performed
on loadings from two sites (m=2) and the corresponding grid points of precipitation15

forecasts for the two sites (#13 and #18) from Table 3 are combined (p=20) as predic-
tors. The skill in predicting the winter loadings for each station is evaluated based on
two different skill scores, which are discussed next.

3.2 Skill scores for nutrients forecasts

To evaluate the skill in predicting the interannual variability in winter TN loadings us-20

ing climate forecasts, we consider two error metrics – coefficient of determination (R2)
(Eq. 2) and root mean square error (RMSE, defined in Eq. 3) per unit area of the
watershed (A). These metrics need to account both sources of errors: error in predict-
ing the observed JFM nutrient loadings from the WQN database using the LOADEST
program (R2

(LOADEST) ,RMSE(LOADEST)) (see Table 2) and the error in predicting simu-25

lated JFM nutrients from LODEST based on the low dimensional model (R2
(PCR/CCA)

,
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RMSE(PCR/CCA)). Since these two models are developed independently, R2 and RMSE
in predicting winter nutrient loadings using climate information could be expressed as
follows:

R2 =R2
(LOADEST)

·R2
(PCR/CCA)

(2)

RMSE= (RMSE(LOADEST)+RMSE(PCR/CCA))/A (3)5

For each station, R2
(PCR/CCA)

, RMSE(PCR/CCA), were computed based on the estimated
TN loadings from the low-dimensional models and the simulated winter TN loadings
for the period 1957–2006. Thus, we compute skill measures using Eqs. (2) and (3)
to quantify our ability to explain the interannual variability in winter TN loadings using
precipitation forecasts from ECHAM4.5.10

4 Results and analyses

To ensure that the skill in forecasting winter nutrients is reliable, we evaluate the low di-
mensional models based on two different types of validation namely, leave-X out cross-
validation (LCV) and split-sample validation (SSV). Both these methods are commonly
adapted in forecasting literature for validating the model (Wilks, 1995).15

4.1 TN loadings forecasts based on PCR models

For validating the PCR models under LCV, the methodology suggested by Towler et
al. (2009) is modified to evaluate the skill of the model over 51 yr (1957–2008). The
LCV steps for PCR models are described as follows: (i) 10 % of the data (5 yr) are
randomly removed along with the year for which the prediction is desired, (ii) a PCR20

model is developed using the remaining 45 yr of loadings (Lt) and retained PCs (iii)
the developed model is then used to predict the left-out year, and (iv) steps (i) to (iii)
are repeated to develop prediction for each year and skill measures (R2 and R-RMSE)
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were computed based on the 51 yr of predicted data. This entire procedure (i)–(iv) is
repeated 100 times and a box-plot of R2 (Fig. 3) and the median of RMSE (in Table 5)
are presented.

Figure 3 shows the box-plot of R2 under LCV for 18 stations. Under LCV, we com-
pute R2 based on the predicted loadings for 51 yr. Hence, R2 needs to be higher5

than 0.08 (correlation>0.29) to demonstrate statistically significant skill in predicting
season-ahead nutrient loadings. However, more than 12 stations exhibit R2 greater
than 0.16 over 100 trials of LCV. From Fig. 3, sixteen stations show statistically sig-
nificant skill for TN. The developed PCR model under LCV explains more than 10 %
of interannual variability in TN loadings in all the 100 different fittings (Fig. 3) except10

stations 6 and 18. For the rest of the 16 sites, the correlation between the predicted
nutrient loadings obtained using climate forecasts and the loadings simulated from
LOADEST using the WQN database is greater than 0.29, which is statistically signif-
icant for the 51 yr of data considered. The forecasted TN loadings show statistically
insignificant relationship with observed TN loadings that the correlation coefficients are15

0.28 and 0.16 for stations 6 and 18 respectively. Poor goodness of fit (see Table 2,
R2

