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Abstract 13 

 14 

This paper presents a preface to this Special Issue on the results of the QUEST-GSI (Global 15 

Scale Impacts) project on climate change impacts on catchment scale water resources. A 16 

detailed description of the unified methodology, subsequently used in all studies in this issue, 17 

is provided. The project method involved running simulations of catchment-scale hydrology 18 

using a unified set of past and future climate scenarios, to enable a consistent analysis of the 19 

climate impacts around the globe. These scenarios include „policy-relevant‟ prescribed 20 

warming scenarios. This is followed by a synthesis of the key findings. Overall, the studies 21 

indicate that in most basins the models project substantial changes to river flow, beyond that 22 

observed in the historical record, but that in many cases there is considerable uncertainty in 23 

the magnitude and sign of the projected changes. The implications of this for adaptation 24 

activities are discussed. 25 

26 



    27 

1. Introduction 28 

 29 

There is a consensus that human activities, most notably emissions of greenhouse gases 30 

(GHG), have resulted in a discernable influence on global climate, and that this has been the 31 

primary driver of global warming in recent decades (Solomon et al., 2007). Anthropogenic 32 

climate change represents a considerable challenge at many levels of society. Accordingly, 33 

there have been substantial efforts to reach global agreements on GHG emission targets 34 

consistent with our scientific understanding of the relationship between GHG concentrations 35 

and dangerous climate change. However, on the basis of past GHG emissions, inertia in 36 

socio-economic systems and limited progress in the political process (i.e. the COP-15 at 37 

Copenhagen) we must anticipate that substantial future climate change is unavoidable and 38 

that adaptation is necessary. Accordingly, decision-making bodies, including governments, 39 

are beginning to incorporate climate-related risks into decision-making processes. Given that 40 

adaptation policy tends to be made at national, regional and local levels there is a need for 41 

climate change impact assessment at these scales.  42 

For many parts of the world climate change will be most keenly expressed through 43 

changes to freshwater availability. Dependence on water resources is such that the water 44 

sector intersects with numerous other sectors including energy generation, agriculture, 45 

fisheries, health and industry, as well as influencing ecosystem services beyond water supply. 46 

For much of the world the availability of adequate water already poses a significant challenge 47 

to development and environmental sustainability. In recognition of these challenges there 48 

have been numerous international initiatives to address the issues associated with freshwater 49 

resources. These include the UN‟s Agenda 21, Millennium Development Goals, Millennium 50 

Ecosystem Assessment, and World Water Development Report and the World Water Fora.  51 

Climate change is expected to be an important constraint on water availability in the future.  52 

Changes in the distribution of river flows and groundwater recharge over space and 53 

time are determined, in part, by changes in temperature, evaporation and, crucially, 54 

precipitation.  There is considerable evidence that the global hydrological cycle has already 55 

responded to the observed warming over recent decades (Trenberth et al., 2007; Bates et al., 56 

2008), through increased atmospheric water vapour content, changing patterns of 57 

precipitation, including extremes, reduced snow and ice cover and changes to soil moisture 58 

and runoff. Climate models suggest further substantial changes to the hydrological cycle in 59 

the future under scenarios of GHG emissions. Indeed there is considerable confidence in the 60 

large-scale global pattern of projected changes to precipitation, the key driver of the terrestrial 61 

water cycle, in a warmer world. This can be characterised by the condition of „wet get wetter 62 

and dry get drier‟ such that the humid deep tropics and mid-latitudes will experience 63 



increased rainfall and the dry subtropics reduced rainfall (Figure 10.12 from Meehl et al., 64 

2007). That this is a robust and physically plausible thermodynamic response to global 65 

warming has been demonstrated by Held and Soden (2006) and Seager et al. (2009), amongst 66 

others. A warmer world results in increase in specific humidly through the Clausius-67 

Clayperon relation. The general circulation drives water vapour transport and the resulting 68 

structure of zones of convergence (wet) and divergence (dry). Increased humidity in a warmer 69 

world causes an enhancement of this structure such that wet regions become wetter and dry 70 

regions become drier.  This pattern is reproduced in many climate models.  71 

However, in most parts of the world the detailed regional and seasonal pattern of 72 

projected change for a given radiative forcing is highly variable between models (Christensen 73 

et al. 2007). This is a result of differences between model representation of various processes, 74 

notably the regional mean and transient circulation, moist convective processes, land-75 

atmosphere feedbacks and aerosol effects. This uncertainty at the all important regional and 76 

local scales has profound implications for decision making  regarding adaptive responses.  77 

The IPCC AR4 WGII critically assessed thousands of recent publications on different 78 

aspects of climate change impacts, adaptation and vulnerabilities. Within the water sector 79 

most studies use global or basin scale hydrological models driven with changes in 80 

precipitation and temperature from Global Climate Models (GCMs), typically downscaled 81 

using statistical or dynamical models. From these studies, it emerges that projected changes to 82 

river runoff have a similar pattern to that of precipitation from the driving GCMs except that 83 

the balance of changes to precipitation and increasing temperatures (i.e. P-ET) means that a 84 

greater proportion of land areas will experience reduced runoff (Figure 1b, from Milly et al., 85 

2005). Moreover, river systems with substantial seasonal snow/ice contributions are likely to 86 

experience reduced storage and associated seasonal regime changes. In addition, there is 87 

evidence that hydrological extremes may become more likely in the future (Allen and Ingram, 88 

