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Abstract. Understanding extreme precipitation is very important for Ethiopia, which is heavily

dependent on low-productivity rainfed agriculture but lacks structural and non-structural water reg-

ulating and storage mechanisms. There has been an increasing concern about whether there is an

increasing trend in extreme precipitation as the climate changes. Existing analysis of this region

has been descriptive, without taking advantage of the advances in extreme value modeling. After5

reviewing the statistical methodology on extremes, this paper presents an analysis based on the gen-

eralized extreme value modeling with daily time series of precipitation records at Debre Markos in

the Northwestern Highlands of Ethiopia. We found no strong evidence to reject the null hypothesis

that there is no increasing trend in extreme precipitation at this location.

1 Introduction10

In Ethiopia, rainfall is by far the most important factor climate, as is true for most of Africa. Low-

productivity agriculture, which accounts for a majority of the national economy, relies heavily on

rainfall. Climate extremes such as drought or flood often lead to famine and disaster for the vul-

nerable agricultural, social and economic environment in Ethiopia, which lacks structural and non-

structural water regulating and storage mechanisms. In particular, flood, as a result of extreme15

precipitation, poses serious threat on food security and public safety. Estimating the probability of

extreme precipitation and characterizing the uncertainty of the estimates are crucial to, for instance,

structural design, public safety alerts, evacuation management, and loss mitigation.

Given the increasing public concern on climate change, it is of particular interest to test whether
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there is a long term increasing trend in extreme precipitation. Studies have been done for different20

parts of the world. For examples, Kunkel et al. (1999) reported an increasing trend in the United

States at a rate of 3% per decade from 1931 to 1996, but no significant trend during 1951–1993 in

Canada; Kunkel (2003) showed a sizeable increase in the frequency of extreme precipitation events

since the 1920s/1930s in the U.S.; Frei and Schär (2001) found an increase in the frequency of heavy

precipitation during 1901-1994 in the Alpine region of Switzerland; Goswami et al. (2006) detected25

a significant rising trend in both the frequency and the magnitude of extreme rainfall events from

1951 to 2000 in central India; Karagiannidis et al. (2009) reported no significant trend in extreme

precipitation of the European continent from the mid 1970’s to 2000.

Both descriptive approaches and model-based approaches have been used to detect the trend in

extreme precipitation. Kunkel et al. (1999) defined extreme precipitation events given a certain30

duration and a site-specific threshold, and tested linear trend in the frequency of extreme precipitation

events using the nonparametric Mann–Kendall test. Frei and Schär (2001) used a logistic regression

model test the long-term trend in the counts of heavy precipitation events based on a binomial model

for the counts. Zhang et al. (2004) compared three methods for trend detection in extreme values

in a Monte Carlo study, ordinary least squares regression, nonparametric Mann–Kendall test, and35

generalized extreme value (GEV) modeling. The GEV method can use the m-largest observations

each year. Explicit GEV modeling was found to always outperform the other two methods, and the

use of m-largest observations was found to improve the detection power for moderate values of m.

Rainfall patterns in Ethiopia have been reported in previous studies. A decline of annual and

summer rainfall in eastern, southern, and southwestern Ethiopia was found, but no trend was detected40

over central, northern, and northwestern Ethiopia (Seleshi and Zanke, 2004; Cheung et al., 2008).

It is worth noting, however, that annual or summer total rainfall and annual maximum daily rainfall

are very different aspects of rainfall characterization. Seleshi and Camberlin (2006) studied changes

in extreme seasonal rainfall as measured by extreme rainfall indices with daily rainfall data. One of

the indices was extreme intensity, defined as the average intensity of events greater than or equal to45

the 95th percentile. A weak increasing trend in summer extreme intensity over the 10–11◦ North

band of the Ethiopia Highlands and no trend was found over the remaining Highlands, based on the

nonparametric Mann–Kendall test for trend. These existing analyses have been descriptive, without

taking advantage of the advances in extreme value modeling from the statistics literature. To the

best of our knowledge, extreme value analysis based on the GEV modeling has not been applied to50

extreme precipitation data in Ethiopia.

The GEV distribution was first introduced by Fisher and Tippett (1928) as limits of the sample

maximum or minimum for independent, identically distributed variables. Extreme value theory has

evolved into a proliferating field in statistics, motivated by numerous environmental applications.