(LOADEST)) from the LOADEST model is the primarily reason behind the poor perfor-
mance of these two stations during the winter season. Further, station 18 shows poor
correlation between the principal components of precipitation forecasts and JFM load-
ings (Table 3). Another possible reason for such poor prediction by LOADEST model20

in those two stations is the limited number of years of data availability (see Table 1)
with station 6 (18) WQN observations spanning 14 (12) years having a total of 56 (57)
daily samples. The median RMSE (Table 5) computed under LCV also shows that er-
ror in predicting the observed WQN loadings during the winter season is lesser than
1 kg day−1 km−2 for most of the stations.25

Under split-sample validation (SSV), PCR models are developed using Lt and PCs
available over the calibration period (PCR: 1957–1986) and skill measures are com-
puted in predicting Lt during the validation period (1987–2007). Hence, R2 needs to
be higher than 0.21 (correlation>0.46 for 21 yr of data) to demonstrate statistically
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significant skill in predicting season-ahead nutrient loadings. Based on this, Fig. 4 indi-
cates that eleven stations (2–4, 7–11 and 13–15) show significant skill in predicting TN
loadings. Stations 6 and 18 perform poorly because of the limited number of years of
WQN data which results in very low R2 of the LOADEST model. Apart from these two
stations, stations 1, 5, 12, 16 and 17 also show insignificant skill (R2 <0.21). Stations 55

and 16 perform poorly due to the poor skill of the LOADEST model during JFM (see
Table 2, R2

(LOADEST)). Station 17 also has limited number of years of WQN observations
(54 daily samplings, see Table 1). For stations 1 and 12 perform well under LCV, but
the skill is statistically insignificant under SSV even though the simulated TN (Fig. 2)
loadings exhibit significantly correlation with both observed precipitation (Table 2) and10

forecasted precipitation (Table 3). Thus, based on two different validation methods,
we understand that eleven stations (2–4, 7–11 and 13–15) exhibit statistically signif-
icant skill in predicting the observed WQN loadings using the PCR model developed
separately for each site. Next, we evaluate the ability to predict the loadings in these
stations under a different low-dimensional model – Canonical Correlation Analyses –15

that utilizes the spatial correlation in the TN loadings to develop a predictive model.

4.2 TN loadings forecasts based on Canonical Correlation Analyses

Four different CCA was performed on each group (listed in Table 4) and the developed
models were evaluated under LCV and SSV. For LCV, we simply perform leave-5 out
cross-validation instead of repeated fitting of the model (as described in Sect. 4.1 for20

the PCR model). Under leave-5 out cross-validation, we randomly leave five predic-
tands and predictors along with the year for which the prediction is desired for each
station under a given group (in Table 4) and CCA model is developed using the rest of
the 46 years of data. The developed CCA model was employed to predict the year for
which the prediction is desired. This procedure was repeated for all the years of obser-25

vation under a given group to develop the CCA model estimated loadings. The R2
CCA

and RMSECCA was estimated between the simulated winter loadings from the LOAD-
EST model and predicted loadings from the CCA model for each station under all the
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four groups. R2
CCA and RMSECCA were further adjusted according to Eqs. (2) (Fig. 5)

and (3) (Table 5) to account for the errors in the LOADEST model in predicting the
WQN database. From Fig. 5, stations 5, 6 and 18 do not exhibit statistically significant
correlation in predicting the loadings from the WQN loadings. As discussed under PCR
model, stations 5, 6 and 18 did not perform well because of the limited number of years5

of WQN data and low R2 of the LOADEST model during the winter season. Rest of the
sites exhibited statistically significant relationship in explaining the observed variability
in the WQN loadings. For stations 8 and 9, CCA model explain 30–40 % (correlation
0.55–0.63) of the observed winter variability in TN within the WQN database. With
regard to RMSE, the performance of CCA model and PCR model is almost similar to10

PCR with most of the stations having an error 1 kg day−1 km−2.
Under SSV (Fig. 6 and Table 5), we compute R2 based on the predicted loadings

during 1987–2007 using the CCA model developed over the period 1957–1986. From
Fig. 6, CCA model did not exhibit any skill in predicting the winter loadings in sta-
tions 5, 6, 11–13, 16–18. Comparing this with the PCR model performance, CCA15

model performs similar with the exception being very low R2 in stations 11. For sta-
tion 11, PCR (R2 =0.47) performs significantly better than the CCA model (R2 =0.14).
One possible reason for such poor performance of CCA model is that station 11 has
low correlation with the rest of the sites under group #4 which has 8 stations. Under
SSV, R2 of the CCA model for the rest of the stations is almost similar to that of R2