2002; Alexander et al., 2006; Meehl et al., 2007). It is abundantly clear from these studies that 89 

climate change has the potential to substantially impact water resources.  90 

The relationship between climate and water resources does not exist in isolation but is 91 

strongly influenced by socio-economic and other environmental conditions. Various human 92 

activities influence available water resources, most notably agriculture, land use, construction, 93 

water pollution and water management and river regulation. At the same time, water use is 94 

highly variable and largely determined by population, levels of development and access, 95 

through a complex web of socio-economic and political processes. Achieving water security 96 

remains a challenge in many parts of the world, and may be a pre-requisite for development 97 

and economic growth. Achieving this requires substantial investment which must take into 98 

account environmental sustainability and social inclusion and equity (Grey and Sadoff, 2007). 99 

Climate change affects the function and operation of existing water infrastructure – including 100 



hydropower, structural flood defences, drainage and irrigation systems as well as water 101 

management practices. As current water management practices may not be robust enough to 102 

cope with the impacts of climate change, adaptive responses will be necessary. Analyses of 103 

climate and water resources should account for these human dimensions. 104 

To date, there have been very few coordinated attempts to consistently estimate and 105 

summarise the geographic variability in global-scale impacts of climate change: the vast 106 

majority of impact assessments have been local in focus and have used a variety of scenarios 107 

and assumptions as illustrated, for example, in the global impact reviews of Hitz and Smith 108 

(2004) and Warren (2006). Some exceptions include the DEFRA Fast Track study (Arnell, 109 

2004a; Arnell et al., 2002; Levy et al., 2004; Nicholls, 2004; Parry et al., 2004; Van Lieshout 110 

et al., 2004)  and  the EU-funded ATEAM project (Schroeter et al., 2005). Some integrated 111 

modelling studies that include assessments of impacts have used geographically-explicit 112 

impacts models (e.g. Toth et al., 2003; Leemans and Eickhout, 2004), but most such studies 113 

have used reduced-form impact models, which do not capture all the details and subtleties of 114 

geographically-varying impacts (e.g. Tol, 2005; Mastrandrea and Schneider, 2004). 115 

The limitations in previous studies make it difficult to assess impacts at the global 116 

scale and to compare impacts for different socio-economic and climate futures. Furthermore it 117 

makes it difficult to assess the effectiveness of proposed policy measures to reduce 118 

greenhouse gas emissions and, thus, the impacts of climate change. The QUEST-GSI (Global 119 

Scale Impacts, http://www.met.reading.ac.uk/research/quest-gsi/) project is an integrated, 120 

multi-sector and multi-scale analysis of climate change impacts, utilising a unified set of 121 

climate drivers and socio-economic data, to allow a consistent analysis of impacts, associated 122 

uncertainty and vulnerability., In this special issue we report only on the results of the 123 

analysis to quantify climate change impacts on water resources to inform mitigation and 124 

adaptation policy in the water sector. The results of the analysis in QUEST-GSI in other 125 

sectors, including food and health will be reported elsewhere. 126 

Notwithstanding the needs for an integrated global scale analysis, the human response 127 

to climate change impacts on the water sector will generally be conducted at the catchment 128 

scale. As such, impacts and responses will be highly variable and depend upon local climate 129 

and socio-economic conditions. Clearly global-scale analyses cannot hope to consider the 130 

complex local scale context of climate-society interactions. However, to date, most basin-131 

scale studies have been local in focus, using a range of scenarios, methods and approaches. In 132 

recognition of this, QUEST-GSI incorporated a coordinated, systematic and extensive 133 

analysis of climate impacts on water resources at the catchment scale, to complement the 134 

global analysis. A network of river basins was established in order to consider a range of 135 

climate and socio-economic conditions and water resources contexts. This informal „network 136 

of opportunity‟ provides one of the first systematic, multi-basin experiments, global in extent 137 



and using a consistent suite of climate drivers. In addition, we compare uncertainty in basin-138 

scale experiments with output from a global hydrological model (Gosling et al., this issue). 139 

Detailed catchment studies provide a useful forum to assess the science of climate change 140 

impacts (e.g. uncertainty in climate and hydrological models) in the context of locally specific 141 

developmental concerns, adaptive responses, vulnerability drivers, stakeholder relationships 142 

and risk evaluations all of which strongly influence the actual outcome of climate change on 143 

water resource. It also allows validation at the catchment scale in predictions of the global-144 

scale hydrological impact models. Finally our network of basins around the world provides a 145 

forum for exchange of ideas on climate, hydrology and water management in the context of 146 

climate change. 147 

The aims of this paper are to provide (i) A preface to this Special Issue (Section 1) (ii) 148 

A detailed description of the methodology used to develop the unified set of policy-relevant 149 

climate scenarios (Section 2) (iii) A synthesis of the main findings of the individual river 150 

basin studies (Section 3). 151 

 152 

2. QUEST-GSI project methodology 153 

 154 

The QUEST-GSI project methodology is similar to previous climate impact studies in that 155 

impact models (in this case hydrological models) are driven by an ensemble of future climate 156 

scenarios to provide estimates of future climate change impacts on water, and the associated 157 

uncertainty. However the method adopted has a number of features that represent an advance 158 

on many previous studies: (i) a global and river basin scale analysis using a consistent set of 159 

climate projections (ii) use of prescribed warming scenarios to inform mitigation policy and 160 