Accessible statistical references are, for instances, Coles (2001) and Beirlant et al. (2004). Extreme55

precipitation has been an important application area of extreme value analysis (e.g., Durman et al.,
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2001; Kharin and Zwiers, 2005; Huerta and Sansó, 2007). In particular, statistical inferences for

univariate extreme value analysis, as is the case with the precipitation data at a single location, have

been rather mature and widely applied by practitioners in many fields. Two standard approaches can

be used to fit a univariate GEV distribution. The first one, known as the block maxima approach,60

applies to annual maxima of a time series, using only one data point, the maximum, per year. The

second one applies to all exceedances over a high threshold, also known as “peaks over threshold”

(POT). The method we adopted in this article is a variant of the POT approach, the point process

approach; see Section 3 for more details. Compared to the m-largest observation approach, which

can be wasteful if one block happens to contain more extreme events than another, the point process65

approach utilizes more information from the data. Given the relatively short period of data record, the

point process approach is adopted in this application as it takes full advantage of daily precipitation

record in fitting GEV distributions.

Through GEV models, this article aims to provide an extreme value analysis of the annual max-

imum precipitation in Debre Markos, Ethiopia. Specifically, our objective is to test whether there70

is an increasing trend in extreme precipitation in this area given the public concerns of suspected

trend as a consequence of global climate changes. We incorporated a linear function of time in the

location parameter of a GEV distribution and fitted the model with the POT approach to the daily

precipitation data at Debre Markos. No evidence was found to support an increasing trend in extreme

precipitation since 1953 at this location.75

The rest of the article is organized as follows. Details of the data are described in Section 2.

The statistical methods to be used, including the extreme value theory and modeling techniques, are

reviewed in Section 3. The results of the extreme value analysis are reported in Section 4 with a test

for trend. A discussion concludes in Section 5.

2 Data80

Debre Markos is a city in the Blue Nile River basin on the Northwestern Highlands of Ethiopia. It

has latitude 10◦20′N, longitude 37◦43′E, and elevation 2446 meters. Although the topography of

Ethiopia is highly diverse, more than 45% of the country is dominated by highlands with elevations

greater than 1500 meters, where almost 90% of the nation’s population resides. The rain gauge sta-

tion at Debre Markos provides the longest record among all stations in Ethiopia. Daily precipitation85

records are available from 1953, with only a tiny proportion of missing data. We use Debre Markos

as a case study to investigate the long term trend in extreme precipitation in the Northwestern high-

land of Ethiopia.

Our raw data of daily precipitation at Debre Markos spans from November 1, 1953 to December

10, 2006. Out of the total of 19,398 days, 229 (about 1.2%) observations are missing. The observed90

daily time series of precipitation is plotted in Figure 1. The maximum daily was 86.9mm, observed
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Fig. 1. Times series of daily precipitation at Debre Markos, Ethiopia.

on August 14, 1997.

The daily precipitation series are obviously not independent and not identically distributed. Larger

precipitations may tend to occur in clusters. For instance, out of 76 days in Junes with precipitation

exceeding the 95th percentile of June precipitation, there were 9 occasions of two or more consec-95

utive exceedances. These counts are 7 out of 79, 3 out 78, and 7 out of 80 for July, August, and

September, respectively, the other three most rainy months. If there were no temporal dependence,

5% percent of the exceedences would be expected to be followed by another exceedance The rela-

tive frequencies of clustered exceedances are higher than 5%, which confirms that there is temporal

dependence and hence the declustering is necessary.100

Strong seasonality naturally exists in the data. As most areas in Ethiopia, there are three seasons in

Debre Markos: main rainy season (June to September), dry season (October to January), and small

rainy season (February to May), which are locally known as Kiremt, Bega, and Belg, respectively.

Figure 2 (left panel) shows the mean precipitation for each day in a year, with the 11-day moving

average overlaid. The plot is consistent with the three seasons. High precipitations are observed in105

summer months and low precipitations are observed in winter months. Our extreme value analysis

needs to take the clustering and seasonality into account.