20

of the PCR model. However, the RMSECCA is consistently higher than the RMSEPCR
(Table 5). This implies the conditional bias (over prediction and under prediction) of
the CCA model is much higher. One possible reason for such increased conditional
bias under CCA is due to increased heteroscedasticity in the observed loadings under
a given group. However, the ability of CCA model in explaining the observed variance25

in loadings is almost comparable to that of the PCR model indicating the source of
interannual variability in winter nutrients being the same across the region (discussed
further in Sect. 4.4). To summarize, using ECHAM4.5 precipitation forecasts alone,
we infer both low-dimensional models demonstrate significant ability in predicting the
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observed winter TN loadings in nine coastal stations (#2–4, 7–10 and 14–15) based
on two different validation methods.

4.3 Role of antecedent flow conditions in improving season-ahead TN forecasts

Though instream loadings primarily depend on streamflow and precipitation variability
during the season, antecedent moisture/flow conditions also play a critical role in influ-5

encing the nutrient loadings from the watershed (Vecchia, 2003; Alexander and Smith,
2006). At seasonal time scales, antecedent flow conditions could be considered as the
surrogate for basin storage or initial conditions in influencing the streamflow variability.
To understand the role of antecedent storage conditions, we consider the observed
December streamflow at each station as an additional predictor along with the gridded10

precipitation forecasts (Table 3) to develop nutrient forecasts for each station. Fore-
casts of TN loadings were developed using both PCR model (Fig. 7a) and CCA model
(Fig. 7b) and the modified R2 and RMSE (Table 6) are computed (Eqs. 2 and 3) based
on SSV by evaluating the model over the period 1987–2007. Comparing Fig. 7a and b
with Figs. 4 (PCR model) and 6 (CCA model), we infer that only station #13 (under CCA15

model) has resulted in statistically significant skill by adding streamflow as an additional
predictor. However, by using streamflow as an additional predictor, R2 of the CCA
model substantially improved over all stations which indicate the importance of incor-
porating local information in spatial-dimension reduction. Further, RMSE of both PCR
and CCA models are substantially reduced by adding the observed December stream-20

flow as an additional predictor. This implies that antecedent storage/flow conditions are
very critical in reducing the conditional bias in developing season-ahead TN forecasts
resulting in reduced over/under prediction compared to the models developed using
the precipitation forecasts alone. Thus, from a process control perspective, given the
good skill in the reconstructed seasonal nutrient loadings, the interannual variability in25

nutrient loadings could be partially explained based on climatic variability. But, to obtain
improved prediction (i.e. RMSE), it is important to incorporate both climatic variability
and antecedent storage conditions in developing season-ahead nutrient forecasts.
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4.4 Source of climatic information influencing the winter TN variability

To understand the source of climate information that modulates the TN variability over
the SEUS, we performed principal component analysis on the simulated loadings (Lt)
of TN over 18 stations. The first component approximately explains 59 % of total vari-
ability in TN loadings over 18 stations. It is well-known in the hydroclimatic literature5

that ENSO is one of the important climatic conditions that influence the winter precip-
itation, temperature and streamflow over the SEUS (Ropelewski and Halpert, 1987).
Figure 8 shows the correlation between the first component of JFM TN loadings over
18 stations and JFM Nino3.4 – an index used to denote ENSO conditions by averaging
the SST’s (Kaplan et al., 1998) over the tropical Pacific (170◦ W–120◦ W; 5◦ S–5◦ N).10

From Fig. 8, we infer that roughly 36 % of the variability in the first principal component
of nutrient loadings over SEUS could be explained purely based on ENSO conditions.
ENSO plays an important role on the winter climate of the US since its peak activ-
ity typically coincides during December–February. In fact, the precipitation forecasts
from ECHAM4.5 incorporate the forecasts of tropical SST conditions (i.e. Nino3.4 re-15

gion), which are obtained from constructed analogue SST forecasts for forcing the
ECHAM4.5. Thus, ENSO is one of the sources of climatic variability that primarily
influence both JFM hydroclimatic and nutrient variability over the SEUS.