(iii) consideration of adaptation and vulnerability in study basins. 161 

 162 

2.1 The network of river catchments 163 

 164 

QUEST-GSI coordinated a network of river catchments from around the world. This 165 

international network was created to allow a consistent quantitative analysis of climate 166 

change impacts but also to provide a framework with which to share experience on the 167 

processes of adaptation to climate change and other drivers of change. The QUEST-GSI 168 

catchments are global in coverage and feature strong contrasts in spatial scale as well as 169 

climatic and developmental conditions (Figure 1, Table 1). Basins were selected where 170 

international researchers had already established locally calibrated, distributed catchment-171 

scale hydrological models (CHMs) derived from previous and on-going research projects. 172 

The CHMs are described in detail in each of the papers in this issue. The CHMs simulate 173 

water resource impacts based on a more explicit representation of catchment water resources 174 



(e.g., soil water, groundwater, snow/ice, river channel losses) than that available from global 175 

hydrological models. All basin partners were provided with a consistent set of historical 176 

climate and future climate data for their analyses (see Section 2.2). All the hydrological 177 

models had already been calibrated, typically using local gauge networks. In each case the 178 

basin model was re-calibrated for use with the gridded historical CRU TS3.0 data (Mitchell 179 

and Jones, 2005) for the period 1961-90. This process is described in each of the individual 180 

papers.  In addition to the CHMs, six of the nine individual catchments were analysed using a 181 

global hydrological model MacPDM (Gosling and Arnell, 2010; Gosling et al., 2010; Arnell, 182 

2003a; 2004a). MacPDM simulates the terrestrial water cycle and resource availability on a 183 

gridded basis across the world at 0.5 degree resolution. The water budget is simulated 184 

independently for each grid cell and monthly river runoff is simply aggregated for all grid 185 

cells within the boundaries of the major river basins of the world.  186 

 187 

2.2. Climate data and scenarios 188 

 189 

2.2.1 Historical data 190 

 191 

Monthly observations of precipitation, mean, minimum and maximum temperature, vapour 192 

pressure cloud cover, and number of rain days, were obtained from the 0.5 degree gridded 193 

CRU TS3.0 dataset. All grid cells whose centre is located within the basin boundaries were 194 

extracted. These monthly fields were used for two purposes: (i) as the baseline data from use 195 

in the climate change scenarios (section 2.3); and (ii) to provide driving fields for 196 

hydrological models for the baseline period.  197 

 198 

2.2.2 Climate scenarios 199 

 200 

The QUEST-GSI integrated multi-sectoral analysis requires a unified set of future climate 201 

scenarios that (i) characterise as fully as possible the associated uncertainties, (ii) allow the 202 

construction of generalised relationships between global climate forcing and local impact, and 203 

(iii) have space/time scales appropriate to drive impact models. The first requirement is met 204 

firstly by sampling the uncertainty associated with climate model structural uncertainty by 205 

creating scenarios from seven „priority‟ GCMs, under specified emissions scenarios using 206 

output from the GCM experiments from the World Climate Research Programme (WCRP) 207 

Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset. The CMIP3 208 

model dataset formed input to the Intergovernmental Panel on Climate Change (IPCC) Fourth 209 

Assessment Report (AR4) (Solomon et al., 2007). Using a subset of the CMIP3 models in this 210 

study was necessary given the logistical difficulties of running ensemble experiments with the 211 



various catchment hydrological models. Our priority was to ensure a consistent set of climate 212 

forcings for a unified climate impact assessment across the catchments. Nevertheless, the 213 

priority subset of the CMIP3/IPCC-AR4 GCMs used in this study was carefully selected on 214 

the basis of (i) a subjective evaluation of model quality and (ii) the use of the model (or its 215 

predecessors) in previous impact assessments. The priority subset was checked to ensure that 216 

it spanned the range of different changes in precipitation. The models selected are the 217 

CCCMA-CGCM31, CSIRO-Mk3.0, IPSL-CM4, ECHAM5/MPI, NCAR-CCSM30, UKMO-218 

HadGEM1 and HadCM3. A description of the model and experiments can be found online
1
. 219 

Secondly, we sample a number of contrasting GHG emission scenarios, to represent a range 220 

of possible future development pathways. We have not considered uncertainty associated with 221 

model internal variability (often represented by initial condition ensembles of individual 222 

climate models) as this source of uncertainty is believed to be small relative to the others, 223 

especially over climatological periods considered here.  224 

The second and third requirements are met by deriving spatial patterns of climate 225 

change using the climate impact interface software „ClimGen‟ (Osborne, 2009), available 226 

from http://www.cru.uea.ac.uk/~timo/climgen/. ClimGen creates climate scenarios through a 227 

pattern scaling approach in which climate change patterns as simulated by a suite of GCMs 228 

are applied to an observed 0.5° x 0.5° baseline climatology, namely the CRU TS3.0 data, the 229 

most comprehensive historical climate dataset available at high resolution. A fundamental 230 

assumption of ClimGen is that the spatial and temporal pattern of change in climate as 231 

simulated by a GCM with a given change in global average temperature can be linearly 232 

rescaled to represent the pattern of change in climate associated with a different global 233 

temperature change (the pattern-scaling assumption). The pattern-scaling approach assumes 234 

that each climate variable responds linearly to changing global mean annual temperature. 235 