3 Methods

The basis of extreme value modeling is the GEV distribution, with distribution function

F (z;µ,σ,ξ) =

exp
{
−

[
1+ξ

(
z−µ

σ

)]−1/ξ
}

, ξ 6=0, 1+ξ
(

z−µ
σ

)
> 0,

exp
{
−exp

[
− z−µ

σ

]}
, ξ =0,

(1)110

where µ ∈R is a location parameter, σ > 0 is a scale parameter, and ξ ∈R is a shape parameter

governing the tail behavior. The Gumbel family is the limiting case of ξ→ 0. The sub-families de-

fined by ξ > 0 and ξ < 0 correspond to the Fréchet family and the Weibull family, respectively. The
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Fig. 2. Left: Scatter plot of mean precipitation for each day overlaid with the 11-day moving average. Right:

Threshold chosen for each month.

m-year return level zm, with the return period 1/m, is calculated from F (zm) = 1−1/m. When

the only available data is a sequence of annual maxima of daily precipitation, the maximum likeli-115

hood approach can be applied to make inferences about the unknown parameters. Usual regularity

conditions of the maximum likelihood estimator are satisfied when ξ >−0.5 (Smith, 1985)

With daily precipitation available, the POT approach and the point process approach are more

attractive in that all exceedances over threshold, instead of just the annual maxima, contribute to the

inference. Assuming that X1,...,Xn are independent and identically distributed, Pickands (1971)120

showed that, for sufficiently large threshold u, the sequence of point processes {(i/(n+1),Xi) : i=

1,...,n} is approximated by a Poisson process on the region (0,1)× [u,∞) with intensity function

on A =(t1,t2)× [z,∞) given by

Λ(A) =nx(t2− t1)
[
1+ξ

(
z−µ

σ

)]−1/ξ

, (2)

where nx is the number of years of data to which the available Xi correspond, ensuring that the125

parameters (µ,σ,ξ) are the same as those in the GEV approximation (1) of annual maxima. The

point process approach is adopted because the parameter estimates are not directly tied to the choice

of threshold u and the ideal threshold is determined by considering the smallest u beyond which the

parameter estimates stabilize.

Suppose that we observe k exceedances of daily precipitation over threshold u, x1,...,xk, from130

nx year’s of data. The likelihood function is

L(µ,σ,ξ;x1,...,xk) = exp

{
−knx

[
1+ξ

(
u−µ

σ

)]−1/ξ
}

k∏
i=1

σ−1

[
1+ξ

(
xi−µ

σ

)]−1/ξ−1

. (3)
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The point process likelihood is based on all data greater than u, thus inference are likely to be more

accurate than estimates based on the classical GEV model which studies only block maxima. The

likelihood also takes into account of missing data in that where there are missing data, nx will be135

the number of year’s worth of observed data.

So far we have assumed that the data are independent and identically distributed, which is clearly

violated in the daily series data. Before we can apply the likelihood function, we need to remove the

clustering and seasonality from the observed data.

We use runs algorithm to filter the dependent observations to obtain a set of threshold excesses that140

are approximately independent (Smith and Weissman, 1994). For a given threshold, define clusters

to be wherever there are consecutive exceedances of this threshold. In particular, two exceedances

of the threshold that are separated apart by fewer than r observations are deemed part of the same

cluster. That is, only after a certain number, r, of observations falls below the threshold, the cluster

is terminated. In practice, it is recommended to try different r values for comparison (Smith, 1989;145

Mannshardt-Shamseldin et al., 2010).

To handle the seasonality, we adopt a simple and broadly applicable approach that allows all

model parameters of the Poisson process to be seasonally dependent. Specifically, we allow each

month to have its own GEV parameters as in Smith (1989).

Finally, how does one select the threshold u? Although the value of threshold can be arbitrary to150

some extent for initial analysis, too low a threshold is likely to violate the asymptotic basis of the

model and too high a threshold will lead to too few exceedances for data analysis. An exploratory

tool for choosing u is the mean residual life plot (e.g., Coles, 2001, Ch.4). When u is sufficiently

large, the expected residual life, E(X−u|X > u), is a linear function of u. In a mean residual life

plot, we plot the sample mean residual life against threshold u, and choose the smallest u beyond155

which the mean residual life plot is approximately linear.

4 Results

The mean residual plots with 95% confidence intervals are drawn for each month with run length

r =1 in Figure 3. For all months, the figures are approximately linear when the threshold exceeds the

sample 95% percentile. Therefore, we take the 95% percentile as threshold for each month. This is160

different from the analysis of Smith (1989), where the same threshold was used for all months. The

right panel of Figure 2 shows the thresholds we choose for each month, which has similar pattern as

the average precipitation plot in the left panel.

Each month is modeled separately, thus no specific form describing the seasonal variation is as-

sumed. Let µij , σij and ξij denote the GEV parameters for month j of year i. To detect the long-term165

trend for each month, we assume the form

µij =αj + iβj , σij =σj > 0, ξij = ξj , (4)

6
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Fig. 3. Mean residual life (solid lines) with 95% confidence intervals (dashed lines) for all months with r = 1.
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Table 1. Parameter estimates and standard errors for each month with no trend.