5 Discussion

Analyses presented in Figs. 2–8 show that interannual variability in nutrient loadings20

could be predicted well before the beginning of the season contingent on the climate
forecasts. By selecting grid points of precipitation forecasts that are statistically signif-
icant with the observed precipitation in the basin, we ensure that the skill in predicting
nutrient loadings is related to the basin process as well. Since obtaining long continu-
ous records of daily observations of nutrients is difficult particularly over a large region,25

we employed simulated nutrient loadings from the LOADEST model to understand the
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role of climate variability in modulating the interannual variability in nutrients over the
SEUS. However, to account for the errors in the LOADEST model in predicting the ob-
served WQN database, the reported skill measures (Eqs. 2 and 3), R2 and RMSE, are
adjusted for both LOADEST model error as well as the error of the low-dimensional
models.5

Thus, the intent of this study is to understand how well climate and basin storage
conditions control the seasonal TN loadings rather than developing a skillful nutrient
forecasts using low-dimensional models. In principle, the analyses provided here could
also be extended with other sophisticated statistical models including nonparametric
and Bayesian hierarchical models to estimate the entire conditional distribution of load-10

ings. Similarly, one could also develop nutrient forecasts by forcing the mechanistic
water quality model with forecasted streamflow and water temperature which in turn
could be obtained based on dynamical downscaling (Leung et al., 1999) or statistical
downscaling (Devineni et al., 2008) based on the climate forecasts.

Perhaps the most important utility of the season-ahead forecasts of nutrient load-15

ings is in promoting water quality trading. Some of the successful water quality trad-
ing programs in the country (e.g. Tar-Pamlico River basin and Neuse River basin in
NC) typically allow trading nutrient loadings across different point sources as well as
with nonpoint sources (e.g. farmers participating in the voluntary nutrient reduction
program) through the basin-level trading association so that the seasonal/annual load20

caps are always met from the basin. Research on climate forecasts and water alloca-
tion clearly show that probabilistic streamflow forecasts could be effectively utilized to
specify the failure probability (1-reliability) of reservoir releases as well as in ensuring
the end of season target storage conditions being met with high probability (Sankara-
subramanian et al., 2009). Similarly, in the context of seasonal water quality manage-25

ment, the developed forecasts of loadings could be used to estimate the probability of
violation of target loadings for the upcoming season. One could also develop an opti-
mal nutrient loading model such that the probability of violating the total loadings from
multiple sources is within the acceptable level. Thus, utilizing season-ahead forecasts
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of nutrient loadings and updating them throughout the season provide an opportunity
to develop adaptive nutrient control strategies that ensure target nutrient loadings and
desired concentration.

6 Summary and conclusions

The study primarily focused on understanding the process controls in estimating win-5

ter nutrient loadings by considering 18 HCDN watersheds over the SEUS. Given the
discontinuous observed daily TN loadings, the study reconstructed simulated TN load-
ings using the LOADEST model for the winter season. The ability to predict these
simulated loadings were validated with two low-dimensional models that utilize winter
nutrient forecasts and pre-season flow conditions. However, the reported skill in pre-10

dicting the TN loadings account for both error from the LOADEST model as well as the
error from the low-dimensional models.