Whilst this has been shown to be a reasonable assumption for moderate amounts of climate 236 

change 15 (Mitchell, 2003), it may not hold for high changes, and is unlikely to hold where 237 

the rate of temperature change slows or even reverses. ClimGen can provide scenarios down 238 

to a spatial resolution of 0.5° x 0.5°, through linear interpolation of the coarse resolution 239 

GCM climate change patterns, and uses a range of different scaling methods to construct 240 

scenarios for changes in not only the mean but also the year-to-year variability in climate.  241 

The method is described as follows. First, for each climate model the global mean 242 

temperature change (T) and the spatial pattern of climate change in a given variable, for 243 

each month (Jan-Dec) are obtained from the change in 30 year mean at the end of the 21st 244 

century (2070-99) relative to the 1960-90 reference periods. The future climate fields are 245 

obtained from the GCM run forced with the IPCC SRES A2 scenario (and validated by 246 
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comparing rescaled patterns with changes simulated by the same model under A1b 247 

emissions). By dividing the climate change in a particular variable at each grid cell by T 248 

the „standardised‟ pattern of climate change in that variable per unit global mean temperature 249 

increase is defined. This procedure is referred to as „pattern scaling‟ and allows calculation of 250 

the spatial pattern of climate change in any variable, associated with any given global mean 251 

temperature change, assuming a linear dependence of change on T. These standardised 252 

climate change patterns are calculated separately for each month to preserve the seasonal 253 

information, and are all interpolated statistically onto the 0.5° x 0.5° global grid. Within 254 

ClimGen these patterns are used to create gridded fields of monthly data with which to drive 255 

the hydrological models. In essence, the change pattern is used to perturb a historical dataset 256 

to ensure minimal bias with respect to observations, a necessary condition for running impact 257 

models calibrated with respect to historical observations. The precise methodology of the 258 

perturbation depends first on the variable of interest and on whether the scenario is a 259 

„prescribed warming‟ or transient SRES scenario. In essence though, the climate change field 260 

is „added‟ to the historical data from CRU TS3.0. ClimGen (version 1.00) currently generates 261 

projected fields for eight climate variables, (namely monthly precipitation, number of wet 262 

days, mean, minimum and maximum temperature, diurnal temperature range, vapour pressure 263 

and cloud cover), using slight variations in this procedure described below. In total, more than 264 

90 scenarios of future climate were generated including 10 increments of T and 3 SRES 265 

scenarios (A2, B2, and A1B) for each of the 7 GCM patterns. These data were then used to 266 

drive the hydrological impact model in each study catchment. Using ClimGen, these climate 267 

scenarios for hydrologically-relevant variables were created at a 0.5° x 0.5° resolution 268 

suitable to drive the hydrological models.  269 

 270 

2.2.2.1 Temperature, vapour pressure and cloud cover. 271 

 272 

Scenarios for mean, minimum and maximum temperature vapour pressure and cloud cover 273 

are all constructed in the same way. As shown in equation 1, a time series, X spanning the 274 

period y = 20xx to 20yy is created by scaling the appropriate GCM-derived change in mean 275 

monthly climate by the temperature change, t, in year y, (3rd term on right hand side of 276 

equation 1) and adding the change to the observed monthly climate time series (first two 277 

terms on right hand side of equation 1) where the subscripts define variable (v), GCM pattern 278 

(g), emissions scenario (s), grid box (i), year (y) and month (m). vimo  is the mean monthly 279 

climate; viymo  is the time series of interannual anomalies; vgsimp  is the absolute change in 280 

mean monthly climate and gsyt is change in global temperature in year y.  281 



 282 

 283 

)( gsyvgsimviymvimvgsiym tpooX         eq. (1) 284 

 285 

 286 

Where a value falls outside the range of the physically possible, the value is corrected to the 287 

outer limit of that range. This produces perturbed monthly time series with a gradually 288 

changing mean (because the temperature change gsyt  is lower at the beginning of the time 289 

horizon than at the end) but unchanged inter-annual variability. As an illustration, gsyt varies 290 

from 3.17 and 4.76ºC between 2070 and 2099 under the HadCM2 A2 scenario. Note that for 291 

the prescribed warming scenarios the term gsyt  does not vary over time but is predefined, in 292 

0.5ºC intervals from +0.5 to 6.0ºC. Note that in the equations that follow the subscripts i, y 293 

and m are defined as above and that the subscripts v, g and s are dropped for simplicity. 294 

 295 

2.2.2.2. Precipitation 296 

 297 

For precipitation and wet days, the method is the same except that p in eq. (1) is the ratio of 298 

climate change rather than the absolute change and historical data are scaled multiplicatively 299 

using the ratio. Patterns of change in precipitation, relative to 1961-1990, are calculated using 300 

equation 2 where bip  is the simulated baseline precipitation for grid cell i, fip  is the 301 

simulated future precipitation, and imp~  is precipitation change for month m and grid cell i.  302 

 303 

)ln(~ 1 bimfimim ppp         eq. (2) 304 

 305 

 306 

The rescaled future precipitation is calculated from equation 3 where iymP  is precipitation for 307 

grid cell i, year y and month m, imO  is the observed mean precipitation for month m, iymO
~

 is 308 

the precipitation anomaly for year y and month m, and yt is temperature change for year y.   309 