Month Number of Exceedances µ σ ξ 10-year return level

1 65 3.97 (0.74) 5.74 (0.96) 0.04 (0.14) 17.45

2 56 4.61 (0.77) 5.71 (1.20) 0.11 (0.17) 19.15

3 67 11.54 (1.17) 9.05 (1.35) −0.04 (0.12) 31.00

4 68 15.60 (1.20) 9.25 (1.38) −0.04 (0.12) 35.42

5 69 18.18 (1.05) 8.13 (1.21) −0.14 (0.13) 33.92

6 67 21.72 (0.88) 6.89 (1.01) −0.11 (0.11) 35.46

7 72 30.68 (1.12) 8.80 (1.23) −0.02 (0.11) 50.00

8 75 33.04 (1.12) 8.66 (1.34) 0.18 (0.14) 57.14

9 73 28.01 (1.21) 9.50 (1.34) −0.09 (0.12) 47.34

10 66 18.71 (1.80) 13.96 (2.17) −0.24 (0.13) 42.94

11 60 6.17 (1.07) 8.20 (1.46) 0.01 (0.14) 24.94

12 57 3.89 (0.99) 7.45 (1.44) −0.03 (0.15) 20.16

where the location parameter µij includes a linear trend in year with coefficient βj . This form was

also adopted to detect trend by Smith (1989) with ground-level ozone and by Cooley (2009) with

annual maximum temperatures. The likelihood Lj of month j, j =1,...,12, is maximized separately170

to estimate (αj ,βj ,σj ,ξj).

It turns out that none of the βj parameters is significant at 5% level, indicating there is no strong

evidence of long-term increasing trend over time. The models are re-fitted with all βj = 0. The sum

of the minimized log likelihood is −3063.91 for the models in all 12 months, which is very close

to that with βj’s in the model (−3060.29). The parameter estimates with no trend are shown in175

Table 1. There is strong seasonal pattern for the location parameter µ. The other parameters σ and

ξ, however, vary haphazardly. All ξ’s are estimated greater than −0.5, indicating that the estimators

are regular and they have the usual asymptotic properties. The 10-year return level for each specific

month, calculated from GEV distribution, is also shown in the table.

The 95% confidence intervals for parameter estimates are calculated by profile likelihood (Coles,180

2001, Ch.2), which is shown in Figure 4. Although the confidence interval of ξ covers zero in all

months, we do not reduce the model to the Gumbel model with constraint ξ =0, because “a reduction

to the Gumbel subfamily is always risky” (Coles and Pericchi, 2003, p.416); the uncertainty in

parameter ξ would otherwise be inappropriately accounted for.

To check the sensitivity of results to the choice of threshold u and run length r, return levels are185

compared under different choices, Since there is seasonality during the year, the calculation of the

return level can be derived through the maxima for each month. Let M1,...,M12 denote the maxima

8
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Fig. 4. 95% confidence intervals for GEV parameters. Left: Confidence intervals for µ. Middle: Confidence

intervals for σ. Right: Confidence intervals for ξ.

for each month. The m-year return level zm will satisfy

1− 1
m

=Pr{max(M1,...,M12)≤ zm}=
12∏

i=1

exp

{
−

[
1+ξi

(
zm−µi

σi

)]−1/ξi
}

. (5)

The confidence interval for return level can be obtained by simulation. We simulate the model190

parameters first from the the multivariate normal approximation of the estimator. For each set of

generated parameters, a realization of the return level is obtained by solving equation (5). A large

number (N =5000) of realizations is used to approximate the confidence intervals.

Table 2 summarizes the parameter estimates and 95% confidence intervals for 10-year, 50-year

and 100-year return levels for different combinations of (u,r). It appears that the inference is quite195

robust on the choice of r for all return levels. The inference on the 10-year return level is robust to

the choice of u, but the 50-year and 100-year return levels are less so, which is most evident from the

upper bound of the 95% confidence interval. The change in confidence intervals is not completely

surprising because the sample size of exceedances decreases as u increases. With the confidence

intervals in consideration, the changes in the point estimate of return levels appear reasonably robust.200

Among all those threshold sets, the only significant βj’s were found when u = Q90% and r = 1,

with standardized beta values −2.07 and −2.15 for February and July, respectively. We conclude

that there is no increasing long-term trend for any month.