Out of 18 stations, totally nine stations (#2–4, 7–10 and 14–15) exhibited statis-
tically significant skill in predicting the observed winter nutrient loadings under both
low-dimensional models based on two different validation methods. Given that these15

stations exhibit skill under two different validation methods (LCV and SSV), the re-
ported skill is also significant over the entire validation period (1957–2006). Findings
from the study could be summarized as the following “controls” that influence the skill
in predicting seasonal TN loadings: stations that have very high R2

(LOADEST) (>0.8) in
predicting the observed WQN loadings during the winter (Table 2) exhibit significant20

skill in loadings. Incorporating antecedent flow conditions (December flow) as an ad-
ditional predictor did not increase the explained variance in these stations, but sub-
stantially reduced the RMSE in the predicted loadings. Understanding the source of
climatic variability that control the TN variability revealed that Nino3.4, an index de-
noting ENSO conditions over the tropical Pacific, accounted for 36 % of the observed25

spatial variability in the TN loadings over the SEUS. Given that using climate forecasts
has been very beneficial in improving reservoir management over seasonal time scale
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(Sankarasubramanian et al., 2009), we argue the need to develop nutrient loadings
forecasts conditioned on climate forecasts. Our future work will utilize these seasonal
nutrient forecasts in developing adaptive water management plans over the SEUS.
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CAREER grant CBET-0954405. Any opinions, findings, and conclusions or recommendations5
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Table 1. Baseline information for 18 selected stations showing the number of years of observed
daily records of TN available in the WQN database. Values in the parentheses under number
of years column show the total number of daily observations available for each station.

Station Station
Drainage

Number of years
Index Number Station Name Area

(# of daily Obs.)(km2)

1 2047000 Nottoway river near Sebrell, VA 3732.17 17 (95)
2 2083500 Tar river at Tarboro, NC 5653.94 22 (152)
3 2126000 Rocky river near Norwood, NC 3553.46 14 (65)
4 2176500 Coosawhatchie river near Hampton, SC 525.77 13 (100)
5 2202500 Ogeechee river near Eden, GA 6863.47 20 (141)
6 2212600 Falling creek near Juliette, GA 187.00 14 (56)
7 2228000 Satilla river at Atkinson, GA 7226.07 20 (123)
8 2231000 St. Marys river near Macclenny, FL 1812.99 14 (108)
9 2321500 Santa Fe river at Worthington Springs, FL 1489.24 21 (82)
10 2324000 Steinhatchee river near Cross city, FL 906.50 19 (92)
11 2327100 Sopchoppy river near Sopchoppy, FL 264.18 22 (125)
12 2329000 Ochlockonee river near Havana, FL 2952.59 22 (133)
13 2358000 Apalachicola river at Chattahoochee, FL 44 547.79 23 (152)
14 2366500 Choctawhatchee river near Bruce, FL 11 354.51 21 (119)
15 2368000 Yellow river at Milligan, FL 1616.15 21 (123)
16 2375500 Escambia river near Century, FL 9885.98 22 (145)
17 2479155 Cypress creek near Janice, MS 136.23 16 (54)
18 2489500 Pearl river near Bogalusa, LA 17 023.99 12 (57)
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Table 2. Performance of LOADEST model in predicting the observed TN loadings from the
WQN database. Models with linear time components (Model No.: 3, 5, 7–9) are not considered.
The skill in predicting JFM WQN loadings are separately given in the last two columns.

Station Station R2 AIC Model

Coefficients of Skill for JFM

Index No. (Daily) (Daily) No.

selected LOADEST model

a0 a1 a2 a3 a4 R2
(LOADEST)

RMSE(LOADEST)

[kg day−1 km−2]