 310 

)~(~
yim tp

iymimiym eOOP


        eq. (3)  311 

  312 

As such, the magnitude of the mean precipitation change is an exponential function of global-313 

mean temperature change rather than a linear function.  This avoids obtaining zero 314 



precipitation in regions of decreased mean precipitation, because the rate of change 315 

decelerates as temperature increases, but it results in accelerating changes in regions of 316 

increased mean precipitation.  317 

In addition, the year-to-year variation is altered according to GCM-derived changes 318 

in precipitation probability distributions (parameterised via the shape parameter of the gamma 319 

distribution). The difference between the gamma distribution parameters calculated over the 320 

baseline and scenario periods is standardised by global temperature change, and these 321 

standardised differences rescaled to a defined global temperature change. This perturbation in 322 

variance is applied to the monthly precipitation anomaly in equation (3). 323 

 324 

2.2.2.3. Number of wet-days 325 

 326 

GCMs do not provide realistic representations of the number of wet days (because 327 

precipitation is drizzled across a large grid cell), so changes in wet day frequency 328 

were derived from changes in precipitation. New et al. (2000) found a strong 329 

relationship in the observed climatology between mean monthly wet-day frequency 330 

and mean monthly precipitation, ima , (equation 4) where imW  is mean monthly wet days for 331 

grid cell i and month m. 332 

 333 

 
im

im
im

O

W
a

22.2

          eq. (4) 334 

 335 

Rescaled future wet day frequency is then calculated from equation 5 where iymW  is the 336 

number of wet days for grid cell i, month m and year y. 337 

 338 

  45.0

iymimiym PaW          eq. (5) 339 

 340 

 341 

2.3 The weather generator 342 

 343 

Many of the hydrological impact models require climate information at the daily 344 

scale. As ClimGen operates only at the monthly scale, a weather generator, described in 345 

Arnell (2003a), was applied to create daily data from monthly data. This is a stochastic model 346 

which assumes daily precipitation follows a gamma distribution, with the coefficient of 347 

variation of daily precipitation derived from analysis of available rain gauge data from within 348 



each basin. The occurrence of precipitation is described by a simple two-state Markov model 349 

with transitional probabilities fixed. The details of the daily disaggregation are not too 350 

important as daily data are rescaled to maintain the correct monthly total. Although the 351 

precise temporal pattern can be important to the hydrological response, this is not deemed to 352 

be important here given our interest in long-term, hydrological responses. Daily temperature 353 

is required for the snow component, determined by fitting a sine curve to the maximum and 354 

minimum temperatures and adding random variation around this (normally distributed with a 355 

standard deviation of 2ºC), to allow for alternating periods of snow and rain.  356 

 357 

2.4 Summary of scenario generation methodology 358 

 359 

In this project a set of consistent climate change scenarios were created to drive catchment 360 

scale and global hydrological models over a series of test river catchments around the world. 361 

The scenarios include unique policy-relevant „prescribed warming‟ scenarios for different 362 

amounts of climate forcing (global temperature increase of 0 to 6ºC, in 0.5ºC increments) for 363 

a single GCM (HadCM3) and 2°C rise in global mean air temperature, long considered as a 364 

threshold of dangerous climate change, for all 7 „priority‟ GCMs. These driving scenarios 365 

enabled researchers to (i) quantify the climate change impacts on river basin hydrology and 366 

water resources (ii) compare the magnitude of climate impacts associated with different levels 367 

of global warming (iii) assess the uncertainty  associated with a given climate forcing, that 368 

arises from inter-GCM uncertainty (iii) assess the uncertainty associated with different 369 

emission scenarios. 370 

 371 

3. Synthesis of main findings from the basin scale studies  372 

 373 

Detailed results from individual river basins and a discussion of the implications are presented 374 

in the respective papers in this special issue. Here we reflect on the outcomes of the 375 

methodological approach and review key generic findings from catchment-scale analyses.  376 

(i) Overall, ClimGen software provides a simple and useful platform for the generation 377 

of globally consistent climate scenarios.  378 

ClimGen was applicable for global, regional and catchment-scale studies of the 379 

hydrological impacts of climate change, under specific GHG emission scenarios and 380 

for prescribed level of global warming. In all but one river basin recalibration of 381 

existing catchment hydrological models was successfully achieved using 0.5 degree 382 

monthly gridded, observational climate datasets. 383 

  384 



(ii) Catchment-scale hydrological impact models indicate major changes in river 385 

discharge associated with future climate changes (Figs. 2 and 3).  386 

The results here give a clear indication that changes in hydrological regimes of 387 

magnitudes unprecedented in the historical record are possible under conditions of a 388 

2-degree rise in global mean temperature.  389 

 390 
(iii) The level of uncertainty in many regions is high such that even the sign of change is 391 

unpredictable at present (Fig. 3).  392 

This uncertainty stems mostly from inter-GCM uncertainty in precipitation 393 

projections. For three of the large basins (Mekong, Rio Grande, and Okavango) 394 

uncertainty in projections of mean river discharge under a 2°C rise in global mean air 395 

temperature is such that there is no consensus in the magnitude or even the direction 396 

of projected change. For other catchments (the Liard and Xiangxi in the mid-high 397 

latitudes and the Loktak lake basin in Eastern India) hydrological projections under a 398 

2°C increase in global mean air temperature are more consistent at least in the 399 

direction of change (a projected increase in river flow). This is in line with agreement 400 

between GCMs on a wetter regime in those locations. Results from the Liard basin 401 

where snowmelt is an important component, and the Xiangxi River, indicate that 402 

whilst there is considerable uncertainty in the magnitude of projected mean-annual 403 

runoff change there is higher confidence in directional shifts of the seasonal cycle. 404 