As a model diagnosis, we performed goodness-of-fit test for the GEV distribution with the an-

nual maximum daily precipitation data in each of the 12 months over 53 years. There were 10,205

10, and 13 zeros in January, February, and December, respectively. These zeros were removed to

run the goodness-of-fit test as, otherwise, a distribution with point mass at zero would be needed

and any continuous distribution would fail to capture this. For the POT approach, these zeroes

would not affect the result as they do not affect the selection of the threshold. The p-values of the

Kolmogorov–Smirnov test statistic are, respectively, 0.405, 0.220, 0.197, 0.127, 0.674, 0.621, 0.562,210

9



Table 2. Estimated return levels and their 95% confidence intervals under different choices for threshold u and

run length r.

u r 10-year return level 50-year return level 100-year return level

Q85% 1 69.0 (64.6, 78.4) 90.0 (82.3, 117.6) 100.5 (91.3, 147.8)

Q85% 2 69.0 (64.5, 78.5) 89.8 (81.8, 118.5) 100.1 (89.6, 154.0)

Q90% 1 68.6 (63.5, 79.0) 91.4 (82.0, 122.8) 103.4 (90.8, 154.6)

Q90% 2 68.5 (63.3, 78.7) 90.6 (80.9, 119.6) 102.0 (88.7, 146.6)

Q95% 1 68.4 (61.7, 80.8) 97.2 (80.5, 142.2) 113.4 (89.5, 186.5)

Q95% 2 68.4 (61.8, 80.5) 96.8 (80.0, 141.3) 112.7 (89.8, 184.0)

Q97% 1 68.1 (61.3, 81.2) 99.3 (79.6, 155.4) 118.0 (90.1, 223.4)

Q97% 2 67.9 (61.1, 80.1) 98.3 (78.5, 153.4) 116.4 (88.0, 208.9)
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Fig. 5. Return levels (solid line) with 95% confidence intervals (dashed lines) obtained from 5000 Monte Carlo

simulation. The circles are the empirical estimates based on the observed 53-year’s data.
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0.560, 0.313, 0.465, 0.494, and 0.372 from January to December, suggesting no lack of fit from the

GEV distribution. The p-values of the Anderson–Darling test give similar results.

Finally, we present the estimated return level plots for the model with no trend in Figure 5. The

95% confidence intervals were obtained again by a large number (N =5000) of Monte Carlo simula-

tion that accounts for the uncertainty in parameter estimate. The 100-year return level was estimated215

as 96.4, with a 95% confidence interval (78.7,161.0).

5 Conclusions

With the extreme value theory, we presented a case study with the daily precipitation series at Debre

Markos, Ethiopia. No evidence was found to support long-term increasing trend in extreme precip-

itation at this location. This means, for instance, that the 100-year return level has not increased220

significantly during the period of 1953—2006. We have performed the same analysis with daily

records separately at two other sites, Bahir Dar and Gondar, in the Blue Nile River basin on the

Northwestern Highland in Ethiopia. No significant trend was found at either sites.

In practice, for a given data set, many parametric families may fit the data well and pass the

goodness-of-fit test. One can always maximize the likelihood under the assumption that the data225

come from an assumed family, which is likely a misspecification of the real distribution (White,

1982). As the true distribution is unknown, the fitted distribution for any assumed parametric fam-

ily from the maximum likelihood approach is the one in this assumed family that minimizes the

Kullback-Leibler divergence (e.g., Kullback, 1987). Models from different families are in general

not nested, and to perform model selection, one can use Vuong’s test (Vuong, 1989), which chooses230

the model with the least Kullback-Leibler divergence. Nevertheless, distinguishing two nonnested

models with statistical significance requires a large amount of data when competing models offer

similar capabilities in capturing the observed data frequencies. With only 53 observations, other

distributions such as generalized Pareto, fatigue life, and lognormal may fit the data as well as GEV.

These distributions, however, can differ very much in tails, which is what we want to study through235

extreme value analysis. For this reason, a GEV model may be preferred as it is by definition the limit

distribution of sample maximums.

Our current extreme value analysis deals one site at a time. It cannot address important questions

that involve events jointly defined across multiple sites; for instance, what is the probability that

the 100-year return levels of three sites in the vicinity of a city occur in the same year? Estimating240

the probability of extremal events at a network of locations with spatial dependence appropriately

accounted is a much more challenging problem. Spatial extremes is a new and rapidly developing

field (e.g., Cooley et al., 2007; Padoan et al., 2010). Further extreme analysis in a spatial context for

Ethiopia, with data from a network of sites, is worth investigating.
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