1 2047000 0.948 0.892 4 6.768 1.114 −0.283 −0.069 0.897 0.432
2 2083500 0.966 −0.131 4 8.122 0.980 0.108 −0.018 0.948 0.403
3 2126000 0.966 0.496 4 8.863 1.066 −0.195 0.090 0.929 0.896
4 2176500 0.956 0.905 6 4.446 1.013 0.026 0.238 −0.036 0.867 0.702
5 2202500 0.916 0.837 4 7.721 1.069 −0.084 −0.317 0.014 0.756
6 2212600 0.853 2.094 1 2.647 1.095 0.004 0.855
7 2228000 0.968 0.518 6 7.521 1.005 −0.025 −0.083 0.103 0.887 0.701
8 2231000 0.963 0.250 6 6.428 1.088 −0.075 −0.027 0.187 0.925 0.242
9 2321500 0.986 −0.219 6 5.690 1.086 −0.037 −0.078 0.059 0.977 0.211
10 2324000 0.979 0.279 6 5.549 1.241 −0.069 −0.096 0.071 0.826 0.608
11 2327100 0.979 0.516 6 4.351 1.139 −0.043 0.187 0.007 0.959 0.344
12 2329000 0.923 0.585 1 7.341 0.846 0.839 0.415
13 2358000 0.902 0.193 4 10.563 0.981 0.074 0.165 0.728 0.625
14 2366500 0.835 0.423 4 9.077 0.931 −0.145 −0.042 0.884 0.375
15 2368000 0.834 1.085 6 7.238 1.123 −0.131 −0.004 0.176 0.835 0.595
16 2375500 0.873 0.758 4 8.868 1.039 0.147 0.032 0.424 0.798
17 2479155 0.912 1.233 4 4.555 1.188 0.206 0.328 0.999 1.531
18 2489500 0.899 0.853 1 10.193 1.047 0.075 6.544
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Table 3. Rank correlation between observed winter streamflow, TN loadings with the first
principal component of the winter precipitation forecasts for the 18 selected stations. Locations
of grid points indicated in the Table are shown in Fig. 1.

Station Station % Correlation between

Index Number Grid points Variance PC1 and
Explained Q Lt (TN)

1 2047000 37–40, 45–48, 53–56 73.6 0.453 0.453
2 2083500 29–32, 37–40, 45–48 84.9 0.479 0.476
3 2126000 36–39, 44–47 79.8 0.456 0.445
4 2176500 27–31, 35–39, 45–47 86.2 0.710 0.611
5 2202500 19–23, 27–31, 35–39, 45–47 85.6 0.598 0.480
6 2212600 37–40, 45–48 86.5 0.418 0.405
7 2228000 19–23, 27–31, 35–39 91.3 0.596 0.601
8 2231000 18–22, 26–30, 34–38 90.8 0.556 0.561
9 2321500 19–22, 27–30, 35–38 90.8 0.561 0.558

10 2324000 18–22, 26–30, 34–38 90.8 0.575 0.572
11 2327100 10–14, 18–22, 26–30 96.0 0.526 0.561
12 2329000 18–22, 26–30, 34–38 90.8 0.469 0.490
13 2358000 26–30, 34–38, 45–46 86.8 0.554 0.555
14 2366500 18–21, 26–29, 34–37 88.0 0.491 0.500
15 2368000 18–21, 26–29, 34–37 90.8 0.499 0.531
16 2375500 26–31, 34–39, 45–47 86.9 0.404 0.404
17 2479155 18–21, 26–29, 34–37 90.1 0.453 0.432
18 2489500 26–27, 34–35 94.7 0.287 0.284
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Table 4. Grouping of 18 selected stations based on K-Means clustering.

Group Stations
Averaged TN loading

(kg day−1)

1 13, 18 59 608.83
2 2, 3, 7, 14, 16 11 394.76
3 1, 5, 12 4043.69
4 4, 6, 8, 9, 10, 11, 15, 17 895.95
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Table 5. Skill, expressed as RMSE (based on Eq. 3), in predicting winter TN loadings using
climate forecasts. Table also gives the number of principal components considered and the
percentage variance explained by them for the total grid points selected (given in Table 3) for
each station.

Station
PCR CCA

ID # of % variance RMSE (kg day−1 km−2) RMSE (kg day−1 km−2)