Uncertainty can be high even for basins which lie within regions where it is believed 405 

that the climate change precipitation signal is relatively robust (Christensen et al., 406 

2007), notably the Mitano river in East Africa (wetter) and the Okavango in south-407 

western Africa (drier). This highlights the problems where the study region lies close 408 

to, or straddles, the boundary between robust and uncertain climate projections.  409 

 410 

(iv) Projected impacts of climate change are relatively insensitive to hydrological model 411 

parameter uncertainty.  412 

Ensembles of hydrological model runs representing hydrological parameter 413 

uncertainty only (e.g. Kingston and Taylor, this issue, Hughes et al., this issue; 414 

Arnell, this issue; Xu and Taylor, this issue) introduced substantially less uncertainty 415 

than that associated with GCM structural uncertainty.  416 

 417 

(v) There is a divergence between the study catchments in the linearity of hydrological 418 

responses to the magnitude of global warming (Fig. 2).  419 

Whilst in some basins (Rio Grande, Okavango, and Xiangxi) the magnitude of 420 

hydrological impact increases fairly linearly with increasing global mean temperature 421 



rises, this is not so in others (e.g. Mitano, Liard, and Teme). In these latter basins the 422 

sign of hydrological response changes sign from positive to negative at higher levels 423 

of global warming, presumably as increased ET dominates over the precipitation 424 

signal in determining the water balance.  425 

 426 
(vi) Results highlight limitations in the common use of mean river discharge as a measure 427 

of the response of hydrological systems to climate change and freshwater availability.  428 

The catchment-scale studies in this special issue show that reporting hydrological 429 

change in terms of mean river discharge, as is commonplace, can mask considerably 430 

greater changes in intra-annual (seasonal) low (Q95) and high (Q05) flows which are 431 

of fundamental importance to water management and our understanding of freshwater 432 

availability. For example, reductions in low flows can lead to acute water shortages as 433 

well as affect environmental flow requirements and dry-season water allocations; 434 

changes in high flows can impact flood risk and basin storage requirements. The 435 

implications of this for commonly used indices such as the water stress index and 436 

relative water demand are discussed by (e.g. Taylor, (2009). 437 

 438 
(vii) Differences in projected river discharge changes between Catchment 439 

Hydrological Models and the Global Hydrological Model are generally relatively 440 

small.  441 

A new feature of this QUEST-GSI study is the application of both a GHM (the 442 

MacPDM model) and a Catchment Hydrological Model (CHM) for each study basin. 443 

Differences in projected hydrological changes are generally relatively small, in 444 

comparison to the range of projections across the seven GCMs (Gosling et al., this 445 

issue). This implies that climate model structural uncertainty is greater than the 446 

uncertainty associated with the type of hydrological model applied, so it may be 447 

equally feasible to apply a GHM or CHM to explore catchment-scale changes in 448 

runoff with climate change from ensembles of GCM projections, despite the 449 

generalisations GHMs need to make in order to be run over the global domain. 450 

 451 
4. Concluding discussion 452 

 453 

The QUEST-GSI project provides a unified approach to climate change impacts assessment 454 

for water resources. This paper provides a summary of the methods used to generate a set of 455 

consistent climate scenarios to drive hydrological models for river basins across five 456 

continents reported in the special issue. Together, these basin studies provide an extensive 457 

assessment of uncertainty in climate change impacts on water resources at the catchment 458 

scale. The results clearly indicate that changes in hydrological regimes of magnitudes 459 



unprecedented in the historical record are possible. Critical to forecasts of freshwater 460 

availability, basin studies reveal that projected changes in low (Q95) and high (Q05) river 461 

flows can exceed that of the commonly reported mean. The level of uncertainty in many 462 

regions is, however, high such that even the sign of hydrological change is unpredictable at 463 

present. This result reinforces the need to recognise that whilst globally robust changes in the 464 

hydrological cycle may be emerging (i.e. the „wet get wetter, dry get drier‟ pattern of 465 

precipitation change) in many regions, at the basin scale uncertainty is the dominant 466 

characteristic. 467 

A number of important caveats must be recognised up front, which are related to the 468 

discussion which follows. First, the project is not designed to be a comprehensive global 469 

assessment of water resources. The river basins were selected as a sample of „opportunity‟ 470 

and as such are indicative of various regions and human dimensions. Second, to follow the 471 

unified methodology we necessarily compromised on complexity. For logistical reasons we 472 

make no attempt at probabilistic techniques, nor of sophisticated downscaling or extreme 473 

value analysis techniques. Moreover, for these basins the shape of the probability distribution 474 

remains relative stable between the GCM experiments. However, it should be noted that the 475 

method adopted here does not account for projected changes in the intensity of rainfall at sub-476 

monthly timescales. As such, our projections almost certainly under-represent uncertainty in 477 

climate change impacts. It is important to bear this point in mind in the following discussion.  478 

Quantitative projections of climate change impacts on catchment scale water budgets 479 

provide the potential to inform water management decision making. The degree of social 480 

necessity in such decisions clearly varies between basins studied here. For example, there is 481 

far less need to manage water resources in the Liard River compared to the Rio Grande. In 482 

addition, the degree and nature of water resource development in a particular catchment 483 

determines the time scales over which planning decisions are likely to be made. In particular, 484 

those basins with hydro-power generation capacity (in this study the Rio Grande, Mekong, 485 

Yangtze and potentially the Okavango) involve planning of major investments over decadal 486 

timescales which could potentially be informed by climate change projections. In the most 487 

general sense there are a number of changes that may be considered to be relatively robust 488 

responses to a warming climate, notably the modification of hydrological regimes associated 489 

with reduced snow and ice cover, increased surface evaporation, increased likelihood of 490 

hydrological extremes in most places and a general pattern of wet (dry) regions becoming 491 

wetter (drier). For some regions these do provide a compelling basis for adaptive response, 492 

for example the southwest USA (Seager et al., 2010).  493 

It is equally clear that developing appropriate adaptation activities on the ground in 494 

particular localities are constrained by the degree of uncertainty in future projections of river 495 

flow in many of the river basins studies reported here. For example, Nobrega et al., (this 496 



issue) note that the magnitude of water resource changes projected by some GCMs under 497 

„moderate‟ warming scenarios is large enough to affect hydro-power generation capacity, 498 

with implications for planning decisions on the necessity and timing of construction of new 499 

power plants to ensure future energy supply. Such investments have decadal-scale lead times 500 

for which climate change projections are relevant. The major stakeholders in this context are 501 

faced with the difficultly of interpreting highly contrasting projections of water resources. We 502 

might envisage a number of possible responses in this context. One would be to simply ignore 503 

the climate change projections in planning, thereby implicitly accepting the risk of a 504 

potentially large shortfall in energy generation capacity. Another would be to conduct a more 505 

comprehensive probabilistic assessment of climate change impacts such that the risk profile 506 

can be fully quantified and incorporated into investment decision making, along with other 507 

projections of energy demand.   508 

Such probabilistic approaches have been developed to quantify distributions of future 509 

climate changes, based on „grand ensembles‟ of multiple GCMs and perturbed physics 510 

experiments (e.g. www.climateprediction.net). New et al. (2007) provide an example of 511 

application to a hydrological impact study. Methodologies to „weight‟ ensemble members 512 

based on the accuracy of GCM representation of historical climate and/or convergence in 513 

projections have also been proposed (e.g. Tebaldi et al, 2005) and subsequently used in 514 

climate change assessments (e.g. Shongwe et al., 2009) and indeed for management of 515 

Okavango River (Wolski, pers. com. 2009). Probabilistic assessments are attractive as they 516 

can provide quantitative „risk‟ profiles to inform decision making. Indeed the UKCIP 2009 517 

climate projections utilise similar methodologies. However, Stainforth et al. (2007a) provide a 518 

cautionary analysis of the applicability of such probabilistic „risk‟ profiles scenarios based on 519 

an understanding of the limitations of climate models. In any case, in many regions such 520 

approaches are unlikely to circumvent the problem of uncertainty in future projections which 521 

results primarily from inter-GCM uncertainty in precipitation processes. 522 

Our results from basins around the world suggest that for water resources projected 523 

change is characterised by high uncertainty. Indeed, there is little doubt that the unified 524 

methodology used in this present study almost certainly underestimates the magnitude of 525 

uncertainty. There are a number of different interpretations of what might be the most 526 

appropriate response to this condition of uncertainty. On one hand, we can place an emphasis 527 

on the merits of probabilistic assessments of climate risk and optimise decision making 528 

accordingly in light of quantified trade-off between cost and risk (e.g. Koutsyannis et al., 529 

2009; Taylor et al., 2009). This may be appropriate in regions with a clear and consistent 530 

hydrological response. On the other hand, as argued by Pielke (2009), we can accept that such 531 

probabilistic assessments do not really reflect meaningful „likelihoods‟ of future conditions 532 

(as discussed above and in Kundzewicz et al., 2008; 2009). Under this view it becomes more 533 



appropriate to use climate projections as potential scenarios around which to devise „no-534 

regrets‟ responses which are relatively robust to a wide range of future conditions. This 535 

demands that in many real life cases we need to devise new decision making and management 536 

processes to ensure „robust‟ responses. In a similar vein, Stainforth et al. (2007b), using 537 

hypothetical case studies, outline an analysis „pathway‟ for decision making in which the 538 

probabilistic climate projections simply provide a lower bound on the envelope of „non-539 

discountable‟ climate change, around which decisions may be structured. Moreover, such a 540 

condition whereby we may expect substantial but uncertain climate changes suggests than we 541 

should emphasise actions to reduce vulnerability of populations to climate and other stresses 542 

as a priority adaptive response to climate change. 543 

We may then consider the prospects for reducing uncertainty projections of 544 

hydrologically relevant variables in the foreseeable future.  There are some strong reasons for 545 

assuming that this is unlikely. First, uncertainty in estimates of climate sensitivity has 546 

remained remarkably stable over the last 20 years or so (Solomon et al., 2007). Second, 547 

improvements in the sophistication of Earth System Models whilst necessary is unlikely to 548 

reduce uncertainty in the near term as the incorporation of additional components in the 549 

climate system can increase rather than decrease uncertainty (e.g. dynamic carbon cycle in 550 

C4MIP experiments). Third, the quest for higher resolution estimates for many impact studies 551 

requires downscaling of GCM output which, especially in the case of dynamical downscaling, 552 

can add further uncertainty to the projection ensemble (e.g. Deque et al., 2005). The findings 553 

of the studies in this issue make the clear case that impact studies must utilise results from an 554 

ensemble of GCMs and it follows that there is little to be gained from using a single regional 555 

model in downscaling studies.  Accordingly, the experimental design of the major regional-556 

wide downscaling projects such as PRUDENCE for Europe, NARCCAP for North America 557 

and CORDEX whose initial focus will be Africa involves multiple regional models within a 558 

grand ensemble. In this context, climate change adaptation activities must learn to accept and 559 

embrace considerable uncertainty in future projections of climate impacts in many sectors.  560 