PCs explained LCV SSV LCV SSV

1 1 73.6 0.585 0.924 0.583 0.884
2 2 96.6 0.652 0.672 0.679 1.246
3 3 99.2 1.955 1.809 1.968 3.461
4 1 86.2 0.938 2.190 0.891 1.654
5 2 97.4 0.801 0.833 0.795 0.968
6 1 86.5 1.038 1.284 1.039 1.472
7 1 91.3 1.034 1.547 0.938 1.285
8 6 99.7 0.678 0.652 0.524 2.319
9 1 90.8 0.967 1.458 0.674 3.619
10 8 99.9 1.235 1.830 1.005 6.453
11 6 99.8 0.865 1.518 0.757 3.691
12 1 90.8 0.906 0.923 0.757 2.014
13 1 86.8 0.790 0.818 0.785 1.582
14 2 98.1 0.510 0.555 0.523 1.013
15 2 98.5 0.690 0.817 0.682 1.199
16 2 96.9 0.965 1.106 0.960 1.418
17 1 90.1 1.656 2.051 1.645 2.132
18 1 94.7 6.703 6.722 6.694 7.673
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Table 6. RMSE (Eq. 3) of forecasted TN loadings based on PCR and CCA models that consider
ECHAM4.5 precipitation forecasts and December streamflow as predictors under SSV.

Station Station RMSE (kg area−1)

Index Number PCR CCA

1 2047000 0.653 0.866
2 2083500 0.671 1.233
3 2126000 1.748 3.420
4 2176500 2.136 1.487
5 2202500 0.845 0.930
6 2212600 1.247 1.438
7 2228000 1.312 1.283
8 2231000 0.631 2.359
9 2321500 1.294 3.190
10 2324000 1.266 6.061
11 2327100 1.510 3.417
12 2329000 0.846 1.419
13 2358000 0.750 1.370
14 2366500 0.508 1.008
15 2368000 0.810 1.193
16 2375500 1.058 1.411
17 2479155 2.022 2.038
18 2489500 6.713 7.032
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Figure 1: Location of the 18 HCDN stations along with the considered grid points over the 
SEUS. 
  

Fig. 1. Location of the 18 HCDN stations along with the considered grid points over the SEUS.
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Figure 2: Rank correlation between the simulated TN loadings from the LOADEST model 
and observed precipitation over the selected 18 stations. 
 

  

Fig. 2. Rank correlation between the simulated TN loadings from the LOADEST model and
observed precipitation over the selected 18 stations.
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Figure 3: Box-plot of R2 (based on equation (2)) of PCR model predicted TN loadings 
obtained using PC’s of forecasted precipitation under LCV 

 

  

Fig. 3. Box-plot of R2 (based on Eq. 2) of PCR model predicted TN loadings obtained using
PC’s of forecasted precipitation under LCV.
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Figure 4: Modified R2 (based on equation (3.2)) of PCR model predicted TN loadings 
obtained using PC’s of forecasted precipitation under SSV. 
 

 

 

  

Fig. 4. Modified R2 (based on Eqs. 2 and 3) of PCR model predicted TN loadings obtained
using PC’s of forecasted precipitation under SSV.
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Figure 5: Modified R2 (based on equation (2)) of CCA model predicted TN loadings obtained 
using PC’s of forecasted precipitation under LCV. 
 
 
 
 
 
  

Fig. 5. Modified R2 (based on Eq. 2) of CCA model predicted TN loadings obtained using PC’s
of forecasted precipitation under LCV.
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Figure 6: Modified R2 (based on equation (2)) of CCA model predicted TN loadings obtained 
using PC’s of forecasted precipitation under SSV. 
 
 
  

Fig. 6. Modified R2 (based on Eq. 2) of CCA model predicted TN loadings obtained using PC’s
of forecasted precipitation under SSV.
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Figure 7: R2 (based on equation (2)) of PCR(a) and CCA(b) model predicted TN loadings 
obtained using both PC’s of forecasted precipitation and December streamflow under SSV. 

(a) 

(b) 

Fig. 7. R2 (based on Eq. 2) of PCR (a) and CCA (b) model predicted TN loadings obtained
using both PC’s of forecasted precipitation and December streamflow under SSV.
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Figure 8: Relationship between the first principal component of TN loadings over SEUS and 
ENSO conditions, which is indicated by Nino3.4. 
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Fig. 8. Relationship between the first principal component of TN loadings over SEUS and
ENSO conditions, which is indicated by Nino3.4.

10971

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/10935/2011/hessd-8-10935-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/10935/2011/hessd-8-10935-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