In parallel with the grand ensemble approach to representing uncertainty, however, 561 

we should also improve our understanding of the physical basis of projected climate (and 562 

hydrological) change, especially at the regional scale. Through analysing climate and 563 

hydrological processes over the past and the future it can be possible to diagnose more fully 564 

the physical processes driving change and variability and their representation in models, and 565 

so provide the basis for constraining the uncertainty envelope. 566 

One further area where there may be potential for fruitful developments is decadal 567 

climate prediction. The climate over the next 1-2 decades will be dominated by natural 568 

climate variability, substantially controlled through decadal modes of ocean-atmosphere 569 

interaction, and the anthropogenic signal. A few studies (e.g. Smith et al., 2007) have 570 



indicated that, when initialised with the observed ocean state, climate models can provide 571 

some forecast skill over the next decade, at least for large scale temperature anomalies. Whilst 572 

the lead time of such forecasts is certainly more in line with most real world decision horizons 573 

than climate change timescales, such forecasts remain very much in the experimental domain.  574 

Finally, notwithstanding potential development in climate prediction, it is abundantly 575 

clear that changing climate will intersect with other pressures on water resources in many 576 

parts of the world in the future and that water resource management must address these issues 577 

within an integrated framework. 578 
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Figure 1. Maps of the study river catchments  837 
 838 
Figure 2. Projected 30-year change in river flow (% change from 1961-1990 baseline) 839 

for the study basins as a function of global mean temperature increase, with driving 840 

climate data from the HadCM3 GCM. 841 
 842 
Figure 3. Envelope of projected 30-year mean changes in metrics of river flow (% 843 

difference from 1961-1990 baseline) for the study basins. For each catchment, the top, 844 

middle and bottom lines represents Q05, Q50 and Q95 flows (i.e. exceedance in % of 845 

months over the simulated 30-year period). 846 
847 



Table 1. Summary of basin characteristics and models employed in the QUEST-GSI study.    848 
 849 
River Basin Area 

(km2) 

Hydrological model  Key water uses Climatic zone(s) Lead 

Mekong 

southeast Asia 

569,410 SLURP (v. 12.7) 

semi-distributed 
13 sub-basins 

(Kite, 1995) 

agriculture 

hydro-electric power 
public water supply 

high-altitude sub-

tropical, 
humid tropical 

1 

Liard 

(MacKenzie tributary)  
Canada 

275,000 SLURP (v. 12.2) 

semi-distributed 
35 sub-basins 

(Kite et al., 1994) 

environmental flows Arctic and sub-Arctic 2 

Okavango 
southern Africa 

226,256 Pitman 
semi-distributed  

14 sub-basins 

(Hughes et al., 2006) 

environmental flows humid and semi-arid 
tropical 

3 

Rio Grande 
(Parana tributary) 

Brazil 

145,000 MGB-IPH (VIC) 
distributed 

(Collischonn et al., 

2007) 

hydro-electric power humid tropical 4 

Xiangxi 

(Yangzte tributary) 

China 

3,099 AV-SWAT-X 2005 

semi-distributed 

(Arnold et al., 1998) 

agriculture 

hydro-electric power 

humid sub-tropical 5 

Huangfuchuan, 
(Yellow tributary) 

China 

3,240 AV-SWAT-X 2005 
semi-distributed 

(Arnold et al., 1998) 

agriculture humid mid-latitude 5 

Mitano River 
(Nile tributary) 

Uganda 

2,098 AV-SWAT-X 2005 
semi-distributed 

(Arnold et al., 1998) 

agriculture humid tropical 1 

Harper‟s Brook 
(Nene tributary), Greta, 

Lambourn, Medway, 

Teme and  Eden 
 

74-1134 Cat-PDM 
distributed 

(Arnell, 2003b; Arnell, 

2004b) 

 humid, temperate 6 

      

1: University College London, UK (Kingston et al., this issue; Kingston and Taylor, this issue); 2: McMaster 850 
University, Canada (Thorne, this issue); 3: Rhodes University, South Africa (Hughes et al., this issue);  4: 851 
Universidade Federal do Rio Grande do Sul and Instituto de Pesquisas Hidráulicas, Brazil (Nobrega et al., this 852 
issue); 5: National Climate Centre, China (Xu and Taylor, this issue); 6: Reading University, UK (Arnell, this 853 
issue) 854 
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Figure 1. Maps of the study river catchments  860 
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Figure 2. Projected 30-year change in river flow (% change from 1961-1990 baseline) 863 

for the study basins as a function of global mean temperature increase, with driving 864 

climate data from the HadCM3 GCM. 865 
 866 
  867 
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 869 
 870 

Figure 3. Envelope of projected 30-year mean changes in metrics of river flow (% 871 

difference from 1961-1990 baseline) under a 2°C rise in global mean air temperature 872 

projected by 7 “priority” GCMs for the study basins. For each catchment, the top, 873 

middle and bottom lines represents Q05, Q50 and Q95 flows (i.e. exceedance in % of 874 

months over the simulated 30-year period). 875 
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